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Abstract: Circulating non-coding microRNAs (miRNAs) are important for placentation, but their
expression profiles across gestation in pregnancies, which are complicated by gestational diabetes
mellitus (GDM), have not been fully established. Investigating a single time point is insufficient, as
pregnancy is dynamic, involving several processes, including placenta development, trophoblast
proliferation and differentiation and oxygen sensing. Thus, the aim of this study was to compare
the temporal expression of serum miRNAs in pregnant women with and without GDM. This is a
nested case-control study of longitudinal data obtained from a multicentric European study (the
‘DALI’ study). All women (n = 82) were overweight/obese (BMI ≥ 29 kg/m2) and were normal
glucose tolerant (NGT) at baseline (before 20 weeks of gestation). We selected women (n = 41) who
were diagnosed with GDM at 24–28 weeks, according to the IADPSG/WHO2013 criteria. They were
matched with 41 women who remained NGT in their pregnancy. miRNA (miR-16-5p, -29a-3p, -103-3p,
-134-5p, -122-5p, -223-3p, -330-3p and miR-433-3p) were selected based on their suggested importance
for placentation, and measurements were performed at baseline and at 24–28 and 35–37 weeks of
gestation. Women with GDM presented with overall miRNA levels above those observed for women
remaining NGT. In both groups, levels of miR-29a-3p and miR-134-5p increased consistently with
progressing gestation. The change over time only differed for miR-29a-3p when comparing women
with GDM with those remaining NGT (p = 0.044). Our findings indicate that among overweight/obese
women who later develop GDM, miRNA levels are already elevated early in pregnancy and remain
above those of women who remain NGT during their pregnancy. Maternal circulating miRNAs
may provide further insight into placentation and the cross talk between the maternal and fetal
compartments.

Keywords: gestational diabetes mellitus; microRNA; circulating biomarkers; serum; temporal ex-
pression profile; miR-29a-3p
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1. Introduction

During pregnancy, metabolic, physiological and immunological changes occur natu-
rally to accommodate the development of the fetus and the placenta. A healthy pregnancy
is characterized by transient insulin resistance and hyperlipidemia, among other changes,
resulting in increased insulin secretion to secure normal glucose tolerance. However, ge-
netic predisposition, pre-existing obesity, excessive gestational weight gain and maternal
over-nutrition can result in a relatively impaired β-cell function and lead to hyperglycemia,
deteriorated glucose tolerance and gestational diabetes mellitus (GDM) [1].

The importance of small non-coding post-transcriptionally regulatory microRNAs
(miRNAs) in placentation and embryogenesis has been demonstrated using both in vitro
models as well as in vivo rodent models. Their key role for a successful pregnancy was
highlighted by studies in which an important miRNA-processing gene, Dicer1, was deleted
in mice, resulting in embryonic developmental arrest and lethality [2].

The expression of selected miRNAs, such as miRNAs within the C14- and C19- miRNA
cluster, as well as the miR-29a cluster, are different between first and third trimester
placentas, suggesting a dynamic and development-dependent expression of individual
miRNAs [3]. The first trimester placenta dominantly expresses miRNAs reflective of an-
giogenic, immune suppressive and tissue remodeling characteristics, while term placentas
express miRNAs linked to immunological and hematopoietic activities [3]. Additionally,
both circulating miRNAs [4] and placenta-derived exosomes, potential carriers of miRNAs,
increase continuously during gestation [5]. Lastly, miRNAs have been shown to modulate
and partake in processes and pathways important for successful placentation and placental
homeostasis, such as fine-tuning the maternal immune system through immune-tolerogenic
regulation, proper differentiation and proliferation of trophoblasts, as well as remodeling
the spiral arteries and oxygen sensing (reviewed in [6]).

