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Abstract
Background: The risk of adult onset cardiovascular and metabolic (cardiometabolic) disease accrues 
from early life. Infection is ubiquitous in infancy and induces inflammation, a key cardiometabolic risk 
factor, but the relationship between infection, inflammation, and metabolic profiles in early child-
hood remains unexplored. We investigated relationships between infection and plasma metabolomic 
and lipidomic profiles at age 6 and 12 months, and mediation of these associations by inflammation.
Methods: Matched infection, metabolomics, and lipidomics data were generated from 555 infants 
in a pre- birth longitudinal cohort. Infection data from birth to 12 months were parent- reported 
(total infections at age 1, 3, 6, 9, and 12 months), inflammation markers (high- sensitivity C- reactive 
protein [hsCRP]; glycoprotein acetyls [GlycA]) were quantified at 12 months. Metabolic profiles were 
12- month plasma nuclear magnetic resonance metabolomics (228 metabolites) and liquid chroma-
tography/mass spectrometry lipidomics (776 lipids). Associations were evaluated with multivariable 
linear regression models. In secondary analyses, corresponding inflammation and metabolic data 
from birth (serum) and 6- month (plasma) time points were used.
Results: At 12 months, more frequent infant infections were associated with adverse metabolomic 
(elevated inflammation markers, triglycerides and phenylalanine, and lower high- density lipoprotein 
[HDL] cholesterol and apolipoprotein A1) and lipidomic profiles (elevated phosphatidylethanol-
amines and lower trihexosylceramides, dehydrocholesteryl esters, and plasmalogens). Similar, more 
marked, profiles were observed with higher GlycA, but not hsCRP. GlycA mediated a substantial 
proportion of the relationship between infection and metabolome/lipidome, with hsCRP gener-
ally mediating a lower proportion. Analogous relationships were observed between infection and 
6- month inflammation, HDL cholesterol, and apolipoprotein A1.
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Conclusions: Infants with a greater infection burden in the first year of life had proinflammatory 
and proatherogenic plasma metabolomic/lipidomic profiles at 12 months of age that in adults are 
indicative of heightened risk of cardiovascular disease, obesity, and type 2 diabetes. These findings 
suggest potentially modifiable pathways linking early life infection and inflammation with subse-
quent cardiometabolic risk.
Funding: The establishment work and infrastructure for the BIS was provided by the Murdoch Chil-
dren’s Research Institute (MCRI), Deakin University, and Barwon Health. Subsequent funding was 
secured from National Health and Medical Research Council of Australia (NHMRC), The Shepherd 
Foundation, The Jack Brockhoff Foundation, the Scobie & Claire McKinnon Trust, the Shane O’Brien 
Memorial Asthma Foundation, the Our Women’s Our Children’s Fund Raising Committee Barwon 
Health, the Rotary Club of Geelong, the Minderoo Foundation, the Ilhan Food Allergy Foundation, 
GMHBA, Vanguard Investments Australia Ltd, and the Percy Baxter Charitable Trust, Perpetual 
Trustees. In- kind support was provided by the Cotton On Foundation and CreativeForce. The study 
sponsors were not involved in the collection, analysis, and interpretation of data; writing of the 
report; or the decision to submit the report for publication. Research at MCRI is supported by the 
Victorian Government’s Operational Infrastructure Support Program. This work was also supported 
by NHMRC Senior Research Fellowships to ALP (1008396); DB (1064629); and RS (1045161) , 
NHMRC Investigator Grants to ALP (1110200) and DB (1175744), NHMRC- A*STAR project grant 
(1149047). TM is supported by an MCRI ECR Fellowship. SB is supported by the Dutch Research 
Council (452173113).

Editor's evaluation
This paper provides data from a population- based cohort study on early life infection and proin-
flammatory, atherogenic metabolomic and lipidomic profiles at 12 months of age. The authors 
generated matched infection, metabolomics and lipidomics data from 555 infants in a pre- birth 
longitudinal cohort and they showed that frequent infant infections are associated with adverse 
metabolomic and lipidomic profiles. They also report that similar profiles are noted with higher 
glycoprotein acetyls (GlycA), but not hsCRP. The paper is interesting and assesses the role of infec-
tion and markers of inflammation on lipid and metabolic profile of patients. It provides a compre-
hensive analysis of lipids and metabolites in infants in response to infection.

Introduction
Infectious diseases are ubiquitous in infancy and childhood, with potential long- term impacts on 
health across the life course. Infection has been recognised as a potential contributor to atheroscle-
rotic cardiovascular disease (CVD), one of the leading causes of adult morbidity and mortality, since 
the 19th century (Nieto, 1998). More recent adult studies link previous infection with long- term risks 
of disease (Bergh et al., 2017; Cowan et al., 2018; Wang et al., 2017). The mechanisms are largely 
unknown, but likely include immune activation and heightened inflammation (Shah, 2019), which 
are pathways central to CVD pathogenesis (Donath et al., 2019b; Ferrucci and Fabbri, 2018) and 
therefore offer potentially druggable targets in high- risk individuals (Donath et al., 2019a; Ridker 
et al., 2017). High- sensitivity C- reactive protein (hsCRP) has been extensively used as a marker of 
chronic inflammation in adult studies but is an acute phase reactant in children and may not reflect 
chronic inflammation in early life. Glycoprotein acetyls (GlycA) is a nuclear magnetic resonance (NMR) 
composite measure that is suggested to better reflect cumulative, chronic inflammation (Connelly 
et al., 2017). GlycA is an emerging biomarker for cardiometabolic risk (Connelly et al., 2017) that 
outperforms hsCRP as a predictor of CVD events and mortality (Akinkuolie et  al., 2014; Duprez 
et al., 2016), and of infection- related morbidity and mortality (Ritchie et al., 2015). For example, 
in the Multi- Ethnic Study of Atherosclerosis (n = 6523), higher GlycA was associated with increased 
risk of incidence CVD and death, even after adjustment for hsCRP and other inflammatory markers. 
Conversely, prediction of these outcomes by hsCRP attenuated to null after mutual adjustment 
(Duprez et al., 2016).

Cardiovascular and metabolic (cardiometabolic) disease pathogenesis begins in early life and 
accrues across the life course (Nakashima et al., 2008). Infections occur disproportionally in early 
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childhood (Cromer et al., 2014; Grüber et al., 2008; Troeger et al., 2018; Tsagarakis et al., 2018), 
and there is a dose- response relationship between childhood infections, adverse cardiometabolic 
phenotypes (Burgner et al., 2015c), and CVD events (Burgner et al., 2015a) in adulthood. Infec-
tion is linked to proatherogenic metabolic perturbations in later childhood and adulthood (Feingold 
and Grunfeld, 2019; Khovidhunkit et al., 2000), including higher triglycerides and oxidised low- 
density lipoprotein (LDL), and lower high- density lipoprotein (HDL) cholesterol and apolipoprotein A1 
(ApoA1) (Liuba et al., 2003; Pesonen et al., 1993), and to acute and chronic inflammation (Burgner 
et al., 2015b; Ritchie et al., 2015), but little is known about these relationships in early life, when 
most infections occur.

We therefore aimed to characterise metabolomic and lipidomic profiles at 6 and 12 months of age 
and their relationship to infection burden during the first year of life. We also investigated the extent 
to which inflammation mediated the relationship between infection burden and metabolomic and 
lipidomic differences.

