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Current colorectal cancer (CRC) treatment guidelines are primarily based on clini-
cal features, such as cancer stage and grade. However, outcomes may be improved
using molecular treatment guidelines. Potentially useful biomarkers include driver
mutations and somatically inherited alterations, signaling proteins (their expression
levels and (post) translational modifications), mRNAs, micro-RNAs and long non-
coding RNAs. Moving to an integrated system is potentially very relevant. To
implement such an integrated system: we focus on an important region of the sig-
naling network, immediately above the G1-S restriction point, and discuss the
reconstruction of a Molecular Interaction Map and interrogating it with a dynamic
mathematical model. Extensive model pretraining achieved satisfactory, validated,
performance. The model helps to propose future target combination priorities, and
restricts drastically the number of drugs to be finally tested at a cellular, in vivo,
and clinical-trial level. Our model allows for the inclusion of the unique molecular
profiles of each individual patient’s tumor. While existing clinical guidelines are
well established, dynamic modeling may be used for future targeted combination
therapies, which may progressively become part of clinical practice within the near
future. © 2016 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc.
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INTRODUCTION

At the molecular level: colorectal cancer (CRC),
as other cancers, is a multihit disease due to
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the accumulation of genetic mutations/alterations
(inheritable at the somatic level) in genes that control
cell growth, programmed death, differentiation, and
cell-tissue architecture.! The last decade has seen the
introduction of new methods for high throughput
DNA and RNA analysis of sequence, copy number
and expression variations, as well as somatically
inheritable (passed through cancer cell generations)
epigenetic alterations (particularly in methylation of
promoter region CpG islands), which has allowed for
the expansion of our knowledge of the alterations
involved in CRC.>?® Significant tumor heterogeneity
between patients and even within the same tumor,
has been identified with cancer biology, but its signif-
icance for improved clinical management has only
been more recently understood.*=*
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The study of all phenomena causing the onset
and dynamic behavior of the disease, through a sys-
tems biology approach, has led us to an understand-
ing of cancer as a disease of signaling networks of
the cell. We can subdivide a network into intercon-
nected ‘pathways.” Different individual cancers tend
to be more similar in terms of altered signaling path-
ways, than in terms of the individual mutations pos-
sibly present in a given pathway.® Within a given
pathway mutations can be, at least partially, inter-
changeable and mutually exclusive.”

Therapeutic agents targeting individual specific
signaling-proteins (and de facto their pathways), is
one of the major applications of personalized medi-
cine in oncology. Targeted therapies have been (and
are being) developed, and some have already been
shown to confer benefits.® More will become availa-
ble during the next 5-10 years, as not only individual
targeted drugs, but also (more interestingly) as com-
binations of distinct targeted drugs attacking dis-
tinctly altered pathways. Clinical application of
personalized medicine already depends on the identi-
fication of relevant biomarkers for early cancer detec-
tion, prognostic markers for risk stratification, and
predictive markers associated with response to a par-
ticular therapy. Biomarkers already play a significant
role in the management of patients, and intense
research efforts aim at identifying new promising
molecular markers (DNA, RNA, or protein biomar-
kers). When identifying ideal therapies, considering
both experimental and validated targeted drugs
(especially ones targeting signaling-proteins affected
by excess of function), the reconstruction and mathe-
matical dynamic modeling of the signaling-networks
(or regions of them) can be an especially useful and
superior method for biomarker integration. Reasoned
suggestions of targeted-drug combinations are the
natural output of an integrated approach of this
kind. We also discuss the need for new innovative
clinical trial designs, to verify the efficacy of combi-
nations of targeted drugs, a goal difficult to achieve
applying conventional study designs.

ROLE OF BIOMARKERS IN CRC,
RESEARCH, AND CLINICAL PRACTICE

Advances in molecular biology in the last decades
have helped to elucidate some of the genetic mechan-
isms leading to CRC. Biomarkers have begun to play
an increasingly important role in the management of
patients, and intense research efforts aim at identify-
ing new promising molecular markers (at the DNA,
RNA, or protein levels).” '
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Biomarkers are measurable characteristics or
factors that ‘could be indicators of normal biologic
processes, pathological processes, or pharmacological
responses to therapeutic interventions.”'> In cancer, a
biomarker is ‘a molecular, cellular, tissue, or process-
based alteration that provides indication of current, or
more importantly, future bebavior of the cancer.'*

Clinics already utilize biomarkers, including
driver mutations (both at DNA and protein levels),
mRNAs, micro-RNAs, and other somatically inherit-
able alterations. Oncologists use biomarkers for
screening, risk stratification, prevention, diagnosis,
treatment, and surveillance.’

We will focus our attention mostly on a limited
group of bio-medically relevant biomarkers related to
diagnosis, prognosis, and treatment.

Driver Mutations and Other Somatically
Inheritable Alterations as Biomarkers
Important gatekeeper genes, involved in CRC, are
repressor genes playing a double role. They are
involved with both altered networks (see Gatekeeper
and Caretaker Mutations section) and in determining
genetic predisposition. Some important ones include:
the Familial Adenomatous Polyposis gene (APC)'®;
the Juvenile Polyposis genes (SMAD4, BMPR1A that
belongs to the family of TGF-p receptors)'’; the Cow-
den syndrome gene (PTEN)'®; and the Peutz-Jeghers
syndrome gene (STK11/LKB1, required for the organi-
zation of cell polarity)."” TP53 and CHK2 (Li-
Fraumeni syndrome) may also confer increased CRC
risk and be involved in an altered signaling-network.>"

Mismatch repair genes are caretaker genes
whose loss or reduction of function is also associated
with CRC predisposition, because they decrease
DNA-replication fidelity. They are connected with the
Lynch syndrome (HNPCC—hereditary nonpolyposis
CRC), an autosomal dominant genetic condition.
Both immunohistochemistry and genetic testing can
be performed.?" For biomarker sensitivity and specific-
ity, and a rather extensive description of the molecular
diagnostics of CRC, see Refs 22 and 23, respectively.

Evidence from clinical and retrospective studies
allowed for the discovery of, and introduction into
clinical practice, several predictive molecular biomar-
kers for the identification of patients suitable for tar-
geted therapies, and thus prevented unnecessary side
effects from a-specific therapies.'!

Guidelines routinely recommend evaluation of
KRAS gene mutations in patients with metastatic
CRC, to predict the response to antiepidermal
growth factor receptor antibody-based therapies,
such as cetuximab and panitumumab.>*° Recent

© 2016 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc. 315



Advanced Review

studies have reported evidence that, in addition to
KRAS, mutations in NRAS predict nonresponse to
anti-EGFR therapy, and should therefore be tested for
predictive purposes.” Several studies suggest that we
can also use BRAF mutations as predictive markers
for ineffective EGFR-targeted therapy.” This similar
behavior is rationally plausible because KRAS and
BRAF are ‘adjacent’ in the same pathway. We rarely
find a mutated KRAS and BRAF in the same cancer
specimen (except in the case of distinct subclones:
intra tumor heterogeneity). The National Comprehen-
sive Cancer Network recommends the assessment of
the presence/absence of wild-type KRAS, NRAS, and
BRAF, prior to deciding which treatment strategy is
optimal for individual CRC patients.”” Investigators
have also evaluated mutations in PIK3CA and loss of
PTEN expression, as co-predictive markers for ineffi-
cient anti-EGFR therapies’ (they are in a distinct path-
way downstream of EGFR, see Figure 2); these
alterations act via AKT phosphorylation and activa-
tion; AKT1 could also be directly mutated and acti-
vated at low frequency in CRC (E17K). This pathway
flows towards mTOR activation. The KRAS (MAPKs)
pathway and PIK3CA pathway behave as independent
synergic pathways. We observe them altered together
at a frequency greater than expected by chance.”®

Recent studies highlighted that circulating
DNA, from blood samples, could be convenient for
analysis of tumor mutations in real time. Liquid biop-
sies can identify potentially clinically relevant muta-
tions that were not detected in the primary tumor
tissue at the time of biopsy.?”° Liquid biopsies can
be very useful for the early detection of a relapse, and
can be used in monitoring the molecular evolution of
tumors in response to targeted therapy.*’ Potentially,
this could also be used for early detection in patients
known to be at high risk for certain cancers.