It is not known whether changes in miRNAs in the circulation precede the onset of
metabolic changes associated with GDM, thus potentially contributing to its pathogenesis,
or whether circulating miRNA changes in GDM are downstream events secondary to GDM
pathology. Here, we compare longitudinal changes of selected miRNAs circulating in obese
normal glucose tolerant women versus women who develop GDM. miRNAs were chosen
for this study based on either previous findings in GDM (miR-16, -29a, -103, -122, -134, -223
and -330 [4,7–18]), impaired metabolism (miR-16, -29a, -122, -103 and -223 [10,19–21]) or an
association with or expression in the placenta (miR-29a, -134 and -433 [3,22]). Establishing
the temporal expression profile of circulating miRNAs associated with GDM could improve
our understanding of processes important for placenta homeostasis and GDM and may, in
the future, provide a basis for preventive treatment.

2. Materials and Methods
2.1. Study Participants

This nested, temporal, observational, case-control study comprised 41 obese women
with singleton pregnancy complicated by GDM as defined according to the IADPSG/
WHO2013 criteria (oral glucose tolerance test (OGTT), venous plasma glucose:
fasting ≥ 5.1 mmol/L, 1 h ≥ 10 mmol/L, 2 h ≥ 8.5 mmol/L—at least one abnormal
value) at 24–28 weeks. The 41 women with GDM were randomly selected from all women
in the lifestyle study who were diagnosed with GDM at 24–28 weeks. As controls we
included 41 age- and BMI-matched obese women with singleton pregnancy who remained
normal glucose tolerant (NGT) during their pregnancy. All the women were originally
included in the European, multicenter, randomized ‘Vitamin D and lifestyle intervention
for GDM prevention (DALI)’ trial and were followed at baseline (≤19 ± 6 days of gestation)
and at 24–28 and 35–37 weeks of gestation [23]. There were no significant differences
in terms of the type of interventions in each group (Pearson chi-square test, two-sided,
p = 0.48). Women who developed GDM after baseline received standard care accord-
ing to local guidelines. The study was approved by the relevant local ethics committees
and was performed according to the Declaration of Helsinki II. The trial registration was
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ISRCTN70595832. Informed written consent was obtained from all subjects involved in the
study at baseline.

2.2. Sample Collection and Storage

At baseline, women underwent assessments, and fasting blood samples were collected
prior to and during an OGTT. This was repeated at 24–28 weeks and at 35–37 weeks. From
women with GDM at 24–28 weeks based on locally measured glucose values (n = 16), only
fasting blood samples were obtained at 35–37 weeks, as previously described [23,24]. Thus,
out of the 41 women with GDM (based on centrally measured values), 25 women were
not diagnosed/treated at 24–28 weeks. Therefore, glucose values were also available at
35–37 weeks. The whole blood samples were separated into serum and stored at −20 ◦C or
−80 ◦C to be further handled in the ISO-certified central trial laboratory in Graz, Austria.

2.3. Isolation and Analysis of miRNA

The temporal expression profile of eight small non-coding miRNAs was measured in
serum (miR-16-5p, -29a-3p, -103-3p, -134-5p, -122-5p, -223-3p, -330-3p and miR-433-3p).

Circulating total RNA was extracted from 250 µL of serum using TRI® Reagent LS
(Sigma-Aldrich, Søborg, Denmark) according to the manufacturer’s protocol and with
the addition of synthetic ath-miR-159 (0.25 picomol) as a spike-in control and glycogen
(15 nmol) as a carrier. Quality control of selected RNA samples was performed using
Agilent Small RNA chips on the Agilent 2100 Bioanalyzer (Agilent Technologies, Glostrup,
Denmark).

A total of 100 ng of RNA was reverse transcribed using miRNA-specific stem-loop RT
primers (Supplementary Table S1) and a MultiScribe™ MicroRNA Reverse Transcription
kit (ThermoFisher Scientific, Slangerup, Denmark) according to the manufacturer’s pro-
tocol, with the addition of synthetic spike-in control Caenorhabditis elegans (cel)-miR-39
(0.5 attomol) during cDNA synthesis. The mix was incubated at 16 ◦C for 30 min, 42 ◦C for
30 min and 85 ◦C for 5 min. Subsequently, real-time quantification was performed using
the ViiA real-time PCR System (ThermoFisher Scientific, Slangerup, Denmark) detection
system. The PCR reaction included diluted cDNA with appropriate primers and Quanti-
Tect SYBR Green PCR master mix (Qiagen, Copenhagen, Denmark). The 384-well plates
contained an interplate calibrator consisting of pooled sample material. All the reactions
were run in duplicates. The raw CT data were determined using the default threshold
setting. The mean CT values were normalized against the geometric mean of three reference
genes: the two added spike-ins (cel-miR-39 and ath-miR-159) and the endogenous small
nuclear U6. Using the standard curve method, miRNA quantities were extrapolated and
the GDM-to-NGT ratios of the serum miRNAs were calculated.