Materials and methods
Study cohort
This study used available data from 555 mother- infant dyads in the Barwon Infant Study (BIS), a 
population- based pre- birth longitudinal cohort (n = 1074 mother- infant dyads). The cohort details and 
inclusion/exclusion criteria have been detailed elsewhere (Vuillermin et al., 2015); in brief, mothers 
were eligible if they were residents of the Barwon region in south- east Australia and planned to 
give birth at the local public or private hospital. Mothers were recruited at approximately 15 weeks’ 
gestation and provided informed consent. They were excluded if they were not a permanent Austra-
lian resident, aged <18 years, required an interpreter to complete questionnaires, or had previously 
participated in BIS. Infants were excluded if they were very preterm (<32 completed weeks gestation) 
or had a serious illness or major congenital malformation identified during the first few days of life. 
Ethics approval was granted by the Barwon Health Human Research Ethics Committee (HREC 10/24).

Parent-reported infections
At the 4- week, 3- month, 6- month, 9- month, and 12- month time points following birth, mothers were 
asked to report each episode of infant illness or infection since the previous time point using stan-
dardised online questionnaires. The number of parent- reported infections from birth to 12 months 
was defined as the total number of respiratory tract infections, gastroenteritis, conjunctivitis, and 
acute otitis media episodes. In secondary analyses, numbers of parent- reported infections from birth 
to 6 months and from 6 to 12 months were considered. It was not possible to identify the proportion 
of parent- reported infections that lead to health service utilisation (Rowland et al., 2021).

Other maternal and infant measures
Questionnaires during pregnancy and at birth were used to collect self- reported data on maternal age, 
household income, maternal education, and prenatal smoking (considered here as a dichotomous 
any/none exposure). Residential postcode was used to determine neighbourhood disadvantage using 
the Index of Relative Socio- Economic Disadvantage (IRSD) from the 2011 Socio- Economic Indexes for 
Areas (SEIFA) (Pink, 2013), with a lower score corresponding to greater socioeconomic disadvantage. 
Pre- eclampsia (based on International Association of Diabetes and Pregnancy Study Groups criteria; 
Tranquilli et  al., 2014) and gestational diabetes (based on International Society for the Study of 
Hypertension in Pregnancy criteria; Nankervis et al., 2013) diagnoses were extracted from hospital 
records. Infant gestational age, birth weight, and mode of delivery (categorised as vaginal, planned 
caesarean section, or unplanned caesarean section delivery) were collected from birth records, and 
the age- and sex- standardised birth weight z- score was calculated using the 2009 revised British 
United Kingdom World Health Organisation (UK- WHO) growth charts (Cole et al., 2011). Postnatal 
smoking data was collected from questionnaire data, with mothers asked the average number of 
hours each day someone smoked near or in the same room as the child (Gray et al., 2019). This was 
dichotomised as any postnatal smoke exposure if >0 hr reported at any time point up to 12 months of 
age, or no postnatal smoke exposure. Breastfeeding duration up to 12 months of age was collected 
from maternal questionnaire data. As most evidence for the protective effect of breastfeeding on 
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early life infection is from comparisons between any breastfeeding and no breastfeeding (Victora 
et al., 2016), and in light of previous evidence in BIS for an association between even a short duration 
of breastfeeding and lower odds of infection in early infancy (Rowland et al., 2021), we first looked at 
breastfeeding as a binary (any/none) measure in models (presented in the main text). As most infants 
(98.2%) were breastfed to some extent, and it is unknown the degree to which breastfeeding, and the 
timing of breastfeeding, might affect infant metabolomics and lipidomics, we also considered dura-
tion of breastfeeding as a continuous variable for sensitivity analyses.

Metabolomic and lipidomic profiling
Venous peripheral blood was collected from infants at the 6- and 12- month time points in sodium 
heparin and generally processed within 4  hr, with a minority (197 of 555) of 12- month samples 
processed after 4 hr (median time for those 197 samples = 19.9 hr, inter- quartile range [IQR] [18.7, 
21.4]). The time interval between collection and post- processing storage of samples was included as a 
covariate in analyses. Due to the bimodal distribution of 12- month sample collection times as samples 
were either processed same day of collection or the following day, sensitivity analysis excluding partic-
ipants with a plasma storage time greater than 4 hr (197 out of 555 infants, predominantly processed 
the following day) was performed, as described in the Statistical analysis section below. Plasma was 
stored at –80°C, and aliquots were shipped on dry ice to Nightingale Health (Helsinki, Finland) for 
NMR metabolomic quantification and Baker IDI (Melbourne, Australia) for liquid chromatography/
mass spectrometry (LC/MS) lipidomic quantification, as described below. For secondary analyses 
investigating possible ‘reverse causality’, that is, whether metabolomic or lipidomic profile at birth was 
associated with number of parent- reported infections from birth to 6 months of age, metabolomics 
and lipidomics data using the same platforms from venous cord blood collected at birth, as previously 
described (Burugupalli et al., 2022; Mansell et al., 2021), was used.

The NMR- based metabolomics platform has been described in detail (Kettunen et  al., 2016; 
Soininen et al., 2015), and quantified a broad range of metabolic measures including lipoprotein 
size subclasses, triglycerides, cholesterols, fatty acids, amino acids, ketone bodies, glycolysis metab-
olites, and GlycA. In brief, plasma samples were mixed with a sodium phosphate buffer prior to 
NMR measurements with Bruker AVANCE III 500 MHz and Bruker AVANCE III HD 600 MHz spec-
trometers (Bruker, Billerica, MA). Samples were kept at 6°C using the SampleJet sample changer 
(Bruker) to prevent degradation. After initial measurements, samples went through a multiple- step 
lipid extraction procedure using saturated sodium chloride solution, methanol, dichloromethane, and 
deuterochloroform. The lipid extracts were then analysed using the 600 MHz instrument (Soininen 
et al., 2015). The utility of this platform in epidemiological research has been detailed elsewhere 
(Würtz et al., 2017). Using the Nightingale Health 2016 bioinformatics protocol, 228 metabolomic 
measures were generated for the 12- month samples. From a subset of participants, replicate samples 
were quantified, and these showed a low percentage coefficient of variation (<10%). Subsequently, the 
Nightingale Health 2020 bioinformatics protocol was used to generate 250 metabolomic measures 
for the 6- month samples, with 224 of these measures also present in the 12- month data. As a large 
proportion of the NMR metabolomic measures are ratios and are strongly correlated with each other 
in children and adults (Ellul et al., 2019), an informative subset of 51 measures that captured the 
majority of variation in the metabolomic dataset, primarily absolute metabolite concentrations, were 
included in analysis presented in the main text. Analyses for excluded metabolomic measures are 
presented as supplementary data. To complement GlycA as a measure of inflammation, hsCRP was 
also quantified in 6- and 12- month plasma using enzyme- linked immunosorbent assay (ELISA) (R&D 
Systems, Minneapolis, MN, cat. no. DY1707), as per the manufacturer’s instruction.

The details of the high- performance LC/MS lipidomics platform have been described elsewhere 
(Beyene et al., 2020). In addition, we used medronic acid to passivate the LC/MS system to avoid 
peak tailing for acidic phospholipids (Hsiao et al., 2018). In brief, this platform quantified 776 lipid 
features in 36 lipid classes, including sphingolipids, glycerophospholipids, sterols, glycerolipids, and 
fatty acyls. Analysis was performed on an Agilent 6490 QQQ mass spectrometer with an Agilent 1290 
series high- performance liquid chromatography system and two ZORBAX eclipse plus C18 column 
(2.1 × 100 mm 1.8 mm) (Agilent, Santa Clara, CA) with the thermostat set at 45°C. Mass spectrometry 
analysis was performed in both positive and negative ion mode with dynamic scheduled multiple 
reaction monitoring.

https://doi.org/10.7554/eLife.75170
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Quantification of lipid species was determined by comparison to the relevant internal standard. 
Lipid class total concentrations were calculated as the sum of individual lipid species concentrations, 
except in the case of triacylglycerols (TGs) and alkyl- diacylglycerols, where we measured both neutral 
loss and single ion monitoring (SIM) peaks, and subsequently used the SIM species concentrations for 
summation purposes.