As mentioned above, mutations in genes
involved in the DNA mismatch repair system (MLHI1,
MSH2, MSH6, and PMS2) result in alterations in
highly repeated DNA sequences (microsatellites).
Actually, MSI is a diagnostic marker for Lynch Syn-
drome (HNPCC, hereditary nonpolyposis CRC), an
inherited CRC syndrome. Clinical trials and retrospec-
tive studies have also reported that patients with MSI
tumors do not benefit from 5-fluorouracil (5-FU) adju-
vant systemic chemotherapy, while patients with
microsatellite stable tumors do. In addition, some stud-
ies have also found that MSI lines were more sensitive
to SN-38 (irinotecan, an inhibitor of topoisomerase-1)
than MSS lines. The value of using MSI as a predictive
marker for these chemo-sensitivities remains contro-
versial and is still under evaluation.”

316 © 2016 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc.

wires.wiley.com/sysbio

Proposed Panels of mRNAs

Mesenteric lymph node (In) metastasis is the single
most important prognostic characteristic in CRC.
The In status, used for staging, is a decisive selection
criterion for postoperative adjuvant therapy. In addi-
tion to histopathology, a study of 14 biomarker
mRNAs (using RT-PCR on mesenteric Ins material
collected surgically) showed that high CEA, low
MUC2 and a high KLK6 mRNA levels together
formed a strong ‘trio’ for staging and prediction of
outcome in CRC patients.?’

Marshall et al. tested RNA extracted from
peripheral blood cells and created a test based on a
seven-gene biomarker panel (ANXA3, CLEC4D,
LMNB1, PRRG4, TNFAIP6, VNN1, and IL2RB).
The authors derived the panel from a 196-gene
expression profile considering 112 CRC patients
(including those with stage I, II, III, and IV disease)
and 120 controls. The panel was to some extent vali-
dated with material from an additional 202 CRC
patients (at all disease stages), and 208 controls.
Marshall et al. reported 72% sensitivity and 70%
specificity for this initial study. They also developed
a commercial blood test: the ColonSentry® seven-
gene mRNA biomarker panel. The test is supposed
to determine the risk of developing cancer; with
approximately 70% sensitivity and specificity it is
not ideal for clinical purposes®?; however, sensitivity
is similar to other well-established screening tools.
Arguably, it could be used as an indicator for further
screening.

Oncotype DX® Colon is a diagnostic test for
newly diagnosed patients with stage II and III colon
cancer. The test works by examining the tumor tissue
at a molecular level, in order to provide information
about the individual biology of each patient’s tumor.
To do this, the test evaluates 12 genes (expression
levels measured through RT-PCR) within the colon
tumor tissue, to determine the likelihood that the
cancer cells will spread, or metastasize, within
3 years after diagnosis. The seven cancer-related
genes included in the test are: BGN, INHBA, FAP,
genes associated with activated stroma; MK167,
MYBL2, MYC, which are associated with cell cycle
activation; and GADD45B (which is related to geno-
toxic stress). ATPSE, GPX1, PGK1, UBB, and
VDAC2 are used as reference control genes.’>*
Oncotype DX® Colon combines the measurement of
these 12 genes into an individualized result called the
Recurrence Score®. The Recurrence Score® is a num-
ber between 1 and 100 that correlates with the likeli-
hood that an individual patient’s colon cancer will
recur. This information can help healthcare
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providers, and their patients, to make informed deci-
sions about whether or not to implement additional
chemotherapy treatment following surgical removal
of the primary tumor.

Oncotype DX® Breast®® is a 21 gene panel (also
using mRNA expression) for breast cancer. This
panel is at a more advanced stage of clinical valida-
tion and approved for reimbursement by the FDA in
the United States.

Notice that these panels try to predict the risk
of recurrence. Identifying the most effective combina-
tion of targeted drugs against pathways altered in
individual cases is not addressed with these existing
panels.

At a more basic level, some investigators have
suggested that mRNAs of genes belonging to the
same pathway could have relatively similar average
levels of expression.>® Consequently, ranking thou-
sands of normalized mRNAs expression levels, we
should observe a prevalent statistical clustering
(‘Enrichment Score’) of (one to two dozen) mRNAs
(from the same pathway) at the top, bottom or mid-
dle of our general ranking, in a nonrandom fashion.
This is the key principle of Gene Set Enrichment
Analysis (GSEA). Microarray data sets referred to
independent experiments, on similar biological mate-
rial, display a more homogeneous behavior when
analyzed using GSEA.>® This approach has improved
the interpretation of mRNA expression levels.

Noncoding RNA Transcripts:

microRNAs and Long Noncoding RNAs
MicroRNAs are short RNA sequences, about 18-24
bases in length. MicroRNAs can modulate the func-
tion of either tumor suppressors or dominant onco-
genes, modulating the transcription or translation
rates, or the half-life, of important CRC mRNAs
and/or proteins.>”

They can themselves have deregulated levels of
expression or base changes (especially SNPs— single
nucleotide polymorphisms). SNPs can also poten-
tially change the affinity between microRNAs and
microRNAs binding sites.”®*” Even for SNPs related
to microRNAs, we can have ‘passenger irrelevant
changes’ and “driver alterations.’

Several microRNAs appear consistently altered
in CRC, of which roughly two third are upregulated,
and one third are downregulated.*” In fact, miR-143
is classified as a tumor suppressor, and numerous
studies have shown that downregulation of some
microRNAs (including miR-342, miR-143, and miR-
145) plays a role in colon tumorigenesis, while miR-
21 appeared to be elevated in CRC in at least seven
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studies.**™** These microRNAs can also be coded for
in DNA regions where copy-number gain or loss is
detected, and microRNA promoter methylation has
been observed in neoplastic tissue and is believed to
play a significant role in CRC. Interestingly, miR-342
has been shown to play a role in altered epigenetic
patterns, correlating to  hypermethylation, as
observed in aggressive colon carcinomas.*>** High
methylation levels observed clinically in patients with
poor prognosis have been shown to be causative in
at least animal models.*® Functional miR-342 down-
regulates DNMT1 (the DNA methyltransferase iso-
form responsible for copying DNA methylation
patterns throughout cell replication), while loss of
miR-342 allows for the increased DNMT1 expres-
sion (and thus copying of the denovo methylation
mediated by DNMT3b in aggressive CRC), and is
correlated to hypermethylation of tumor suppressor
gene promoters (and their resultant silencing).***?

MiR-135b can repress the expression of APC,**
while MiR-143 represses the translation of KRAS
thereby attenuating the effect of mutated KRAS.*
This could be significant for anti-EGFR therapies.

MiR-34a appears to inhibit cell cycle progres-
sion by targeting the FRA1/FOSL1 (FOS genes fam-
ily).*¢ FOS inhibition means inhibition of FOS:JUN
dimerization (AP1 complex, see also Figures 2
and 3).

MiR-365 can target and contrast the repressor
activity of RB, favoring the crossing of the restriction
point between G1 and S cell cycle phases.*”**®

Altered expression levels of some microRNAs
in liquid biopsies (for instance miR-92 and miR-141)
can be of diagnostic interest.*”~°

Measuring microRNAs from stool can also be
of diagnostic interest; this approach has been vali-
dated for elevated miR-21 expression and the hyper-
methylation of miR-34b/c promoter regions.”'~>?

High miR-21 expression appears to be associ-
ated with poor prognosis and the worst therapeutic
outcomes, and this appears to be true for several can-
cer types.5 462

In the case of excess of microRNA function, we
can think of the possibility of microRNA inhibition
using antisense nucleotides. In the case of microRNA
loss of function, we can envisage microRNAs repla-
cements.>”®> The field of microRNAs is less devel-
oped than that of driver mutations/somatically
inheritable alterations, but its integration into a gen-
eral more comprehensive picture could be of outmost
relevance.

Investigators define ‘long noncoding RNAs’ as
non-mRNAs longer than 200 nucleotides; they are in
principle deprived of an open reading frame (ORF).
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These longer noncoding RNA transcripts can exert
regulatory functions interacting with other RNAs,
with proteins or specific DNA sequences.