2.4. Statistical Analysis

A temporal analysis of miRNA levels was performed using linear mixed models and
the generalized least squares ‘gls’-function in the R-based nlme-package (vers.
3.1-152) [25] on log-transformed data. Individual time points and groupings were coded as
categorical variables, and an unstructured covariance pattern was applied to account for the
correlations in data over time. Estimates for both groups (NGT or GDM), time point (base-
line, week 24–28 or 35–37) and the interaction between group and time point were obtained.
Continuous baseline data were analyzed by an independent t-test if data were normally
distributed or were assessed by a Shapiro–Wilk test or Mann–Whitney test if the data were
not normally distributed. Categorical data were analyzed by a chi-square test (2-sided).
Correlation at the individual time point was assessed using a Pearson correlation coefficient
and visualized by the corr-plot package (vers. 0.89) [26]. The association between miRNA
levels and changes in clinical variables was assessed by a linear regression. Gestational
weight gain (GWG) was defined as the weight (in kg) gained from baseline. Predicted
target genes for the individual miRNAs were identified using TargetScan (v.7.2, human,
http://www.targetscan.org/vert_72/, accessed on 20 May 2021) [27], and pathway enrich-

http://www.targetscan.org/vert_72/


Biomedicines 2022, 10, 482 4 of 18

ment analysis was performed using the PANTHER (Protein ANalysis THrough Evolution-
ary Relationships) Classification System (v.15.0, http://pantherdb.org/, accessed on 20 May
2021) and the PANTHER pathways annotation set [28]. The enrichment analysis was visu-
alized by RStudio (v. 1.3.1093, RStudio, PBC Boston, MA, USA, http://www.rstudio.com)
using the ggplots2 (v.3.1.0, https://ggplot2.tidyverse.org/) package [29].

An in silico analysis of placenta-enriched genes as potential targets of circulating
miRNAs was based on two generated lists, one for all predicted targets of the selected
miRNAs and one for all highly enriched genes present in the placenta according to the
Human Protein Atlas, accessed on 20 May 2021 [30]. The statistical significance of the
overlap between these two lists was tested using the exact hypergeometric probability
described in [31].

An a priori power analysis was conducted. With a minimal acceptable power of 85%,
an SD of 30% and a chance of 50%, a minimum of 32 subjects per group were needed with
the significance criterion set to α = 0.05.

All analyses were conducted using SPSS, version 27 (SPSS Inc., Chicago, IL, USA) or
RStudio (v. 1.3.1093, RStudio, PBC Boston, MA, USA, http://www.rstudio.com). GraphPad
Prism version 9 (GraphPad Inc., La Jolla, CA, USA) was used for graphical presentation.
Statistical significance was defined as p < 0.05.

3. Results
3.1. Anthropometric Measurement of Study Participants at Baseline

At baseline, women who were later diagnosed with GDM at 24–28 weeks already
had higher fasting and 2 h glucose levels compared with women who remained NGT in
pregnancy (Table 1).

Table 1. Clinical and biochemical parameters at baseline as well as offspring characteristics.