Statistical analysis
Analyses were performed in R (version 3.6.3) (R Development Core Team, 2018). All metabolomic 
and lipidomic measures had their lowest observed non- zero value (considered the lower limit of 
detection) added to their value before they were natural log- transformed and scaled to a standard 
distribution (standard deviation units). Pearson’s correlations were calculated for number of infections 
from birth to 12 months with 12- month GlycA and hsCRP.

The estimated effect of number of parent- reported infections from birth to 12  months as an 
exposure on 12- month metabolomic and lipidomic profile was investigated using linear regression 
models for each metabolomic/lipidomic measure. Standard errors were used to calculate 95% confi-
dence intervals for estimated effects. All models were adjusted for infant sex, exact age at 12- month 
time point, birth weight z- score, gestational age, maternal household income, exposure to maternal 
smoking during pregnancy, breastfeeding, and time from collection to storage for the plasma sample. 
Linear regression models adjusted for the same covariates were used to investigate 12- month GlycA 
and hsCRP as exposures and each metabolomic/lipidomic measure as an outcome. Two- tailed 
p- values were adjusted for multiple comparisons within each dataset (NMR metabolomics, LC/MS lipi-
domic species, and LC/MS lipidomic classes) using the Benjamini- Hochberg method (Benjamini and 
Hochberg, 1995). To investigate the robustness of the estimates, mean model coefficients and bias- 
corrected accelerated percentile bootstrap confidence intervals were calculated from nonparametric 
bootstrap resampling (1000 iterations) using the ‘boot’ package (Davison and Hinkley, 1997) (version 
1.3–25) in R, included in Source Data. The assumption of linearity was investigated post hoc using 
plots of residual values for the top 10 metabolomic and lipidomic differences (ranked by p- value) for 
each of number of infections, GlycA, and hsCRP.

To further investigate the other sources of potential confounding and variation that could affect 
findings from the primary models, several sensitivity analyses were performed. These were: (i) addi-
tional adjustment of the primary model for postnatal smoking exposure, gestational diabetes, and pre- 
eclampsia; (ii) analyses excluding twins (five infants); (iii) analyses excluding infants with hsCRP >5 mg/L 
(24 infants) as a marker of acute infection (Lemiengre et al., 2018; Verbakel et al., 2016); (iv) anal-
yses excluding plasma samples with >4 hr from collection to storage (197 samples); and (v) analyses 
adjusting for breastfeeding duration instead of any breastfeeding. Analyses of the primary models 
adjusted for different measures of socioeconomic position (SEIFA or maternal education) instead of 
household income were also considered. These models are presented as supplementary forest plots 
(Supplementary file 1A- 1F).

Secondary analyses to investigate 6- month periods of infections were performed. The birth to 
6- month models investigated the relationship between infections up to 6 months of age, 6- month 
inflammation, and 6- month metabolomic/lipidomic measures. The 6- to 12- month models inves-
tigated the relationship of infections between 6 and 12  months of age, 12- month inflammation, 
and 12- month metabolomic/lipidomic measures, with adjustment for the corresponding 6- month 
measures. For secondary analyses to investigate reverse causality, quasi- Poisson regression models 
(Zeileis et al., 2008) were used, either for (i) each metabolomic/lipidomic measure from cord blood 
at birth as exposure and total number of infections from birth to 6 months of age as outcome or (ii) 
each 6- month metabolomic/lipidomic measures as exposure and total number of infections from 6 to 
12 months of age as the outcome, with adjustment for number of infections from birth to 6 months 
of age. All secondary models were adjusted for the same covariates as the primary models described 
above: that is, infant sex, gestational age, exact age (at 6- or 12- month time point), birth weight 
z- score, maternal household income, exposure to maternal smoking during pregnancy, and sample 
time between collection and post- processing storage. Models with birth metabolomic/lipidomic 
measures as the exposure were additionally adjusted for mode of delivery, which is associated with 
differences across many NMR metabolomic measures in cord serum in this cohort (Mansell et al., 
2021).

https://doi.org/10.7554/eLife.75170


 Research article      Epidemiology and Global Health

Mansell et al. eLife 2022;11:e75170. DOI: https:// doi. org/ 10. 7554/ eLife. 75170  6 of 25

To investigate the potential role of inflammation in mediating associations between infection and 
metabolic differences, the ‘medflex’ package (Steen et al., 2017) (version 0.6–7) in R was then used 
in a counterfactual- based framework to estimate the natural direct effect (not mediated by inflamma-
tion) and natural indirect effect (mediated by inflammation) of infection. Specifically, 12- month GlycA 
or hsCRP were considered separately as mediators for the effect of number of infections from birth 
to 12 months of age on metabolomic and lipidomic differences at 12 months, for all metabolomic 
and lipidomic measures associated with number of infections with an adjusted p- value < 0.1 from the 
linear regression models described above. Percentage mediation was calculated as the estimated 
natural indirect effect divided by the total effect (natural direct effect plus natural indirect effect). A 
representative directed acyclic graph (DAG) of the mediation model is shown in Figure 1.

As models investigating reverse causality, described above, suggested that 6- month GlycA or lipi-
domic measures may influence number of infections from 6 to 12 months of age, we additionally 
performed mediation analyses to estimate the percentage mediation of 12- month GlycA and hsCRP 
for the effect of number of infections from 6 to 12 months of age on 12- month metabolomic and 
lipidomic differences, with additional adjustment for the corresponding 6- month measures (number 
of infections from birth to 6 months of age, 6- month GlycA or hsCRP, and the 6- month metabolomic/
lipidomic measure).

Figure 1. Representative directed acyclic graph (DAG) for causal model investigated in this study. The natural indirect effect (mediated by glycoprotein 
acetyls [GlycA] or high- sensitivity C- reactive protein [hsCRP]) and natural direct effect (not mediated by GlycA/hsCRP) of parent- reported infections 
on metabolomic and lipidomic measures were calculated, with adjustment for confounders. Confounders were considered to be confounders for all 
associations (exposure to outcome, exposure to mediator, and mediator to outcome).

https://doi.org/10.7554/eLife.75170
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Results
The flowchart for the 555 infants included in this study is shown in Figure 2, and the cohort character-
istics for these infants are shown in Table 1. The median number of total parent- reported infections 
from birth to 12 months of age was 5 (IQR = [3–8]). Median infections from birth to 6 months of age 
was 2 [1–3], and median infections from 6 to 12 months of age was 3 [2–5]. Median 12- month hsCRP 
and GlycA were 0.25 mg/L [0.08–0.96] and 1.30 mmol/L [1.16–1.48], respectively. Total number of 
parent- reported infections between birth and 12 months of age was more strongly correlated with 
12- month GlycA (r = 0.20) than hsCRP (r = 0.11). The distributions of metabolomic and lipidomic 
measures at each time point for the cohort are shown in Supplementary file 2A and B.