They can sometimes interact with different tar-
gets in a modular way. There is room for multiple
specific interactions and specific modulations of func-
tion.®* The mammalian genome encodes many thou-
sands of noncoding transcripts including both short
(<200 nucleotides in length) and long (>200 nucleo-
tides) transcripts. For some of them, low levels of
expression and low levels of evolutionary conserva-
tion introduce the suspicion that we may sometimes
be dealing with transcriptional noise, but one must
also wonder why it has been maintained evolutionar-
ily given the obvious energy expenditure. It may be
that maintenance of this ‘noise’ is outweighed by the
benefit of variation, or that they indeed hold a yet to
be discovered function.

A chromatin signature, consisting of a short
stretch of histone protein H3 tri-methylation at the
lysine in position 4 (H3K4me3), which corresponds
to promoter regions, usually accompanies significant
transcription. A longer stretch of tri-methylation of
histone H3 at the lysine in position 36 (H3K36me3)
covers the entire transcribed region.®**® This chro-
matin signature can be present not only for mRNAs,
but also for noncoding RNAs.®” ncRNAs co-
expressed with the mRNAs of a given pathway can
sometimes be given a guilt-by association role, at
least as a working hypothesis. RNA interference can
help to give a role to long intervening noncoding
RNAs (lincRNAs).%®

We have mentioned large ncRNAs particularly
to make the reader aware of the multiple new levels
of complexity that will undoubtedly emerge, even for
CRC, during the next few years.

Clinical Practice Guidelines

In addition to basic, translational, and clinical
research levels, we have present day clinical practice
guidelines.

Management of CRC patients has slowly
improved during the last 30 years; minor variations
in cancer management and outcomes still exist
amongst industrialized countries. National and inter-
national organizations provide clinical practice guide-
lines (CPGs) to support clinicians.

CPGs are defined as ‘systematically developed
statements to assist clinicians and patients in deci-
sions about appropriate health care for a specific
clinical ~ circumstance’®® The guidelines include
recommendations for treatment and management
decisions to improve the quality, effectiveness, and
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efficiency of patient care. In the oncology field, the
heterogeneity of cancer diseases and the complexity
of therapeutic decisions (for instance in the case of
comorbidities in elderly cancer patients), have led
to the development of guidelines to ensure conform-
ity of practice, promote conformity in the delivery
of medical care and to develop minimal required
standards of good clinical practice by quality
assurance.

Guidelines base their recommendations on the
systematic review of relevant medical literature and
expert input at the time of their generation. Updating
and revision is a continuous process, reflecting
incoming data and new clinical information that may
affect clinical practice standards. The guideline proc-
ess not only involves development but also valida-
tion, dissemination, and assessment of impact.

Collaborative  groups of multidisciplinary
experts are required to define consensus guidelines
for clinical practice and several initiatives are availa-
ble from the Oncology Community, with the goal
that these international efforts will eventually substi-
tute preexisting national and local guidelines. A large
number of clinical guidelines are available, according
to tumor types, aimed at cancer prevention, diagno-
sis, assessment of treatment outcomes, as well as for
supportive palliative care.

The guidelines of the National Comprehensive
Cancer Network (NCCN) represent an alliance of
26 of the world’s leading cancer centers in the United
States. A study published in 2013 validated 2012
NCCN colon cancer practice guidelines.”’ Statistical
analysis documented a significant survival benefit for
patients who received treatments adhering to NCCN
guidelines.?®

European Society for Medical Oncology
(ESMO),> The American Society of Clinical Oncol-
ogy (ASCO),>* and The European Registration of
Cancer Care (EURECCA) have the same goals as the
NCCN.”" A variety of scientific societies also curate
and regularly update evidence-based guidelines for
the use of biomarkers in CRC.3»7%73

The American Society for Clinical Pathology,
the College of American Pathologists, the Association
for Molecular Pathology, and the American Society
of Clinical Oncology produced New Guidelines on
Colorectal Cancer Molecular Testing in 2015, and
included KRAS, extended RAS, BRAF, and dMMR/
MSI as recommended molecular markers.”*

It is important to distinguish the stage of an
established good clinical practice guideline from the
stage of innovative clinical trials, and goals projected
toward in coming years. Technological and concep-
tual evolution is roughly 5-10 years ahead of routine
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clinical practice. In these developmental phases, costs
are an additional issue.

Artificial Intelligence decision support systems,
including ones developed by US Cancer Centers with
IBM (under the Watson eponym), have obvious rela-
tionships with more classical clinical guidelines. They
could overtake them in the long run, at least in some
ways.”?

An authoritative advocate for lighter regula-
tions, allowing for more rapid introduction of discov-
eries into clinical practice, is Vincent DeVita. In his
last book (‘The death of cancer’),”® he discusses this
important issue. The most important innovations are
linked to the introduction of more targeted drugs
correcting more altered pathways, and something
must be done to accelerate this process.

REASONED COMBINATIONS OF
TARGETED INHIBITORS OF ONCO-
PROTEINS AFFECTED BY EXCESS OF
FUNCTION: A DYNAMIC
SIGNALING-NETWORK MODEL

We focus on future goals aiming towards persona-
lized cancer combination therapy, using drugs that
are targeted inhibitors of onco-proteins affected by
excess of function in the context of a signaling-
network of (bio) chemical interactions. Selective
inhibitor drugs are chemicals that respond to the gen-
eral laws governing chemical interactions, of which
biochemical interactions are a direct subset. One can
easily introduce them into a dynamic model.

Identification and reconstruction of
interconnected pathways relevant in CRC
(at Go — G1 — S restriction point)

Network reconstruction according to
Molecular Interaction Map (MIM)
syntactic rules

Wet lab experiments

Systems medicine in colorectal cancer

We present in Figure 1 a flow chart of the dif-
ferent phases of construction and implementation of
our dynamic model of biochemical interactions/reac-
tions among signaling proteins (GO-G1-S cell cycle
phase).

To avoid the explosion of a variety of specifici-
ties related to different cancers, we will refer, as an
exemplary model especially for solid carcinomas, to
CRC. We are aware of the fact that, especially in
solid carcinoma tumors, the architecture of signaling-
network subregions and their pathways come back
repeatedly.’ At least some of the driver and gate-
keeper mutations tend to be present (albeit with fre-
quency variations) in a multiplicity of them.””~"”

An additional restriction we introduced was the
concentration of our attention to the GO-G1 cell
cycle phase, when the cell commits to the irreversible
decision of entering the S phase, with decisive subse-
quent consequences on cell replication. The abun-
dance of driver/gatekeeper mutations in the
signaling-network subregion involved in this cell
cycle phase suggests it is of crucial relevance.**:8%-81

Gatekeeper and Caretaker Mutations

To understand the mechanisms of preneoplastic
lesions (benign polyps in the colon) and subsequent
tumor emergence and evolution, we need to identify
the genes that drive tumorigenesis. All genomes con-
tain thousands of somatic mutations (often called
passenger mutations), but only a few of them ‘drive’
a normal cell to evolve into a cancer cell, by altering
genes which confer selective growth advantages to
tumor cells."®*% The Vogelstein group in Baltimore

Realization of a dynamic mathematical model

based on ODEs, capable of simulating

dynamically the molecular interactions present

in the MIM

Long training of the model

in order to fit simulations’ results with multiple

data reported in pertinent papers (>100)

Introduction in the model of gatekeeper
mutations and targeted inhibitors

Experimental validation of the model

N

Experimental data from

in house newly published results

FIGURE 1 | Flow chart of the different phases of implementation of our dynamic model.
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refers to a basic fundamental distinction between
gatekeeper and caretaker genes."®*% The co-
presence of a discrete number of somatically inherita-
ble alterations sustains the actual malignancy of a
cancerous cell: each gatekeeper alteration affects a
‘gate’ in a biochemical pathway of the signaling net-
work. This discrete number of ‘hits’ (let say 5-10
hits) is required to make the cancer cell malignant
when we clinically detect the tumor, independently
from its past evolutionary history.