Normal Glucose
Tolerance (NGT)

Gestational Diabetes
Mellitus
(GDM)

p-Value

N 41 41

Gestation at baseline (weeks) 15.2 ± 2.4 15.3 ± 2.5 0.909

Age (years) 33.2 ± 3.8 32.7 ± 4.0 0.532

Weight (kg) 94.3 ± 12.2 92.6 ± 11.5 0.504

BMI (kg/m2) 33.3 (32.2–35.4) 33.3 (31.7–35.9) 0.926

Waist circumference (cm) 107.0 ± 10.7 105.6 ± 8.8 0.501

Neck circumference (cm) 36.0 (35.2–37) 35.5 (34.6–36.9) 0.284

Fat % 30.9 ± 3.0 30.5 ± 2.8 0.623

Fasting glucose (mmol/L) 4.7 (4.3–4.8) 4.9 (4.6–5.2) 0.003

1 h glucose (mmol/L) 7.2 (5.9–7.6) 7.2 (6.2–8.3) 0.333

2 h glucose (mmol/L) 5.6 (4.9–6.5) 6.4 (5.7–7.4) 0.005

HbA1c (%) 5.0 (4.8–5.4) 5.2 (5–5.5) 0.159

Fasting insulin (µU/mL) 11.9 (9.7–18.4) 14.6 (9.4–18.5) 0.607

1 h insulin (µU/mL) 95.2 (57.5–161.1) 95.8 (52.5–175.5) 0.878

2 h insulin (µU/mL) 52.2 (34.5–88.1) 59.8 (46.9–100.7) 0.145

http://pantherdb.org/
http://www.rstudio.com
https://ggplot2.tidyverse.org/
http://www.rstudio.com
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Table 1. Cont.

Normal Glucose
Tolerance (NGT)

Gestational Diabetes
Mellitus
(GDM)

p-Value

HOMA-IR index 2.61 (1.98–3.70) 3.11 (2.13–4.19) 0.317

QUICKI index 0.330 ± 0.020 0.325 ± 0.027 0.336

Triglycerides (mmol/L) 1.32 (1.13–1.6) 1.27 (0.9–1.68) 0.517

Free Fatty Acids (mmol/L) 0.61 ± 0.19 0.65 ± 0.17 0.328

HDL cholesterol (mmol/L) 1.46 ± 0.23 1.49 ± 0.26 0.534

LDL cholesterol (mmol/L) 3.16 ± 0.81 3.32 ± 0.75 0.352

Leptin (pg/mL) 36.0 (25.2–46.1) 38.9 (29.5–47.3) 0.799

Ethnicity
(European/non-European) 37/4 32/9 0.304

Parity (nullipara/multipara) 18/23 26/15 0.076

Relative with diabetes (no/yes) 33/8 29/12 0.304

Smoking during pregnancy
(no/yes) 37/4 36/5 0.724

Offspring sex (male/female) 23/18 20/21 0.507

Birth weight (g) 3548 ± 478 3557 ± 496 0.935
Baseline characteristics for anthropometric and clinical parameters measured during gestation as well as offspring
characteristics. Normally distributed data are presented as means ± standard deviations, while non-normally
distributed data are presented as medians (interquartile ranges). NGT: Normal glucose tolerance. GDM: Ges-
tational diabetes mellitus, BSA: Body surface area. Continuous data were analyzed either by an independent
t-test if data were normal disturbed or a Mann–Whitney test for non-normally distributed data. Categorical
data were compared by a chi-square test (2-sided). HOMA-IR: Homeostatic index of insulin resistance, QUICKI:
Quantitative insulin sensitivity check index. Fasting, 1 and 2 h glucose were measured in plasma, while fasting, 1
and 2 h insulin were measured in serum. Significant p-values (<0.05) are given in bold.

3.2. Temporal Changes in Clinical and Biochemical Parameters during Gestation

The temporal changes in the clinical and biochemical variables for both groups
can be found in Supplementary Figure S1A–P. In brief, gestational weight gain (GWG)
was similar between the two groups (Supplementary Figure S1A), while those women
who developed GDM presented with a significant increase in fasting plasma glucose,
as well as 1 h post-OGTT glucose levels, from baseline to the time of GDM diagno-
sis (Supplementary Figure S1C,D). Similarly, 2 h post-OGTT insulin levels increased
more from baseline to 35–37 weeks in the women with GDM compared with the NGT
women (Supplementary Figure S1H). Significant interactions between the groups over
time were observed for HDL levels, which overall decreased from baseline to week 35–37
(Supplementary Figure S1L).