Infection and inflammation burden and plasma NMR metabolomic 
profile at 12 months
There was evidence for higher number of infections associating with higher inflammatory markers 
(GlycA (0.06 SD per 1 infection, 95% CI [0.04–0.08]) and hsCRP (0.06 [0.03–0.08])), lower HDL (−0.04 
[−0.07 to −0.02]), HDL2 (−0.04 [−0.07 to −0.02]), and HDL3 (−0.04 [−0.06 to −0.01]) cholesterols, 
lower ApoA1 (−0.04 [−0.06 to −0.01]), lower citrate (−0.04 [−0.07 to −0.01]), higher phenylalanine 
(0.04 [0.02–0.07]), and to a lesser extent with higher triglycerides (0.03 [0.00–0.05]) and lower sphin-
gomyelins (−0.03 [−0.05 to −0.01]) (Figure 3a). In models with GlycA as the marker of inflammation 

Figure 2. Flowchart of Barwon Infant Study participants included this study (bolded boxes). Included participants had complete infection data from all 
five time points between birth and 12 months of age, and 12- month plasma nuclear magnetic resonance (NMR) metabolomics data. Almost all included 
participants (n = 550 out of 555) had 12- month plasma liquid chromatography/mass spectrometry (LC/MS) lipidomics data.

https://doi.org/10.7554/eLife.75170
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Table 1. Cohort characteristics (n = 555).

Measure

n (%)

Sex (female) 269 (48.4)

Mean (SD)

Maternal age at delivery (years) 31.7 (4.5)

n (%)

Maternal smoking during pregnancy (any) 69 (12.5)

Gestational diabetes (cases) (n = 84 missing data) 26 (5.5)

Pre- eclampsia (cases) (n = 1 missing data) 21 (3.8)

Maternal annual household income (AUD)   

  <$25,000 11 (2.0)

  $25,000 to $49,999 41 (7.5)

  $50,000 to $74,999 94 (17.2)

  $75,000 to $99,999 145 (26.5)

  $100,000 to $149,999 191 (34.9)

  ≥$150,000 65 (11.9)

Maternal education (highest level completed) (n = 8 missing data)   

  Less than year 10 of high school 2 (0.4)

  Year 10 of high school or equivalent 20 (3.7)

  Year 12 of high school or equivalent 86 (15.7)

  Trade/certificate/diploma 135 (24.9)

  Bachelor’s degree 199 (36.4)

  Postgraduate degree 105 (19.2)

Mode of birth   

  Vaginal 374 (67.4)

  Planned caesarean section 103 (18.6)

  Unplanned caesarean section 78 (14.1)

Breastfed (any breastfeeding) 545 (98.2)

Infant postnatal smoke exposure to 12 months (any) (n = 47 missing 
data) 14 (2.8)

Median [IQR]

SEIFA index of disadvantage* 1031 [996–1066]

Breastfeeding duration to 52 weeks (weeks) 40 [16–52]

  

Mean (SD)

Gestational age (weeks) 39.5 (1.5)

Birth weight (g) 3,538 (521)

Birth weight z- score 0.32 (0.95)

Age at 6- month time point (months) 6.5 (0.4)

Weight at 6 months (kg) 7.9 (1.0)

Weight z- score at 6 months 0.1 (1.0)

Age at 12- month time point (months) 13.0 (0.8)

Table 1 continued on next page

https://doi.org/10.7554/eLife.75170
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burden, metabolomic differences observed for higher GlycA were largely similar to, but more marked 
than, those for parent- reported infections; including cholesterols (lower HDL (−0.38 SD per 1 SD 
increase in log GlycA [−0.46 to −0.30]), higher LDL (0.18 [0.09–0.26]), and very- large- density lipopro-
tein (0.50 [0.42–0.58]) cholesterols), apolipoproteins (lower ApoA1 (−0.23 [−0.31 to −0.14]), higher 
apolipoprotein B (ApoB) (0.39 [0.31–0.48])), higher total fatty acids (0.36 [0.28–0.45]), higher total 
triglycerides (0.48 [0.40–0.56]) and cholines (0.18 [0.10–0.27]), amino acids (higher phenylalanine 
(0.17 [0.09–0.25]), isoleucine (0.14 [0.05–0.22]), and glycine (0.16 [0.08–0.23]), lower histidine (−0.16 
[−0.24 to −0.09])), glycolysis- related metabolites (higher pyruvate (0.06 [0.01–0.11]), lower citrate 
(−0.17 [−0.26 to −0.08])), and lower acetoacetate (−0.18 [−0.26 to −0.09]) (Figure 3b). Bootstrap 
estimates were generally similar to standard regression estimates for all models. Estimated effect sizes 
were generally similar across most sensitivity analyses (Supplementary file 1A- C), though excluding 
samples with processing time greater than 4 hr slightly reduced the magnitude of estimated effects of 
parent- reported infections on HDL cholesterols and ApoA1 (Supplementary file 1A). Higher hsCRP 
was associated with lower HDL cholesterol (−0.24 SD per 1 SD increase in log hsCRP, [−0.32 to −0.16]), 
ApoA1 (−0.26 [−0.34 to −0.18]) and histidine (−0.20 [−0.27 to −0.12]), and higher phenylalanine (0.14 
[0.06 to 0.22]), as observed for GlycA, and with lower levels of most other amino acids and albumin 
(−0.11 [−0.19 to −0.03]), and higher LDL triglycerides (0.16 [0.08–0.25]) (Figure 4a).

There was a stronger correlation for the metabolomic differences related to infection and those 
related to GlycA (r = 0.74, Figure 3c) than for infection and hsCRP (r = 0.62, Figure 4b). The correla-
tion of metabolomic differences related to GlycA and those for hsCRP was r = 0.61 (Figure 4c).

In models investigating the relationship between number of parent- reported infections from birth 
to 6 months of age and 6- month metabolomic profile, there was evidence of a similar, but less marked, 
pattern of associations to that seen at 12 months of age. Higher number of infections was modestly 
associated with higher inflammatory markers (GlycA (0.07 SD per 1 infection, [0.02–0.12]) and hsCRP 
(0.06 [0.01–0.11])), lower HDL cholesterol (−0.06 [−0.11 to −0.01]), and lower ApoA1 (−0.07 [−0.12 to 
−0.02]) (Figure 3—figure supplement 1a). At 6 months of age, higher GlycA was associated with a 
similar pattern of 6- month metabolomic differences as seen at 12 months (Figure 3—figure supple-
ment 1b), as was hsCRP (Figure 4—figure supplement 1a). In models investigating the relationship 
between number of parent- reported infections from 6 to 12 months of age and 12- month metab-
olomic profile (i.e. infections within the preceding 6 months) with adjustment for birth to 6- month 
infections, associations between number of infections and metabolomic profile were similar to models 
considering number of infections from birth to 12 months of age (Figure 3—figure supplement 2a). 
Models considering 12- month GlycA or hsCRP as the exposure with adjustment for 6- month GlycA or 

Measure

Weight at 12 months (kg) 10.1 (1.3)

Weight z- score at 12 months 0.4 (1.0)

  

Median [IQR]

Number of parent- reported infections from birth to 12 months 5 [3–8]

  Infections from birth to 6 months 2 [1–3]

  Infection from 6 to 12 months 3 [2–5]

  

GlycA at 6 months (mmol/L) 0.76 [0.68–0.85]

hsCRP at 6 months (mg/L) 0.14 [0.05–0.94]

GlycA at 12 months (mmol/L) 1.30 [1.16–1.48]

hsCRP at 12 months (mg/L) 0.25 [0.08–0.96]

All n = 555 infants had complete covariate data for primary models, missing data of secondary exposures is indicated next to the relevant 
measure.
*A lower SEIFA value indicates greater socioeconomic disadvantage based on postcode.