How long a cell cluster takes to evolve to a
malignant tumor depends largely on the ‘caretaker
mutations’ it acquires. These driver mutations reduce
the fidelity of cell replication, both in terms of DNA
bases and chromosomal fragmentation/rearrange-
ment. Defects in caretaker’s ability to preserve proper
DNA sequence can increase the base-level mutational
probability of driver/gatekeeper mutations, while
chromosomal instability/fragmentation may result in
copy number decreases in gatekeeper repressor genes,
or increases in gatekeeper dominant oncogenes and
chimeric oncogenes. Caretaker level mutations will
facilitate/accelerate the appearance of errors at the
gatekeeper level."®*5 We can see an altered care-
taker level as having a sort of relativistic effect of
time-scale compression on cancer evolution.

Recently, the importance of multiple inheritable
chromatin alterations®®™® has emerged, they can
affect the transcription of large and a-priori nonspe-
cific sets of genes. Inside these sets, we can have cru-
cial up or downregulation of expression of driver/
gatekeeper genes.

Somatically inheritable epigenetic alterations
can also affect driver/gatekeeper genes, as is seen
with CpG methylations in their promoter regions.®’
MicroRNAs*” and other nontranscribed RNAs®* can
also affect the levels of specific genes.

GO0-G1 Cell Cycle Phase and the G1-S
Restriction Point
There are three main waves of transcription in a
mammalian cell cycle: the G1 to S transition, (the
most studied cell cycle phase and the focus of this
section), the G2 to M transition and the M to G1
transition.*®

During the G1 to S transition, phosphorylation
of transcriptional inhibitors (RB + proteins of the
pocket family) by cyclin-dependent kinases (for
instance CyclinD:Cdk4 and CyclinE:Cdk2) releases
them from transcription factors (E2F1-3/DP1-2 for
instance). The consequence is activation of G1-S
gene transcription (as depicted in our molecular
interaction map (MIM; see Figure 2) and
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supplementary material of Tortolina’s 2015 Oncotar-
get paper’?). In cooperation with other transcription
factors (Figure 3), E2F1-3:DP1-2 act to transcribe
dozens of genes, in different cellular contexts and dif-
ferentiation conditions.”’ E2F1-3:DP1-2 targeted
genes can be positive cell cycle gene regulators, and
include CCND1, CCND3, JUN, MYC, MYCN,
CCNE1, CCNE2, CDC25A, CDK2, E2F1-3, NPAT,
MYB, MYBL2, and TFDP1. Among the negative cell
cycle gene regulators targeted are: CDKNI1C,
CDKN2C, CDKN2D, E2F4-8, RB1, RBL1, and
TP53. This wave of transcription initially reinforces a
positive feedback loop, further activating G1-S tran-
scription. CyclinE:Cdk2 further phosphorylates the
pocket proteins, favoring the transcription of more
Cyclin  D/E, generating an initial positive
feedback loop.

Negative feedback loops (including E2F4-8:
DP2 activation) terminate the first wave of gene
expression at the transition from G1 to S phase.*® An
example of a negative feedback loop is the transcrip-
tion of E2F6-8 downstream of E2F1-3:DP1 transcrip-
tion factors. This happens shortly before the
phosphorylation (P-) of E2F1-3 by CyclinE:Cdk2.
P-E2F1-3 detach from their promoters. We can con-
sider the combination of the two effects (phosphoryl-
ation and detachment) as a negative feedback loop,
because E2F6-8 now can repress transcription at the
same promoters previously activated by E2F1-3.
Another target of E2F1-3 transcription is the SKP2
protein, involved in an ubiquitin ligase pathway
degrading E2F1-3,*® an additional component of the
negative feedback loop.

Transcription of multiple G1-S cell cycle genes
is irreversibly committed to at the GO—GT1 transition
point, just before the earliest newly transcribed genes
required not just by quiescent-cell maintenance, but
by new cell replication.

Mammalian cells (and yeast) have this irreversi-
ble ‘restriction point,” after which the cell is commit-
ted to the S and subsequent phases, independently of
signals from the environment.

De-repression of G1-S transcription allows pro-
gression into S phase in an unrestrained fashion.
When this happens because of a discrete number of
mutations/hits in the signaling-network upstream,
one can consider this multihits event a hallmark of
cancer. Mutations/alterations in GO-G1 signaling-
proteins (see our MIM pathways upstream of
MYC/CCNDI1 transcription, Figure 2) can precisely
disrupt (through a discrete number of hits) this irre-
versible restriction point.” The gate(s) to S phase and
further cell cycle progression will remain open. This
aspect is crucially relevant for cancer.
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FIGURE 3 | Simplified scheme of a model promoter region regulating MYC and CCND1 transcription. The model promoter region consists of a
number of important Transcription Factor Binding Sites, depicted in arbitrary order. Each TF considered to bind to its promoter is a component of
the MIM. Schematic representation of the promoter region, with activators (a) and repressors (b) assumed to bind to each TFBS in the model.
Arrows indicate the potential for binding at the TFBS. We also show the DNA binding regions of activators (white) and repressors (black).
[Reprinted with permission from Ref 90. Copyright 2008-2015 Impact Journals, LLC]

A Dynamic Signaling-Network Model

We modeled a network subregion related to the GO-
G1-S cell cycle transition, downstream of TGFp,
WNT, HGF, and EGF-family receptors. We also
included Extracellular Matrix Integrin receptors and
the ALK receptor (see Figure 2). The new MIM is
about 50% larger than the 2015 MIM we presented
in Oncotarget.”® The signals downstream of the
membrane receptors propagate through a complex
network, involving cross talk amongst interacting
pathways, and strong feedback loops on different
levels.

Our MIM is especially relevant because it
represents the network (multiple pathways) just pre-
ceding a crucial restriction point concerning irreversi-
ble decisions about cell replication. Driver gatekeeper
mutations affecting the pathways reconstructed in
our MIM are quite frequent (but not exclusively) in
CRC: they open closed gates precisely during this
phase of the cell cycle. In perspective, in our MIM
reconstruction, we move in the direction of an
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extensive representation of the crucial GO-G1-S tran-
sition, and therefore we should find in it most of the
cancer gatekeeper mutations.

A MIM is a diagram convention that is capable
of unambiguous representation of networks contain-
ing multiprotein complexes, protein modifications,
and enzymes that are substrates of other enzymes.
This graphical representation makes it possible to
view all of the many interactions in which a given
molecule may be involved, and it can portray com-
peting interactions, which are common in bio-
regulatory networks.”>™® Alternative syntaxes have
also been proposed.”’”>”®

Our dynamic model suggests that the duration
of the initial GO-G1 cell cycle phase is short
(30—60 min). It is made mostly of biochemical inter-
actions and posttranslational modifications, e.g.,
phosphorylation—de-phosphorylation, as our MIM
also shows. It is probably a preparatory time where
the cell focuses only on future transcription/transla-
tion of new proteins. At an experimental level, FBS
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(fetal bovine serum) stimulation of a quiescent mouse
epidermal cell line resulted in AKT and GSK-3p
phosphorylation after 15-30 min.”” Similar times for
MAPK phosphorylation have also been reported.'®°

The last 4 h of the G1 phase involve the tran-
scription and translation of new proteins required for
entering the S phase (we have mentioned some of
them above, in GO-G1 Cell Cycle Phase and the
G1-S Restriction Point section). Because of a multi-
phosphorylated RB1, in cooperation with other pro-
transcriptional GO-G1 pathways, additional proteins
will appear in the early S phase, including proteins
required for DNA duplication and finally the dupli-
cation of the components of the entire cell mass.*"!

In the GO-G1 cell cycle phase that we have
reconstructed, we do not have a transit through mul-
tiple waves of subsequent new transcriptions/transla-
tions and accompanying protein degradations, thus
the reduced size of the MIM makes data handling
simpler (while simultaneously sufficiently detailed) to
interrogate interactions at a biochemical interactions
level.

We moved ahead from the stage of a static
signaling-proteins  interaction  descriptive  map
(MIM), to dynamic mathematical modeling. Our
reactions’ dynamic simulations used ODEs. As of the
end of 2014, they involved 660 reactants (basic and
modified species, complexes and inhibitors),
348 reversible reactions and 174 catalytic reactions,
for a total of 870 reactions processed with one tool
(348 x 2 + 174 = 870 reactions),”® while by June of
2015 we had increased the number of reactions mod-
eled by almost 50%.