3.3. The Temporal Profile of miRNAs during Pregnancy

The changes in mean miRNA levels during gestation between the two groups are
illustrated in Figure 1. In general, they followed three distinct patterns: Continuous
increase, continuous decrease and peak or nadir at 24–28 weeks.

The levels of miR-29a-3p (Figure 1A) and miR-134-5p (Figure 1B) increased consistently
over gestation (from baseline to 35–37 weeks) in both groups. The changes over time in miR-
29a-3p were greater in the NGT women (NGT: 62%, p < 0.0001 vs. GDM: 34%, p = 0.03). A
comparison of the trajectory for miR-29a-3p between the two groups showed that changes
in the miR-29a-3p levels over time were substantially different (p = 0.044, baseline vs.
35–37 weeks) (Figure 1A). Similarly, the baseline levels of miR-134-5p increased by 54% in
the NGT women (p = 0.0001) while a slightly smaller (20%, p = 0.13) increase was observed
in the GDM women, although the mean changes over time did not differ significantly
between the groups (baseline vs. 24–28 weeks, p = 0.9; baseline vs. 35–37 weeks, p = 0.066).
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Figure 1. Temporal profile of circulating miRNAs during pregnancy grouped by the pattern of the
changes (A–H). Relative mean quantities with 95% CI of serum microRNAs expressed in women with
either normal glucose tolerance (NGT) or women who developed gestational diabetes mellitus (GDM).
The data were normalized against the geometric mean of snRNA U6, ath-miR-159 and c.el.miR-39.
All indicated p-values were determined by linear mixed models on logarithmic transformed data
including maternal age and BMI as covariates. p-values in colors describe the changes since baseline
in either NGT or GDM. p-values in black describe the interaction between the groups and time.
* denotes a significant difference between the two groups at baseline, at 24–28 weeks or at 35–37 weeks
of gestation.

Moreover, levels of miR-103-3p (Figure 1C), miR-122-5p (Figure 1D) and miR-223-3p
(Figure 1E) decreased during gestation. In both groups, miR-103-3p changed significantly
with time (NGT: −33%, p = 0.01; GDM: −37%, p = 0.003; baseline vs. 35–37 weeks), although
no significant interaction between the two groups and time was observed. Baseline miR-
122-5p levels decreased by 39% in NGTs and by 12% in GDM at the second time point. No
significant changes were observed from the second to the third time point in the individual
groups nor did miR-122 levels change significantly differently between the two groups.
Despite a total decrease of almost 20% in the miR-223-3p levels, no significant changes were
observed within the individual groups or between the groups over time.

MiR-16-5p displayed a different pattern (Figure 1F). At first, miR-16-5p decreased in
both groups (NGT: −18%, p = 0.05; GDM: −23%, p = 0.03), but later miR-16-5p increased
to even higher levels than those observed at baseline (NGT: 36%, p = 0.15; GDM: 42%,
p = 0.14). As reported earlier, baseline levels of miR-16-5p were significantly different
between the two groups. However, the mean change over time from baseline to 35–37 weeks
was not different between the two groups.
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Unlike miR-16-5p, miR-433-3p (Figure 1G) first increased in both groups. This initial
increase was only significant in the GDM women (p = 0.007). This was then followed by an
additional increase in NGT (from 12% to a total of 35%, p = 0.004, baseline vs. 35–37 weeks)
or a slight decrease in GDM (from 24% to 12%, p = 0.38, baseline vs. 35–37 weeks). Still,
the confidence intervals were overall wide and no significant differences between the two
groups were observed.

Interestingly, levels of miR-330-3p (Figure 1H) in the NGT group first decreased from
baseline to 24–28 weeks (p = 0.019) and then increased until 35–37 weeks (p = 0.16). During
the same period, miR-330-3p did not change (p = 0.64 and p = 0.48, respectively) in the GDM
women. The changes over time in mean level of miR-330-3p were significantly different
between the two groups (from baseline vs. 24–28 weeks, p = 0.045).