Table 1 continued
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hsCRP, respectively, also resembled those without adjustment for 6- month inflammation (Figure 3—
figure supplement 2b, Figure 4—figure supplement 2a).

In secondary analyses, there was little evidence for associations between serum NMR metabolomic 
measures at birth at number of parent- reported infections from birth to 6 months of age (Supplemen-
tary file 3A). Similarly, there was little evidence for metabolomic measures at 6 months of age asso-
ciating with number of infections from 6 to 12 months of age. GlycA at 6 months showed a modest 
association with a higher number of infections from 6 to 12 months (average 0.10 higher infections 
per 1 SD higher log 6- month GlycA, [0.04–0.16]), adjusted for the number of infections from birth to 
6 months; for hsCRP there was little evidence (0.02 [−0.04–0.08]) (Supplementary file 3B).

Infection and inflammation burden and plasma LC/MS lipidomic profile 
at 12 months
In regression models with number of parent- reported infections as exposure and LC/MS lipids as the 
outcomes, infants with more infections had, on average, lower levels of the dehydrocholesteryl ester 
(−0.05 SD per 1 infection, [−0.08 to −0.03]) and trihexosylceramide (−0.04 [−0.06 to −0.01]) class lipids. 

Figure 3. Difference in 12- month plasma nuclear magnetic resonance (NMR) metabolomic measures for each increase in parent- reported infection 
(birth to 12 months) and for each SD increase in 12- month glycoprotein acetyls (GlycA) (n = 555). Forest plots of the estimated 12- month metabolomic 
differences for each additional parent- reported infection from birth to 12 months (a, circle points) or SD log 12- month GlycA (b, square points) from 
adjusted linear regression models, and the correlation of estimated metabolomic differences for these two exposures (c). Error bars are 95% confidence 
intervals. Closed points represent adjusted p- value < 0.05. All models were adjusted for infant age, sex, gestational age, birth weight, maternal 
household income, smoking during pregnancy, breastfeeding status, and sample processing time. Infection and GlycA exposure model estimates and 
details for all NMR metabolomic measures are shown in Figure 3—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Summary of regression models for difference in 12- month nuclear magnetic resonance (NMR) metabolomic measures per 1 increase in 
parent- reported infection from birth to 12 months of age or per SD increase in 12- month log glycoprotein acetyls (GlycA).

Source data 2. Summary of regression models for difference in 6- month nuclear magnetic resonance (NMR) metabolomic measures per 1 increase in 
parent- reported infection from birth to 6 months of age or per SD increase in 6- month log GlycA.

Source data 3. Summary of regression models for difference in 12- month nuclear magnetic resonance (NMR) metabolomic measures (adjusted for 
corresponding 6- month measure) per 1 increase in parent- reported infection from 6 to 12 months of age (adjusted for infections from birth to 6 months) 
or per SD increase in 12- month log glycoprotein acetyls (GlycA) (adjusted for 6- month GlycA).

Figure supplement 1. Difference in 6- month plasma nuclear magnetic resonance (NMR) metabolomic measures for each increase in parent- reported 
infection from birth to 6 months and for each SD increase in 6- month log glycoprotein acetyls (GlycA) (n = 500).

Figure supplement 2. Difference in 12- month plasma nuclear magnetic resonance (NMR) metabolomic measures (adjusted for corresponding 6- month 
measure) per 1 increase in parent- reported infection from 6 to 12 months of age (adjusted for infections from birth to 6 months) or per SD increase in 
12- month log glycoprotein acetyls (GlycA) (adjusted for 6- month GlycA) (n = 500).

https://doi.org/10.7554/eLife.75170
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There was also evidence to a lesser extent for associations between higher number of infections and 
lower cholesteryl esters (−0.03 [−0.05 to −0.01]) and plasmalogen classes (lysoalkenyl phosphatidylcho-
lines, −0.02 [−0.04–0.00]; alkenylphosphatidylethanolamines, −0.03 [−0.06 to −0.01]) (Figure 5a). The 
10 lipid species with the strongest statistical evidence for association with number of infections were 
hexosylceramides (HexCer(d18:2/18:0), –0.05 [−0.07 to −0.02]; HexCer(d18:2/22:0), –0.04 [−0.07 to 

Figure 4. Difference in 12- month plasma nuclear magnetic resonance (NMR) metabolomic measures for each SD increase in 12- month high- sensitivity 
C- reactive protein (hsCRP) (n = 555). Forest plot for the estimated 12- month metabolomic differences for each additional SD log 12- month hsCRP (a, 
diamond points) from adjusted linear regression models, and the correlation of estimated metabolomic differences for infection and hsCRP (b) and for 
glycoprotein acetyls (GlycA) and hsCRP (c). Error bars are 95% confidence intervals. Closed points represent adjusted p- value < 0.05. All models were 
adjusted for infant age, sex, gestational age, birth weight, maternal household income, smoking during pregnancy, breastfeeding status, and sample 
processing time. hsCRP exposure model estimates and details for all NMR metabolomic measures are shown in Figure 4—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Summary of regression models for difference in 12- month nuclear magnetic resonance (NMR) metabolomic measures per SD increase in 
12- month log high- sensitivity C- reactive protein (hsCRP).

Source data 2. Summary of regression models for difference in 6- month nuclear magnetic resonance (NMR) metabolomic measures per SD increase in 
6- month log high- sensitivity C- reactive protein (hsCRP).

Source data 3. Summary of regression models for difference in 12- month nuclear magnetic resonance (NMR) metabolomic measures (adjusted for 
corresponding 6- month measure) per SD increase in 12- month log high- sensitivity C- reactive protein (hsCRP) (adjusted for 6- month hsCRP).

Figure supplement 1. Difference in 6- month plasma nuclear magnetic resonance (NMR) metabolomic measures for each SD increase in 6- month log 
high- sensitivity C- reactive protein (hsCRP) (n = 500).

Figure supplement 2. Difference in 12- month plasma nuclear magnetic resonance (NMR) metabolomic measures (adjusted for corresponding 6- month 
measure) per SD increase in 12- month log high- sensitivity C- reactive protein (hsCRP) (adjusted for 6- month hsCRP) (n = 500).

https://doi.org/10.7554/eLife.75170


 Research article      Epidemiology and Global Health

Mansell et al. eLife 2022;11:e75170. DOI: https:// doi. org/ 10. 7554/ eLife. 75170  12 of 25

Figure 5. Difference in 12- month plasma liquid chromatography/mass spectrometry (LC/MS) lipidomic class totals for each increase in parent- reported 
infection (birth to 12 months) and for each SD increase in 12- month glycoprotein acetyls (GlycA) (n = 550). Forest plots of the estimated 12- month 
lipidomic differences in class totals for each additional parent- reported infection from birth to 12 months (a, circle points) or SD log 12- month GlycA 
(b, square points) from adjusted linear regression models, and the correlation of estimated differences for these two exposures across all lipidomic 

Figure 5 continued on next page
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−0.02]; HexCer(d16:1/24:0), –0.04 [−0.07 to −0.02]), trihexosylceramides (Hex3Cer(d18:1/18:0), –0.04 
[−0.07 to −0.02]; Hex3Cer(d18:1/20:0), –0.05 [−0.07 to −0.02]; Hex3Cer(d18:1/22:0), –0.04 [−0.07 
to −0.02]), phosphatidylethanolamines (PE(18:0/20:3), 0.04 [0.02–0.07]), cholesteryl esters (CE(22:5), 
–0.04 [−0.07 to −0.02]; CE(22:6), –0.04 [−0.07 to −0.02]) and dehydrocholesteryl esters (DE(18:2), 
–0.05 [−0.08 to −0.03]) (Figure 5—figure supplement 1a).