Notice that, from a basic perspective, chemical
interactions/reactions, are at the very basis of the life
of any cell, and therefore of life itself. For dynamic
mathematical simulations, efficient software is availa-
ble for achieving numerical solutions of ordinary dif-
ferential equations (ODEs). We can achieve a
satisfactory representation of the temporal evolution
of large networks of biochemical interactions, and
used Matlab’s Simbiology software to do so.'°" After
the introduction of a mutated function, for instance
through an altered/mutated signaling-protein, Sim-
biology is able to converge rapidly to a new equilib-
rium (offering a numerical solution).

We have submitted our model as SBML to
BioModels,'°*'%% submitted by Dr. Vijayalakshmi
Chelliah on behalf of Dr. Lorenzo Tortolina.
MODEL1601250000.

A model can be beneficial if it facilitates hand-
ing of data regarding important aspects of a given
phenomenon. As is typical of experimental science, it
is not necessary to initially have 100% of the picture
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to make relevant cognitive progress. This general
consideration also applies to the performance of our
progressively developing dynamic model.

Extensive pretraining of our model, inputting
information from >100 pertinent articles, is the pre-
dominant strategy we have followed. We achieved
semi-quantitative predictivity (statistically very signif-
icant), and noticed that our parameters can be discre-
tized in eight log-scale intervals (ranges) keeping the
same good correlation with experimental results. A
discretization in four log-scale intervals (ranges) is
suboptimal, but still correlated (unpublished data),
thus our model is performing quite well.

We aim to further improve our model with
more extensive acquisition of parameters (proteins,
P-protein concentrations and improved reaction rate
data). Recent observations suggest that variations in
protein concentration, in different tumor types, could
explain (at least in part) different responses to altered
pathways inhibitors.'**

A direct parameterization of rates requires
known or derived structures of the involved mole-
cules. Sophisticated computational pipelines are
available to predict protein structure, and protein—
protein interaction sites. We need extensive docking
simulations to derive all possible interactions among
the molecules, and can use molecular dynamics simu-
lations to derive Gibbs free energies and to predict
equilibrium concentrations. Introducing a general
approximation at the level of association rates, we
can finally derive from the Gibbs free energies both
association and dissociation rates.'%

Starting from an initial  ‘physiological
condition,” the model can be adapted to simulate
individual cancer pathologies, implementing (sequen-
tially) discrete numbers of alterations/mutations in
relevant onco-proteins. We verified some salient
model predictions using the mutated CRC lines
HCT116 and HT29. We also validated the behavior
of our pretrained model against subsequent external
results.

During the training phase of our software, we
also experimentally revealed that MEK inhibition by
a MEK inhibitor drug (CI1040) decreases CCND1
mRNA stability via the transcriptional regulation of
an intermediary gene.””

Mutations/alterations present in the HCT-116
line are: ErbB2 1X, PTEN (60%), KRAS, PI3K,
B-Catenin, TGFp receptor II, and E-Cadherin.

Mutations/alterations present in the HT-29 line
are: ErbB2 2X, PTEN (100%), BRAF, PI3K, APC,
and SMADA4.

The following oncoprotein inhibitors were
used: Azakenpaullone (GSK3p inhibitor), CI-1040

© 2016 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc. 323
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TABLE 1 | Summary of our Biochemical Interactions/Reactions Pathways (Fuzzy Logic Definitions)

1. Pathway [ErbB-family receptors — PI3K — PTEN — AKT — ramifications a, b, ¢, dJ;

2. Pathway [ErbB-family receptors — Shc — Grb2 — SOS— GAP— KRAS — BRAF — MEK — ERK — AP1 — TFBSpy, transcription agonist];
3. Pathway [ErbB-family receptors — E-Cadherin (Cadherin/Catenin adhesive complex)];

4. Pathway [ErbB-family receptors — PLCy — PIP2 — PKC — BRAF — MEK — ERK — AP1 — TFBSpq, transcription agonist]; the terminal

parts of pathway 2 and 4 are the same];

5. Pathway [WNT — Frz/LRP5/6 — Dvl — AXIN — APC — GSK3p — B-catenin — TCF7L2 — TFBStcgy12, transcription agonist];
6. Pathway [TGFp-receptors — SMAD2/3 — SMAD4 — TFBSsyap, transcription antagonist];
7. Pathway [TGFB-receptors — TAK-1 — TAB2 — NLK — TCF7L2 — TFBStcrz12 (TCF7L2 binding site), transcription agonist], converging

with 8];

8. Pathway [WNT — Frz/LRP5/6 — TAK-1 — TAB2 — NLK — TCF7L2 — TFBStcg71, transcription agonist], converging with 7].

9. Pathway [Integrins — ILK — PIP3 — AKT — ramifications a, b, ¢, d]

10. Pathway [Integrins — FAK — AKT — ramifications a, b, ¢, d]

11. Pathway [Integrins — FAK — PI3K — AKT — ramifications a, b, ¢, d]

12. Pathway [Integrins — FAK — Grb2 —SOS— GAP— KRAS — BRAF — MEK — ERK — AP1 — TFBSup+, transcription agonist]

13. Pathway [Integrins — FAK — SRC — ramifications e and f]
14. Pathway [ALK — SRC — ramifications e and f]
15. Pathway [ALK — PI3K — ramifications a, b, ¢, d]

16. Pathway [ALK — PLCy — PIP2 — PKC — BRAF — MEK — ERK — AP1 — TFBSap+, transcription agonist]
17. Pathway [c-Met — Shc— Grb2 — SOS— GAP— KRAS — BRAF — MEK — ERK — AP1 — TFBSp+, transcription agonist];

18. Pathway [c-Met — PI3K — AKT — ramifications a, b, ¢, dJ;
19. Pathway [c-Met — SRC — ramifications e and f];
AKT Ramifications

a. Pathway [AKT — GSK3p — APC — B-catenin — TCF7L2 — TFBSycg712, transcription agonist]

b. Pathway [AKT — mTOR — p70S6K]

¢. Pathway [AKT — MDM2 — TP53 — TFBStps3, transcription antagonist]
d. Pathway [AKT — P21 — Cyclin (D/E) / CDK (2/4) — pRB — E2F:DP — TFBSg,.pp, transcription agonist]

SRC Ramification

e. Pathway [SRC — Grb2 — SOS— GAP- KRAS — BRAF — MEK — ERK- AP1 — TFBSppq, transcription agonist]

f. Pathway [SRC — PI3K — AKT — ramifications a, b, ¢, d]

(MEK1/2 inhibitor), Perifosine (AKT inhibitor),
PI103 (PI3K inhibitor), and XAV939 (promotes
B-catenin degradation).

The syntactic rules for drawing a MIM were
according to the papers’®”?~?® and Table 1.

How We Modeled mRNA Levels
We implemented a thermo-statistical derivation of a
Transcription Rate Function for MYC and CCND1
(applicable to other genes transcribed at the G1-S
boundary). The complex TCF7L2:B-catenin coop-
erates (both through positive and negative modula-
tions) with other transcription factors illustrated in
Figure 3.

Regulation of transcription is typically multifac-
torial, involving a series of transcriptional activators,
repressors and co-factors that control the recruitment

324 © 2016 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc.

of the transcriptional machinery and RNA Polymer-
ase (RNAP) to the transcription start site.

We applied a statistical thermodynamic frame-
work to relate MYC and CCND1 transcription rates
to the concentrations of their upstream transcrip-
tional activator and repressor complexes. Notice that
MYC and CCND1 are just two mRNAs, selected out
of many parallel concomitant examples, for instance:
CCND3, JUN, MYCN, CCNE1, CCNE2, CDC25A,
CDK2, E2F1-3, NPAT, MYB, MYBL2, and TFDP1.
Among the negative cell cycle regulators are:
CDKN1C, CDKN2C, CDKN2D, E2F4-8, RB1,
RBL1, and TP53.