3.4. Correlations between Clinical Values

Pregnancy is a dynamic process that showed initial increases in some circulating
biochemical variables (e.g., 1 h and 2 h post-OGTT glucose and insulin, HOMA-IR, LDL
cholesterol, triglycerides and HDL cholesterol) while others decreased (e.g., FFA) or re-
mained at similar levels from baseline to 24–28 weeks of gestation (e.g., HbA1c). In the
third trimester, some variables did not change further (e.g., HOMA-IR and LDL cholesterol)
while others either increased (e.g., HbA1c and FFA) or decreased (e.g., fasting plasma
glucose (FPG) and HDL cholesterol). This prompted us to analyze the correlations between
the selected miRNAs and clinical variables separately at the three different time points
(Figure 2, baseline, 24–28 weeks and 35–37 weeks). The strength of the significant correla-
tions between the miRNAs and clinical variables at the different time points was generally
weak to modest (Figure 2 and Figure S2A–C). All miRNAs but one (miR-103-3p) correlated
positively with either glucose- or insulin-dependent variables at one time during gestation.
Gestational weight gain was positively associated with miR-433-3p, -134-5p, -29a-3p and
miR-16-5p at either week 24–28 or week 35–37.

As expected, the majority of the miRNAs correlated positively with each other at all
time points.

3.5. Gestational Weight Gain Is Associated with miR-134-5p and miR-433-3p Levels

Excessive gestational weight gain is associated with adverse maternal outcomes,
such as cesarean deliveries and pre-eclampsia, and neonatal outcomes, such as large-for-
gestational-age infants. Weight gain in the first trimester is attributed to the expansion of
blood volume in the pregnant woman and to early placental development and not as much
to fat accrual [32]. This promoted us to investigate whether weight gain from baseline
to 24–28 weeks influenced the miRNA levels measured at this time point. Seven of the
eight miRNAs displayed a significant difference between the two groups at 24–28 weeks
of gestation (Figure 1A,B,D–H). Among these, miR-433-3p, -134-5p, -29a-3p and -16-5p
correlated positively with gestational weight gain. In the linear regression analysis, which
was adjusted for gestational age, the maternal pre-pregnancy BMI and miRNA levels at
baseline the levels of both miR-433-3p and miR-134-5p at 24–28 weeks remained positively
associated with gestational weight gain from baseline to 24–28 weeks (Table 2). However,
the changes in the levels of miR-29a-3p and miR-16-5p could not be explained by gestational
weight gain.
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Figure 2. Correlation between the selected miRNAs and the clinical or biochemical parameters at each
separate time point. Color intensity is proportional to the Pearson correlation coefficient. Positive
correlations are displayed in red and negative correlations are displayed in blue. Colored correlations
are significant at p < 0.05. No gestational weight gain was present at baseline, marked here with
‘-’. At 35–37 weeks, the correlations between miRNA and values pertaining to the OGTT (here, 1 h
and 2 h glucose and insulin) are based on women with GDM, based on centrally measured glucose
values (n maximum = 25) and women with NGT. The levels of miRNAs were normalized against the
geometric mean of snRNA U6, ath-miR-159 and c.el.miR-39 and logarithmically transformed prior
to analysis, as were the selected clinical variables, according to the methods section. All correlation
plots can be seen in Supplementary Figure S2A–C.

Table 2. Relationship between miRNA levels at 24–28 weeks of gestation and gestational weight gain.

miR-433-3p miR-134-5p
β (95% CI) p β (95% CI) p

Specific miRNA levels
at baseline 0.36 (0.18–0.53) 0.0002 0.37 (0.16–0.58) 0.001

Weight gain at
24–28 weeks (kg) 0.08 (0.01–0.14) 0.022 0.095 (0.03–0.16) 0.006

Difference in gestational
age (weeks) −0.01 (−0.08–0.06) 0.722 −0.036

(−0.11–0.03) 0.293
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Table 2. Cont.

miR-433-3p miR-134-5p
β (95% CI) p β (95% CI) p

Maternal age at baseline
(year) −0.02 (−0.06–0.03) 0.471 −0.018

(−0.06–0.03) 0.424

Pre-pregnancy BMI
(kg/m2) −0.02 (−0.07–0.03) 0.386 −0.005

(−0.05–0.04) 0.834

GDM group 0.27 (−0.06–0.59) 0.104 0.153 (−0.18–0.48) 0.354
Linear regression analysis of miRNAs, which were positively correlated with gestational weight gain. The level of
each miRNA at 24–28 weeks of gestation was adjusted for the baseline levels of the specific miRNA, as well as
the gestational weight gain from baseline to 24–28 weeks of gestation, maternal pre-pregnancy BMI and age at
baseline. Reference group: NGT women. Significant p-values (<0.05) are given in bold.