Compared to models with number of infections, lipidomic differences were more pronounced 
when GlycA was considered as the exposure, including higher ceramides (0.15 SD per 1 SD increase 
in log GlycA, [0.06–0.24]), dihexosylceramides (0.29 [0.21–0.38]), di- (0.32 [0.24–0.40]) and TGs (0.27 
[0.19–0.36]), and phospholipid classes (e.g. phosphatidylethanolamines, 0.28 [0.19–0.36]; phosphati-
dylglycerols, 0.23 [0.15–0.32]), and lower plasmalogen classes (alkenyl phosphatidylcholines, −0.28 
[−0.37 to −0.21]; alkenylphosphatidylethanolamines, −0.22 [−0.31 to −0.14]; lysoalkenyl phospha-
tidylcholines, −0.14 [−0.20 to −0.08]), cholesteryl esters (−0.25 [−0.34 to −0.17]), and dehydrocho-
lesteryl esters (−0.41 [−0.49 to −0.33]) (Figure 5b).

Higher hsCRP was also associated with differences across several lipid classes, particularly lower 
plasmalogen classes (e.g. lysoalkenyl phosphatidylcholines, −0.19 SD per 1 SD increase in log hsCRP, 
[−0.25 to −0.14]; alkenyl phosphatidylcholines, −0.26 [−0.35 to −0.18]), sulfatides (−0.26 [−0.34 to 
−0.17]), and alkyl phosphatidylcholines (−0.29 [−0.38 to −0.21]) (Figure 6a). For all lipidomic models, 
bootstrap estimates were similar to the standard regression estimates. All sensitivity analyses (Supple-
mentary file 1D- 1F) showed similar estimated effect sizes, except for hsCRP models excluding samples 
with processing times greater than 4 hr, where estimated differences in several classes (including lyso-
phosphatidylcholines, lysoalkenyl phosphatidylcholines, and lysoalkenylphosphatidylethanolamines) 
were substantially larger compared to the primary models (Supplementary file 1F).

There was stronger correlation for lipidomic differences related to infection and GlycA (r = 0.77, 
Figure 5c) than for infection and hsCRP (r = 0.36, Figure 6b) or GlycA and hsCRP (r = 0.55, Figure 6c).

In models investigating parent- reported infections from birth to 6 months of age and 6- month 
lipidomic measures, a similar, but less marked, pattern of associations was seen as at 12  months 
(Figure  5—figure supplement 2a). Models of 6- month GlycA (Figure  5—figure supplement 2b) 
or 6- month hsCRP (Figure 6—figure supplement 2a) and 6- month lipidomic measures were largely 
the same as the 12- month models with some exceptions, such as higher GlycA associating with lower 
GM3- gangliosides at 6 months (−0.10 SD per 1 SD higher log GlycA, 95% CI [−0.18 to −0.02]) in 
contrast to associating with higher GM3- gangliosides at 12 months (0.14 [0.05–0.23]). In models inves-
tigating infections from 6 to 12 months of age and 12- month lipidomic measures, with adjustment for 
infection from birth to 6 months, a similar pattern of associations was seen as in models for number of 

measures (c). In (a) and (b), error bars are 95% confidence intervals. Closed points represent adjusted p- value < 0.05. All models were adjusted for infant 
age, sex, gestational age, birth weight, maternal household income, smoking during pregnancy, breastfeeding status, and sample processing time. 
Forest plots depicting individual lipid species within each group are shown in Figure 5—figure supplement 1. Infection and GlycA exposure model 
estimates and details for all LC/MS lipidomic measures are shown in Figure 5—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Summary of regression models for difference in 12- month liquid chromatography/mass spectrometry (LC/MS) lipidomic measures per 1 
increase in parent- reported infection from birth to 12 months of age or per SD increase in 12- month log glycoprotein acetyls (GlycA).

Source data 2. Summary of regression models for difference in 6- month liquid chromatography/mass spectrometry (LC/MS) lipidomic measures per 1 
increase in parent- reported infection from birth to 6 months of age or per SD increase in 6- month log glycoprotein acetyls (GlycA).

Source data 3. Summary of regression models for difference in 12- month liquid chromatography/mass spectrometry (LC/MS) lipidomic measures 
(adjusted for corresponding 6- month measure) per 1 increase in parent- reported infection from 6 to 12 months of age (adjusted for infections from birth 
to 6 months) or per SD increase in 12- month log glycoprotein acetyls (GlycA) (adjusted for 6- month GlycA).

Figure supplement 1. Forest plots showing the difference in 12- month liquid chromatography/mass spectrometry (LC/MS) lipidomic classes and lipid 
species per 1 increase in parent- reported infection from birth to 12 months of age and per SD increase in 12- month log glycoprotein acetyls (GlycA) (n = 
550).

Figure supplement 2. Difference in 6- month plasma liquid chromatography/mass spectrometry (LC/MS) lipidomic measures for each increase in 
parent- reported infection from birth to 6 months and for each SD increase in 6- month log glycoprotein acetyls (GlycA) (n = 501).

Figure supplement 3. Difference in 12- month plasma liquid chromatography/mass spectrometry (LC/MS) lipidomic measures (adjusted for 
corresponding 6- month measure) per 1 increase in parent- reported infection from 6 to 12 months of age (adjusted for infections from birth to 6 months) 
or per SD increase in 12- month log glycoprotein acetyls (GlycA) (adjusted for 6 month GlycA) (n = 496).

Figure 5 continued
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Figure 6. Difference in 12- month plasma liquid chromatography/mass spectrometry (LC/MS) lipidomic class totals for each SD increase in 12- month 
high- sensitivity C- reactive protein (hsCRP) (n = 550). Forest plot for the estimated 12- month lipidomic differences for each additional SD log 12- month 
hsCRP (a, diamond points) from adjusted linear regression models, and the correlation of estimated differences across all lipidomic measures for 
infection and hsCRP (b) and glycoprotein acetyls (GlycA) and hsCRP (c). In (a), error bars are 95% confidence intervals. Closed points represent adjusted 
p- value < 0.05. All models were adjusted for infant age, sex, gestational age, birth weight, maternal household income, smoking during pregnancy, 
breastfeeding status, and sample processing time. Forest plots depicting individual lipid species within each group are shown in Figure 6—figure 
supplement 1. hsCRP exposure model estimates and details for all LC/MS lipidomic measures are shown in Figure 6—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Summary of regression models for difference in 12- month liquid chromatography/mass spectrometry (LC/MS) lipidomic measures per 
SD increase in 12- month log high- sensitivity C- reactive protein (hsCRP).

Source data 2. Summary of regression models for difference in 6- month liquid chromatography/mass spectrometry (LC/MS) lipidomic measures per SD 
increase in 6- month log high- sensitivity C- reactive protein (hsCRP).

Source data 3. Summary of regression models for difference in 12- month liquid chromatography/mass spectrometry (LC/MS) lipidomic measures 
(adjusted for corresponding 6- month measure) per SD increase in 12- month log high- sensitivity C- reactive protein (hsCRP) (adjusted for 6- month hsCRP).