The first step in building the thermo-statistical
model involved the identification of key Transcription
Factor Binding Sites (TFBSs-promoters) responsible
for activation and repression of MYC, CCND1 and
other genes, as well as the main TFs that bind to them.
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FIGURE 4 | Response to different inhibitor treatments. Scatter plots of experimental (Y-axis) versus simulated (X-axis) values. Notice that only
the Y-axis represents experimental variability. Top graph to the left: ERKPP protein levels. Top graph to the right: AKTP protein levels. Bottom
graph to the left: MYC mRNA levels. Bottom graph to the right: CCND1 mRNA levels. The (0;0) origin of the two axes makes reference to a
theoretical complete inhibition, both experimental and simulated. Notice the (0;0) origin is never reached, either in experimental or simulated
values, even for strong inhibitions. Similarly, the 45° dotted diagonal makes reference to an ideal complete correspondence between simulated
and experimental data. We used the following inhibitors and inhibitor combinations—1, 2: Controls; 3: XAV939; 4: PI103; 5: CI1040; 6: Perifosine
20nM; 7: Perifosine 40nM; 8: XAV939 + PI103; 9: XAV939 + CI1040; 10: PI103 + CI1040; 11: Perifosine 20nM + CI1040; 12: Perifosine

40nM + CI1040; 13: XAV939 + PI103 + CI1040; 14: XAV939 + PI103 + CI1040 + Perifosine 20nM; 15: XAV939 + PI103 + CI1040 + Perifosine

40nM. Figure elaborated from results presented in Ref 90.

Details of the computations are given in our
2015 paper’® and its supplementary material.

In 2015, we verified some salient model predic-
tions using the mutated CRC lines HCT116 and
HT29, and measured the amount of MYC mRNA,
CCND1 mRNA, and AKT and ERK phosphorylated
proteins, in response to treatments with different
onco-protein inhibitors, alone or in combination”
(Figure 4).

The correlation between simulated and experi-
mental values was statistically significant in all cases
considered, at a P-value of at least <0.01 (two-tailed).
Statistical tests we implemented include Spearman’s
rho and R? coefficient for linear regression. Details
are reported in Ref 90.

Our MIM reconstruction, parameterization,
and mathematical modeling, is not a final working

Volume 8, July/August 2016

instrument. However, a continuously updatable
working instrument appears realistically achievable
in the near future. What we have already shown is
that some deficiencies in input (inevitable at this
stage), are definitely not obscuring the connection
between model and experiments.

The very important message (reinforced by sta-
tistical analysis) is that an incremental path is now
open, justifying more long-term future cooperative
efforts in the direction of building larger MIMs, sup-
ported by more input parameters and the direct
inclusion of molecular concentrations and reaction
rates.

Our present model is already quite encourag-
ing, and we continue to work toward future develop-
mental advancements in the model. Our long-term
goal is its utilization for the proposal of reasoned

© 2016 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc. 325
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combinations of inhibitors of specifically altered
pathways in the specific cancers of individual
patients.

Notice that in terms of differential behavior
between a normal network and a network carrying
altered/mutated pathways, pathways that remained
normal in a cancerous state tend not to contribute to
the differential behavior between a normal and a
cancer counterpart. These considerations apply in
principle also to pathways not yet inserted into
our MIM.

Looking at our extensive pretraining approach,
some of the published literature could contain situa-
tions close to our experimental validations. Implicit/
partial conditions of retrofitting are difficult to evalu-
ate when your pretraining utilizes the pertinent frac-
tion of data reported in results of >100 papers.
However, a partial overlap between pretraining and
validation could suggest that we are already covering
the most relevant features of our GO—G1 network
subregion.

Our Model Applied to Independently
Published Results

Well after our model finalization and our own exper-
imental verifications, the predictions of our model
were tested against preclinical results obtained by
independent investigators.'?®

The authors had examined the DiFi, LIM12135,
HCA-46, and OXCO-2 CRC lines, before and after
induction of panErb resistance, through a subsequent
KRAS mutation. These lines were initially sensitive to
the panErb inhibitors cetuximab or panitumab (both
monoclonal anti EGFR antibodies), but resistance
emerged through subsequent new KRAS mutations.
The authors observed that, in their CRC lines (ini-
tially sensitive and then resistant to panErb inhibi-
tors) the addition of MEK inhibitors (downstream in
the same KRAS pathway) could only partially over-
come resistance. The initial (pre KRAS mutation)
sensitivity to the panErb inhibitors suggests an acti-
vation of probably more than one pathway starting
with the tetramer [(ligand:EGFR)?]. Not only had the
MAP-kinases pathway to be involved, the panErb
inhibitor would also continue to inhibit an additional
pathway along PI3K—AKT. Following the KRAS
mutation, administering a MEK inhibitor in combi-
nation with a panErb inhibitor led to more complete
resensitization to, and thus effectiveness of, the
therapy.

With our model, we examined the simulated
behavior before and after the emergence of resistance
to panErb inhibitors. To do so we generated ad hoc

326 © 2016 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc.
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MIM modeling, in the absence or presence of KRAS
alterations. We simulated the presence of a panErb
inhibitor, a MEK inhibitor, or both.

The behavior of P-protein/total protein for
EGFR, ERK, and AKT (at 30 min—1 h) was compati-
ble with the authors’ observations. Moreover, both
¢-MYC and CCND1 mRNAs (both playing a crucial
role for cell replication), were completely normalized
(at 4-8 h), only by the combination of panErb and
MEK inhibitors in the presence of a mutated KRAS.

Our simulations suggest that this behavior is
due to a synergic effect of the two inhibitors, which
target two different pathways:

e MEK inhibitor downstream of the acquired
KRAS mutated pathway.

e PanErb inhibitor on the PI3K — AKT pathway.

This synergism appears in line with the one observed
by the authors at a cellular level. The behavior of our
model in this new context was quite encouraging,
and able to reflect satisfactorily these independent
experimental findings.

An epithelial organoid culture system, in which
human intestinal stem cells (ISCs) indefinitely self-
renew and form crypt-like organoid structures in
Matrigel, has recently been developed.'®”!°® Using
CRISPR-Cas9—Cancer lines mediated engineering of
human intestinal organoids, they can be progressively
transformed into neoplastic lesions.'?>!10

Human colorectal tumors bear recurrent muta-
tions in genes encoding proteins belonging to the
WNT (APC), MAPK (KRAS), TGF-p (SMAD4),
TP53, and PI3K pathways, all present in our MIM.

We introduced in our dynamic simulator all
possible permutations (32) for 0 (1), 1 (5), 2 (10),
3 (10), 4 (5), and 5 (1) mutations, and present the
results obtained in Figure 5.

As shown in Figure 5, the results of our model
were in very good agreement with the experimental
findings cited in the following references.'®”'* We
can consider the transcription complex of Figure 3
(and related equations) as acting in parallel to the
stimulus to cross the boundary of the restriction
point between G1 and S cell cycle phases. We can
consider an mRNA ratio 20-30/1 as roughly a transi-
tion threshold for a multimutated organoid, versus
an mRNA ratio = 1 for 0 mutations (normal orga-
noid). Notice that mice carrying a KO p-catenin are
unable to develop normal crypts.''!

As shown by Figure 6, the behavior of our
model is again quite reasonable, even more so if we
analyze the performance of individual combinations:
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MAPK (KRAS), TGF-p (SMAD4), PI3K, and TP53 pathways. In the
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described in Figure 3. At 4-5 mutations and 20-30 A.U. of mRNAs
levels, we appear to cross the cell-cycle restriction point. At position
-1 in the abscissae, we show the strong inhibitory effect of a deleted
p-catenin.”!

—— Median value

Transcribed genes at the
G1-S boundary (mRNA levels)

Number of inhibitors

FIGURE 6 | We started with a dynamic model of,'*'"° carrying
mutations in: WNT (APC), MAPK (KRAS), TGF-p (SMAD4), and PI3K
pathways. We gave simulated combinations of the following
inhibitors: PanErb inhibitor, MEK inhibitor, PI3K inhibitor, AKT
inhibitor, and MDM?2 inhibitor. We show the effects of the simulated
combination of the five inhibitors. We show permutations of 0 (1),

1 (5), 2 (10), 3 (10), 4 (5), and 5 (1) inhibitors.

inhibitors of more distant /independent pathways
tend to synergize more strongly.