3.6. Impaired Glucose Metabolism and Dyslipidemia Is Associated with Selected miRNA

A linear regression analysis was carried out using various combinations of glucose-
derived variables to further identify what associates with the expression of the individ-
ual miRNAs. We observed a positive association between miR-134-5p, measured at 35–
37 weeks of gestation, and changes in HOMA-IR in women both with and without GDM
(Table 3).

Table 3. Relationship between the levels of miR-134 at 35–37 weeks of gestation and changes in
HOMA-IR from baseline to 35–37 weeks.

miR-134-5p at 35–37 Weeks of Gestation
β (95% CI) p

Baseline miR-134-5p levels 0.18 (−0.04–0.40) 0.104
Changes in HOMA-IR from baseline to

35–37 weeks 0.07 (0.01–0.12) 0.030

Difference in gestational age baseline to
35–37 weeks (weeks) −0.03 (−0.10–0.04) 0.418

Maternal age at baseline (year) −0.06 (−0.11–0.02) 0.010
Pre-pregnancy BMI (kg/m2) −0.05 (−0.10–0.002) 0.060

GDM Group −0.09 (−0.44–0.27) 0.620
Linear regression analysis of the changes in insulin resistance (HOMA-IR) from baseline to 35–37 weeks of
gestation and its association with the miR-134-5p levels at 35–37 weeks of gestation. Adjustments for maternal
age at baseline, as well as differences in gestational age, pre-pregnancy BMI and the miR-134-5p levels at baseline,
were made. Reference group: NGT women. Significant p-values (<0.05) are given in bold.

Besides hyperglycemia, dyslipidemia during pregnancy has been associated with
adverse pregnancy outcomes. Hence, changes in lipid profiles could be reflected in miRNA
levels. At the time of GDM diagnosis, no apparent relationship was observed between the
changes in HDL cholesterol, LDL cholesterol or triglycerides from baseline to 24–28 weeks
of gestation and miRNA levels, with the exception of miR-103-3p (Table 4).

Table 4. Relationship between the levels of miR-103 at 24–28 weeks of gestation and changes in lipids
from baseline to 24–28 weeks.

miR-103-3p at 24–28 Weeks of Gestation
β (95% CI) p

Baseline miR-103-3p 0.18 (−0.03–0.39) 0.092
Changes in LDL cholesterol

from baseline to 24–28 weeks
(mmol/L)

0.29 (0.04–0.54) 0.026

Changes in HDL cholesterol
from baseline to 24–28 weeks

(mmol/L)
1.39 (0.25–2.53) 0.017
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Table 4. Cont.

miR-103-3p at 24–28 Weeks of Gestation
β (95% CI) p

Changes in triglycerides from
baseline to 24–28 weeks

(mmol/L)
−0.01 (−0.49–0.47) 0.967

Difference in gestational age
from baseline to 24–28 weeks

(weeks)
−0.13 (−0.23–0.03) 0.010

Maternal age at baseline
(years) 0.01 (−0.05–0.06) 0.814

Pre-pregnancy BMI(kg/m2) −0.01 (−0.08–0.06) 0.800
GDM Group 0.31 (−0.11–0.74) 0.143

Linear regression analysis of the changes in either HDL-, LDL cholesterol or triglycerides from baseline to
24–28 weeks of gestation. Adjustments for maternal age at baseline, as well as differences in gestational age,
pre-pregnancy BMI and the miR-103-3p levels at baseline, were made. Reference group: NGT women. Significant
p-values (<0.05) are given in bold.