Figure supplement 1. Forest plots showing the difference in 12- month liquid chromatography/mass spectrometry (LC/MS) lipidomic classes and lipid 
species per SD increase in 12- month log high- sensitivity C- reactive protein (hsCRP) (n = 550).

Figure 6 continued on next page
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infections from birth to 12 months (Figure 5—figure supplement 3a). Likewise, models for 12- month 
GlycA or hsCRP and 12- month lipidomic measures showed very similar results with adjustment for 
6- month measures compared to models without 6- month adjustment (Figure 5—figure supplement 
3b, Figure 6—figure supplement 3a).

As with the NMR metabolomic measures, there was little evidence for associations between 
serum LC/MS lipidomic measures at birth and number of infections from birth to 6 months of age in 
secondary analyses (Supplementary file 3C). For 6- month measures, higher cholesteryl esters and 
dehydrocholesteryl esters were associated with lower number of subsequent infections from 6 to 
12  months of age (average −0.10 lower infections per 1 SD higher 6- month log total cholesteryl 
esters, 95% CI [−0.15 to −0.05]; −0.10 infections per 1 SD higher 6- month log total dehydrocho-
lesteryl esters, 95% CI [−0.16 to −0.05]) (Supplementary file 3D).

Mediation analysis
We next assessed whether inflammation (i.e. GlycA or hsCRP at 12 months) mediated the effects of 
infection on specific metabolite and lipid measures (adjusted p- value < 0.1) (Figure 7). For the NMR 
metabolomic measures considered in mediation models, there was evidence of an indirect effect of 
infection mediated by GlycA on all measures, and an indirect effect mediated by hsCRP for phenylal-
anine, ApoA1, and the HDL, HDL2, and HDL3 cholesterols. For all measures except ApoA1 and HDL3 
cholesterol, GlycA was estimated to mediate a larger proportion of the total effect of infections on 
metabolomic measures than hsCRP. For the LC/MS lipidomic mediation models, there was evidence of 
indirect effects of infection on all the considered lipid classes mediated by GlycA, and indirect effects 
mediated by hsCRP for all classes except dehydrocholesteryl esters. GlycA was estimated to mediate 
a larger proportion of the total effect on infections on all lipid classes except lysoalkenyl phosphatidyl-
cholines. GlycA was similarly estimated to mediate a larger proportion of the total effect of infection 
on individual lipid species than hsCRP for all lipid species included in mediation analyses.

To consider potential confounding from earlier inflammation or metabolomic/lipidomic measures, 
we additionally performed mediation analyses for inflammation measured at 12 months mediating 
the relationship between number of infections from 6 to 12 months of age and the 12- month metab-
olomic/lipidomic measures with adjustment for number of infections from birth to 6 months of age, 
6- month inflammation, and the corresponding 6- month metabolomic/lipidomic measure. For most 
metabolomic and lipidomics measures, evidence for indirect effects mediated by GlycA or hsCRP 
varied minimally in this 6- to 12- month model compared to the birth to 12- month mediation models 
(Figure 7—figure supplement 1).

Discussion
In this study, cumulative parent- reported infection burden from birth to 12 months was associated 
with adverse NMR metabolomic and LC/MS lipidomic profiles at 12 months of age. Similar but more 
marked effects on these profiles were evident when considering GlycA, a cumulative inflammation 
marker, as an exposure. In contrast, differences in metabolomic and lipidomic profiles associated 
with higher hsCRP were largely distinct from, and less marked than, those for GlycA, suggesting that 
GlycA may be superior to hsCRP as an early life marker of infection burden. There was evidence that 
inflammation (with GlycA generally showing stronger evidence as a mediator than hsCRP) may partly 
mediate many of the largest metabolomic and lipidomic differences.

These findings are novel and of potentially considerable significance; the burden of infection falls 
largely in infancy and early childhood, and these are among the first data to explore the cardiometa-
bolic associations with common infections in this age group. Cardiometabolic risk accrues across the 
entire life course; the American Heart Association states that ‘with primordial and primary prevention, 
CVD is largely preventable’ and that risk stratification and intervention are more likely to be successful 

Figure supplement 2. Difference in 6- month plasma liquid chromatography/mass spectrometry (LC/MS) lipidomic measures for each SD increase in 
6- month log high- sensitivity C- reactive protein (hsCRP) (n = 501).

Figure supplement 3. Difference in 12- month plasma liquid chromatography/mass spectrometry (LC/MS) lipidomic measures (adjusted for 
corresponding 6- month measure) per SD increase in 12- month log high- sensitivity C- reactive protein (hsCRP) (adjusted for 6- month hsCRP) (n = 496).

Figure 6 continued
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Figure 7. Total effect of infection on 12- month metabolomic and lipidomic measures (purple, circle points) and 
the estimated natural indirect effect component of these mediated by glycoprotein acetyls (GlycA) (orange, square 
points) or high- sensitivity C- reactive protein (hsCRP) (green, diamond points). Units of change are 1 infection for 
parent- reported infections, and 1 SD change for GlycA, hsCRP, and metabolomic/lipidomic measures on log scale. 

Figure 7 continued on next page
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if done earlier in life (Weintraub et al., 2011). Therefore, understanding associations in early life in 
general populations is an important step towards risk stratification and targeted interventions. There 
are few data investigating LC/MS lipidomics in response to common infections in high- income coun-
tries; indeed some of the only analogous studies investigated lipidomics following Ebola (Kyle et al., 
2019) or acute lower respiratory tract infection (Gao et al., 2019) in adults. These are the only anal-
yses to explore the potential mediation of these associations between infections and omics profiles 
by inflammation.

The metabolomic profiles observed in this study in infants with greater infection burden (higher 
triglycerides, lower HDL cholesterol, and lower ApoA1) reflect those previously linked to infection, 
including SARS- CoV- 2 (Alvarez and Ramos, 1986; Bruzzone et al., 2020; Gallin et al., 1969; Liuba 
et al., 2003; Madsen et al., 2018), and CVD risk (particularly higher phenylalanine) in adults (Würtz 
et al., 2015; Würtz et al., 2012). Acute and chronic infection- related metabolic differences have been 
implicated in atherosclerosis (Khovidhunkit et al., 2000), including increased carotid intima- media 
thickness (Burgner et al., 2015c; Liuba et al., 2003) and arterial stiffness (Charakida et al., 2009) in 
older children, and in adult CVD risk (Bergh et al., 2017; Burgner et al., 2015a). The mechanisms 
underpinning the link between inflammation and metabolism are not well characterised, but there is 
evidence they may share regulatory pathways. For example, lipid- activated nuclear receptors such 
as peroxisome- proliferator- activated receptors and liver X receptors regulate both lipid metabolism 
and inflammation (Bensinger and Tontonoz, 2008). Synthesis of leptin, a key regulatory hormone of 
metabolism, including energy homeostasis (Park and Ahima, 2015), is increased by proinflammatory 
cytokines during acute infection (Behnes et al., 2012), and is in turn implicated in many inflammatory 
processes (Abella et al., 2017).