CONSIDERATIONS AND QUESTIONS
FOR FUTURE PROSPECTS AND
DEVELOPMENTS

We think we are on a viable research track, not a
presently impassable route, even considering the
availability of only partial information. Our dynamic
modeling could offer informatics based support for

Volume 8, July/August 2016

Systems medicine in colorectal cancer

decisions about reasoned combinations of targeted
therapies. Kinetic parameters of inhibitors are known
and they can be introduced in a straightforward way
in our kinetic model.

In the COSMIC release of June 2, 2014, the
curators have estimated 4-10 driver mutations
(or somatically inheritable alterations) as possible
causes of an individual cancer. They are not the
same, or in the same number, for different tumors.
They have evolved against a background of more
than 10,000 passenger mutations per tumor.””

At the stage of reconstruction of our MIM of
March 2015,°° the most frequent driver and gate-
keeper mutations/alterations were already repre-
sented in the MIM, TP53, APC, KRAS, PTEN,
SMAD4, PIK3CA, BRAF, and CDH1 (in an order of
decreasing frequency of occurrence).

According to the COSMIC release of September
8, 2015, focused on colon carcinoma,”” we have the
following probability of presence of a given mutation
in an individual cancer (20 most frequent oncogenes):
TP53 (48%), APC (42%), KRAS (35%), ATM
(23%), PIK3CA (22%), PTEN (21%), SMAD4
(20%), FBXW7 (19%), PTCH1 (16%), ARID1A
(15%), CREBBP (15%), KMT2D (15%), BRAF
(14%), NF1 (14%), RB1 (14%), KMT2C (13%),
KIT (12%), TRRAP (12%), CARD11 (12%), and
BRCA2 (11%).

In the list shown above, we have both gate-
keeper genes directly related to the signaling-net-
work, and caretaker genes with diversified complex
functions (both fidelity/accuracy of replication and
transcription). We will not enter an exhaustive analy-
sis, but a first look suggests that a clear majority of
gatekeeper genes are also present in our MIM and in
our dynamic model.

From the perspective of the individual tumor of
a specific patient, we could have had a Darwinian
evolution to cancer, through a constellation of some
frequent driver mutations/alterations and much less
frequent driver mutations/alterations.'' This consid-
eration could also apply to intratumor subclones."'?

In a modern framework of personalized Oncol-
ogy, to know more about these individual oncogene
constellations is becoming increasingly relevant. An
uncommon genotype/epigenotype in a patient could
confer varying sensitivity or resistance to a specific
inhibitor, and/or (more importantly) a specific combi-
nation of different inhibitors.

Several Cancer Data Portals can
allow for in depth mutational analysis of individual
tumors. In principle, for each tumor, both very fre-
quent driver-gatekeeper mutations and much less fre-
quent mutations can be observed and considered.

—_ — — —

28,79,114-116
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Individual cancers could depend on a combination of
commonly altered pathways and more ‘private/
unique,’ altered pathways (uncommon, but still cru-
cial, for an individual cancer).

We aim to identify and characterize somatically
inheritable driver and gatekeeper alterations, affect-
ing cancer relevant signaling-proteins in individual
patient tumors, a task requiring advanced technology
and extensive acquisition of information. Inputting
this information into, and processing it with, our
model, we hope to identify optimal treatments to
improve patient outcome.

The multihit evolutionary process of malignant
transformation is potentially causing some intratu-
mor heterogeneity. To complicate matters, in addi-
tion to common mutations frequently presenting in
the population, some subclone-unique mutations
may be present. Cancer-genes’ mutations detected
from liquid biopsies could be informative (with the
benefit of easy collection), as could multiple biopsies
on the primary tumor and metastases at different
time points.' %17

A very interesting finding was that CRCs with
acquired cetuximab resistance (via KRAS mutation)
often demonstrated a decay of KRAS mutant clones
upon antibody withdrawal, thus conferring renewed
cetuximab sensitivity! This indicates that intermittent
drug schedules could be highly beneficial,”” and our
modeling could be used to identify and exploit this
and other tumor weaknesses. Since our MIM can
simulate characterized individual clones one by one,
in the future we may consider intratumor subclones
in individual patients. Exploiting circulating tumor
DNA (ctDNA), to genotype CRCs at different times
of cancer evolution or therapy, appears potentially
promising. The complexities of late clonal evolution
could thus be exploited using repeated liquid biop-
sies, at different stages of patient care, to determine
optimal times to start or interrupt different drugs.
Insertion of these dynamic findings into our model
can make it even more realistic and useful.

Perhaps, in a given cancer, we should investi-
gate at least 100-200 of the most frequent driver and
gate-keeper alterations, to detect a clear majority
fraction of them, as well as lower (2-3%) frequency
mutations.

Driver-gate-keeper alterations involved in the
GO0—G1 transition are especially relevant because
they lead into to the restriction point just prior to the
S phase, however these should be distinguished from
those involved in DNA replication fidelity but not
actually required in the signaling-network of bio-
chemical interactions involved in cell replication
control.
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In alternate to mathematical modeling of the
type illustrated above, multiple parameters are con-
ventionally considered in an unconnected way, sub-
stantially as a richer set of classic bio-markers
(a nonsystems approach). If the set of biomarkers is
relevant, we will be able to show important statistical
correlations with prognosis and response to treat-
ment (the two are partially correlated).

We can think in terms of well conducted and
directed —omics investigations, at a variety of levels
and combined levels (various DNA alterations,
mRNAs, mi-RNAs, nontranslated RNA genes, pro-
teins, and metabolites of any kind).

We need sufficiently powerful and expensive
analytical lab tools, correspondingly strong comput-
ing hardware and software, and to acquire a new lar-
ger set (and different classes) of biomarkers.

For the moment, systematic -omic approaches
would be too expensive for routine clinical use. A
successful large -omics pilot study, could identify a
much smaller significant set for analysis (again a bio-
marker, or nonsystem nonnetwork-integrated,
approach) thus reducing clinical costs markedly while
improving patient outcomes (see also Proposed
Panels of mRNAs section).

A side comment: We can ask the side, not irrel-
evant, question, if we are developing a cancer care
system available for only some technologically devel-
oped country and sufficiently wealthy people.

Toward Future Strategies

A translational application of our dynamic model
approach envisages three main and interconnected
steps.

In order to diagnose driver mutations/altera-
tions in each patient, we can choose to detect, by
NGS technologies, a discrete number of genes/signal-
ing-proteins, involved in an important phase of the
cell cycle (for instance the GO—G1—S transition, as
discussed above). Perhaps, in a given tumor (CRC in
our case), we should investigate at least 100-200 of
the most frequent driver and gate-keeper alterations,
to detect a clear majority fraction of them, including
mutations present at a relatively low frequency.

High throughput technologies, intended not
only for detecting mutations, but also copy number
alterations and somatically inheritable epigenetic
changes, allow for in depth analysis of alterations in
individual tumors. These new technologies have con-
tributed to highlight how individual cancers could
depend on a combination of commonly altered path-
ways + ‘private/unique’ altered pathways (uncom-
mon, but still crucial, for an individual cancer).
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The second step requires the integration of
mutation/alterations of each patient within connected
molecular-interaction pathways (a MIM) belonging
to a network subregion, along which biochemical sig-
nals are propagated (see A Dynamic Signaling-
Network Model and How We Modeled mRNA
Levels sections).

Starting from a MIM, we can derive a decision
making strategy from the outcomes of a dynamic
model carrying the gatekeeper mutations/alterations
of an individual cancer, plus available targeted inhi-
bitors of detected altered signaling proteins affected
by excess of function, with the goal of proposing
rational combination therapies. Using the web and
drug-focused databases,'®""? we can suggest distinct
independent targeted inhibitors, in principle one
inhibitor for each altered pathway. New molecules
available for clinical trials will be coming into play
within the next 3-5-10 years, and more are in the
pipeline. They are the research focus of most Phar-
maceutical Companies, large, medium, and small,
often in synergism with the academic world.

The input and rational suggestions coming
from our dynamic model, combined with drug data,
will have as a consequence that the platform of
required pharmacological validations, both at molec-
ular and cellular levels (inhibition of cell growth,
stimulation of cell death, etc.), will be very restricted,
and therefore more realistically feasible.

This final step represents an alternative to pres-
ent time consuming procedures (necessitating long
patient recruitment periods): small patients subsets
sharing a multiplicity of common biomarker features,
and extracted from larger, more heterogeneous sets.
Intratumor heterogeneities could potentially generate
even smaller patient subsets.''?

Discussion of the Future Possibility, and
Need for, of a New Kind of Clinical Trial

Large, poorly homogeneous trials are no longer suffi-
cient. Thanks to the statistical power of large num-
bers of patients, even relatively small differences
generally tend to show significance, perhaps a mis-
leading result.

After 50 years of conceptually similar studies,
and similar gains, if each study compared a therapy
to the best treatment option previously available, and
we gained only three-months of survival time every
year, most metastatic solid carcinoma tumors should
have become chronic diseases, rather than the deadly
illnesses which they often are. Current approaches
are not enough! There is an urgent need for change!
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To give an idea of typical modern clinical trials
(and the difficulties they encounter), we can briefly
introduce the reader to ‘umbrella trials’ and ‘basket
trials.’

The umbrella design focuses on a single tumor
type or histology.'?® In contrast to the umbrella
design, basket trials allow the study of multiple
molecular subpopulations of different tumor or histo-
logical types, but sharing the same molecular pathol-
ogy, all within one study.

The NCI-MATCH study ‘Molecular Analysis
for Therapy Choice’ is a new basket trial aimed at
exploiting shared mutations, encountered across
many cancer types, by matching them to targeted
drugs. The drugs studied are associated with predic-
tive biomarkers, and include both U.S. Food and
Drug Administration-approved and investigational
drugs.'?! The trial (which started enrollment in July
2015) will screen up to 3000 patients with refractory
solid tumors or lymphoma, and aims to enroll
35 patients into each of 20-25 biomarker subgroups.
This novel type of study attempts to match patients
sharing driver genetic abnormalities (regardless of
tumor histology) with drug(s) expected to work on
mutated pathway(s). Shared mutations are the ele-
ments of similarity across the arms in a basket trial,
and although each patient subset includes a small
numbers of patients, it is larger than feasible with the
‘umbrella  trials’ added requirement of tissue
communality.'?°

The identification of sufficient numbers of
patients carrying the same individual (rare) combina-
tion of driver genetic aberrations implies long recruit-
ment times, especially if we want a homogeneous
tissue of origin,'*? so if we can remove this require-
ment it could speed discovery.

A Tentative Suggestion for the Future:
Meta-Analysis of Multiple «One-Patient
Trials», through an ‘Invariant’ Mathematical
Dynamic Modeling Procedure

We can consider our proposed approach as a differ-
ent type of basket trial: the tissue is the same (like in
an umbrella trial), but what we share is the mathe-
matic modeling procedure used to suggest different
ad hoc combination therapies, for tumors carrying
different  combinations of driver gatekeeper
mutations.

In our approach, the procedure would be invar-
iant because it would be using the same mathematical
dynamic model, applied to the same solid tumor
(CRC in our case), and because it is focused only on
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the quite manageable GO—G1—S cell cycle transi-
tion (see above). It appears logically possible to assess
the efficacy of combination therapies suggested by
the same mathematical dynamic model, through a
meta-analytic approach joining the equivalent of the
outcomes of many ‘one patient trials.”'*?

These ‘one patient trials’ will have to have fol-
lowed the suggestions coming from the same mathe-
matical dynamic model, with the only variables
being: the molecular pathology (mutations, somati-
cally inheritable alterations) of each individual
patient and the inhibitors suggested by the altered
pathways.

Having used the same mathematical dynamic
model (for suggesting a precise combination therapy)
is the logical equivalent of a deeply homogeneous
patient meta-subset.

We think of a meta-set of ‘1 patient sets.” We
think that a new innovative strategy could come
from more advanced versions of the mathematical
modeling we have been working on for some
years. 201247127

The ‘homogeneity of a treatment strategy’
would come from the ‘homogeneous procedure’
adopted for selecting the personalized-treatment-
combination, downstream of efficient network recon-
struction and modeling,”®'?” rather than traditional
methods (of  genetic/epigenetic biomarker-
homogeneity within a small subset of patients) which
require long recruitment times.

A well performed meta-analysis of a set of ‘1
patient subsets’ would in principle take care of the
problem. We aim to perform a meta-analysis, based
on the assessment of Overall Survival (OS) and
related clinical parameters (see RECIST 1.1 guide-
lines, for details'*®), of patients treated according to
the pharmacological suggestions coming from
dynamic modeling. We skip here additional clinical
details, including the possible side effects/toxicities of
combination therapies (which would be addressed at
a later stage). Notice that umbrella trials, sharing one
gatekeeper mutation and one corresponding inhibi-
tor, frequently do not provide breakthroughs.'?” It is
difficult to anticipate what could be the average
behavior of a meta-analysis on the wavelength that
we suggest here, but we project that it could be used
in the next 3-5 years.

If we assume the potential validity of dynamic
modeling, our approach, especially considering
the continuous appearance of new drugs, could save
precious time and lives. A phase-1 toxicity study
should obviously precede or have preceded these
“l-patient trials,” according to usual dose escalation
strategies.'>°
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With patience and perseverance, we should try
to make ethically and legally acceptable ‘treatment
sets’ homogeneous for the procedural decision strat-
egy adopted (consequence of the homogeneity of our
dynamic modeling software), rather than for the per-
sonal genetic analysis of each individual patient per
se (as an element of the set of a usual trial).

Considering the inevitably slow pace of stand-
ard patient-recruiting procedures, it is important to
devise a more efficient strategy to achieve rational
drug combinations for each personal cancer case.
Applying a standard approach (according to a non-
system bio-marker-set mentality) entails recruiting
difficulties in building homogeneous subsets, both in
terms of subset size and required time for patient
recruiting.

Assessing the performance of our new proposed
approach could tentatively be feasible, but would
require a partially revised set of ethical trial rules.
We would give origin to a new type of basket trial
based on a unique dynamic model combined with the
genetic landscapes of individual tumors and drugs
congruous with the altered pathways. In a broader
perspective, in his recent book Dr. Vincent DeVita
has repeatedly advocated for revised and more
patient inclusive trial rules.”®

In conclusion, it is worthwhile to explore the
future possibility of a new type of proposed trial, to
facilitate/accelerate the achievement of a rational
combination of targeted drugs, tailored to the cancer
of each individual patient. Our dynamic modeling
could be conducive to informatics based decision sup-
port for reasoned combinations of targeted therapies.

CONCLUSIONS

We have briefly illustrated the process of carcinogenesis
in CRC as a multihit event involving driver-gatekeeper
mutations and/or somatically inheritable alterations.
This basic feature of the malignant transformation
process is a characteristic shared in all cancers.

In this review, we primarily focus on and aim
towards combination therapies with targeted drugs:
inhibitors of signaling proteins affected by excess of
function.

We start with the practical level of clinical prac-
tice guidelines, which are highly relevant as following
them is associated with a significant survival benefit
(as seen in patients following NCCN guidelines in
the United States).”’

Characterizing CRC tumors at the biomarker
level can be relevant diagnostically, and for guiding
clinicians to more appropriate and selective therapy.
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Crucial biomarkers are driver mutations,
somatically inheritable driver alterations/epimuta-
tions. Within the actual alteration of a signaling-net-
work, gatekeeper alterations are directly responsible
for the cancer pathology of the network. Caretaker
alterations are important in the acceleration of the
carcinogenetic process; they reduce DNA replication
fidelity, thus accelerating the appearance of new gate-
keeper mutations.

From the central stage of gatekeeper mutations/
alterations, we move to proposed sets/panels of
mRNAs (and others RNAs). When satisfactorily vali-
dated and sufficiently sensitive and specific, they can
be used to inform not only diagnostic and prognostic
decisions, but also therapeutic choices.

MicroRNAs and long noncoding RNAs are
potentially relevant in the process of malignant trans-
formation. They are presently investigated at a more
basic-research level, but some of them could become
part of clinical practice (both for diagnostic and ther-
apeutic applications) within a few years.
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