In lipidomic analyses, infection burden was associated with lower levels of several ether 
phosphatidylethanolamine species (PC(O) and PC(P)), consistent with the reported decrease 
in these polyunsaturated- fatty acid (PUFA)- containing species in SARS- CoV- 2 infected adults 
(Schwarz et  al., 2020). Importantly, these decreases contrast with observed increases in diacyl- 
phosphatidylethanolamine species, and this discordance in phosphatidylethanolamine species is char-
acteristic of conditions characterised by inflammation, including Alzheimer’s disease (Huynh et al., 
2020). The role of phosphatidylethanolamines in infection is incompletely understood, but omega- 3 
fatty acids (a major class of PUFA) have been implicated in anti- inflammatory pathways (Calder, 2013) 
and ether phosphatidylethanolamine species are a potential source of PUFAs. Lower trihexosylcer-
amide lipid class, associated with more infections, has been linked to increased BMI and pre- diabetic 
phenotypes in adults (Meikle et al., 2013; Weir et al., 2013).

The different relationships of the two inflammatory markers GlycA and hsCRP with metabolomic 
and lipidomic profiles are consistent with a recent study in pregnant women reporting GlycA was more 
strongly correlated with NMR metabolomic differences than hsCRP (Mokkala et  al., 2020). While 
hsCRP has been widely used as a measure of chronic inflammation, primarily in adults, it is an acute 

Error bars are 95% confidence intervals. Closed points represent p- value < 0.05. All models were adjusted for infant 
age, sex, gestational age, birth weight, maternal household income, smoking during pregnancy, breastfeeding 
status, and sample processing time. Model details are in Figure 7—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Summary of mediation models for total, natural direct, and natural indirect effects (mediated by 
glycoprotein acetyls [GlycA] or high- sensitivity C- reactive protein [hsCRP]) of infection from birth to 12 months on 
12- month metabolomic and lipidomic measures.

Source data 2. Summary of mediation models for total, natural direct, and natural indirect effects (mediated by 
glycoprotein acetyls [GlycA] or high- sensitivity C- reactive protein [hsCRP]) of infection from 6 to 12 months on 
12- month metabolomic and lipidomic measures, with adjustment for infections from birth to 6 months of age, 
6- month inflammation, and the corresponding 6- month metabolomic/lipidomic measure.

Figure supplement 1. Total effect of infection from 6 to 12 months on 12- month metabolomic and lipidomic 
measures (purple, circle points) and the estimated natural indirect effect component of these mediated by 
12- month glycoprotein acetyls (GlycA) (orange, square points) or high- sensitivity C- reactive protein (hsCRP) (green, 
diamond points), with adjustment for infections from birth to 6 months of age, 6- month inflammation, and the 
corresponding 6- month metabolomic/lipidomic measure.

Figure 7 continued
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phase reactant that increases rapidly following acute stimulus and returns to baseline levels within a 
matter of days and is therefore mostly used as a diagnostic adjunct in children with acute infection 
or inflammation (Gabay and Kushner, 1999). In contrast, there is evidence that GlycA can remain 
elevated for up to a decade in young adults (Ritchie et al., 2015), and it is considered a superior 
marker of cumulative inflammation burden, though data of GlycA in early life are sparser. Several 
studies in adults have reported that these two markers are only moderately correlated (Akinkuolie 
et al., 2014; Gruppen et al., 2015b), and it is suggested that these markers reflect different (albeit 
overlapping) inflammatory processes. This is consistent with our findings of distinct metabolomic and 
lipidomic profiles for these two markers and reflects other findings that show different relationships 
of GlycA and hsCRP with cardiovascular and metabolic phenotypes. For example, GlycA is inde-
pendently associated with risk of CVD and with enzymatic esterification of free cholesterol, even after 
adjustment for hsCRP (Duprez et al., 2016; Gruppen et al., 2015a; Muhlestein et al., 2018). Associ-
ations between GlycA and lipolysis rates (Levine et al., 2020) and gut microbiome diversity (Mokkala 
et al., 2020) are also stronger than those reported for hsCRP.

Strengths and limitations
This large prospective cohort study is the first to examine the relationship between infection, inflam-
mation, and plasma NMR metabolomic and LC/MS lipidomic profiles in early life, with implications for 
later CVD risk. The associations were consistent using either parental- reported infections (potentially 
prone to reporting bias) or 12- month GlycA as a measure of cumulative inflammatory burden. We 
found no evidence that birth plasma metabolomic or lipidomic profiles were associated with infec-
tion burden in the first 6 months of life (i.e. reverse causation; Supplementary file 3A and C). There 
was some limited evidence that GlycA at 6 months may be associated with subsequent number of 
infections (Supplementary file 3B), but we were able to adjust for this in mediation models to avoid 
exposure- induced mediator- outcome confounding (Vanderweele and Vansteelandt, 2009). The use 
of metabolomics and lipidomic data from three early life time points (birth, 6 months, and 12 months) 
is unique and allowed longitudinal analyses to be performed.

Limitations include the use of cross- sectional data for mediation analyses (i.e. 12- month inflam-
matory markers and 12- month metabolomics/lipidomics), which we addressed in part with mediation 
models adjusted for infections from birth to 6  months of age and 6- month inflammation. More-
over, GlycA is a marker of cumulative inflammation (Collier et al., 2019; Ritchie et al., 2015) and is 
believed to reflect inflammatory events occurring prior to the 12- month time point. Evidence from 
randomised controlled trials in adults support a causal role of inflammation in CVD risk (Chunfeng 
et al., 2021; Ridker et al., 2017), however this study in infants is observational. While we have used a 
casual framework for mediation analyses, our findings do not demonstrate causality. Despite rigorous 
adjustment and sensitivity analyses, there may be unmeasured confounding, such as from environ-
mental factors that may modify changes in metabolomic/lipidomic measures following infection. We 
considered total parent- reported infections, as defining clinical categories of infection given the non- 
specific symptoms and signs in infancy is challenging. Validation of all parent- reported infections was 
not feasible and only a minority (70 infections in 555 infants) resulted in medical attention (Rowland 
et al., 2021). However, the strong correlation between metabolomic and lipidomic differences for 
number of reported infections and for GlycA suggests that parent report is a reasonable measure of 
infection- induced inflammatory burden. Most childhood infections are viral, and microbial testing is 
impractical in non- hospitalised children and cannot necessarily differentiate between colonisation and 
infection. Notwithstanding, distinct lipid differences have been reported for children with bacterial 
versus viral infections (Wang et al., 2019), and different infectious aetiologies in adults have been 
linked to differential CVD risk (Cowan et al., 2020). Finally, the relative lack of racial/ethnic diversity 
in our cohort may limit generalisability of our findings.

Conclusions
In summary, we present evidence for higher infection burden in early life leading to proatherogenic 
and prodiabetic plasma metabolome and lipidome at 12 months of age, and for inflammation partly 
mediating these relationships. GlycA may be a better marker of early life infection and inflammation 
burden than hsCRP. These findings suggest that the impact of the cumulative infection and inflam-
mation burdens previously implicated in adult cardiometabolic disease may begin in infancy, thereby 
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offering opportunities for early prevention. Further work is required to determine the potential conse-
quences these adverse metabolomic profiles in early life have on later risk of disease, and how the 
relationships between infections, inflammation, and metabolomic and lipidomic profiles might differ 
across age groups, pathogen type, and clinical severity of infection.

Data availability
Given the ethics for this study, the individual participant data cannot be made freely available online. 
Interested parties can access the data used in this study upon reasonable request, with approval 
by the BIS data custodians. As part of this process, researchers will be required to submit a project 
concept for approval, to ensure the data is being used responsibly, ethically, and for scientifically 
sound projects.

Source data files have been uploaded for each of the results figures (Figures 3–7) showing the 
model summary data for all metabolomic and lipidomic measures, including those not presented in 
figures.

Source code for all analyses have been uploaded as Source code 1 and Source code 2.
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