3.7. Pathway Analysis

In order to elucidate which potential biological pathways could be regulated by the
investigated miRNAs, three groups were constructed based on similar temporal profiles in
the total study population (n = 82) upon the mixed model analysis. The predicted targets of
these miRNAs were subjected to a pathway enrichment analysis (Figure 3).
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Figure 3. Pathway enrichment analysis of the predicted targets of the three defined miRNA groups.
The bubble fill color represents the degree of enrichment, while bubble size represents the FDR-
corrected p-value on a −log10 scale. MiRNAs displaying an overall increasing (Up: miR-29a-3p,
-134-5p and -433-3p), decreasing (Down: miR-122-5p, -103-3p and -223-3p) or a bimodal (Bi: miR-16-
5p and miR-330-3p) longitudinal expression pattern were grouped together. CCKR: Cholecystokinin
Receptor, EGF: Epidermal Growth Factor, FGF: Fibroblast Growth Factor, HIF: Hypoxia-inducible
Factor, IGF: Insulin Growth Factor, PDGF: Platelet-Derived Growth Factor, TGF: Transforming
Growth Factor, Wnt: Wingless-type, 5HT3: Serotonin receptor, PI3: Phosphoinositide-3.

When the 3 miRNAs (miR-29a-3p, -134-5p and -433-3p) with gradually increasing
levels were combined, they were predicted to target 1710 unique transcripts, with the
majority of these belonging to miR-29a-3p. A total of ten different pathways was found to
be enriched. For instance, transcripts affected by any of these three miRNAs are involved in
immunological and insulin-relevant pathways, as well as metabolic adaptation to hypoxia
and integrin signaling.
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On the other hand, miR-122-5p, -103-3p and -223-3p decreased gradually and targeted
a total of 1354 unique transcripts. The 5HT3-type receptor-mediated signaling pathway,
which has associations to obesity and diabetes [33], showed the highest enrichment and
was solely represented by transcripts targeted by the miRNAs with a decreasing temporal
profile.

Although the remaining two miRNAs, miR-16-5p and miR-330-3p, had bi-modal
temporal expression levels during pregnancy, they were found to potentially interact with
the highest number of transcripts (n = 2301).

Among all three groups, two pathways associated with glucose regulation, EGF
receptor signaling and FGF signaling showed shared enrichment, most likely because they
include genes with antagonistic effects within the same pathway.

The placenta separates maternal and fetal circulation. miRNAs may facilitate placental
communication with the maternal and fetal compartments, reviewed in [34]. An in silico
comparison between human placental enriched genes (n = 494) derived from antibody-
based protein profiling of healthy placenta tissue and all uniquely predicted targets
(n = 3322) of the eight selected miRNAs demonstrated an overlap of 84 genes (hypergeo-
metric overlap statistics p < 10−30, Supplementary Figure S3). Using these 84 overlapping
genes in an enrichment analysis, the gene ontology (GO) biological processes related to
development were among the highly enriched GO terms. Thus, abnormal changes in
maternal circulating miRNAs could potentially lead to placenta maldevelopment and,
hence, dysfunction. Of note, out of the selected eight miRNAs, miR-433-3p and miR-134-5p
belong to the C14 miRNA cluster, which is located at the imprinted DLK-DIO3 region and
is predominately expressed in placenta tissue. Hence, any increases in these two miRNAs
could reflect increases in placenta weight. However, we observed no differences in placenta
weight (630 g versus 620 g, p = 0.80) between the NGT and GDM women, and none of the
miRNAs correlated positively at either time point with placental weight.

4. Discussion

In this study, the temporal profile of selected circulating miRNAs in pregnancy was
evaluated prior to 20 weeks of gestation and at 24–28 and 35–37 weeks of gestation in
overweight/obese women with normal glucose tolerance and pregnancies affected by
GDM. We have previously reported differences between women with GDM and those who
remained NGT in the selected miRNAs at baseline [7]. All of the investigated miRNAs
had higher levels during pregnancy in the women who later developed GDM. All of these,
except for miR-103-3p, were also different at 24–28 weeks of gestation, while levels of
miR-122-5p, -223-3p and -16-5p were significantly higher in the GDM group by the third
trimester. Half of the miRNAs changed over time either in both groups (miR-29a-3p and
miR-103-3p) or only in the NGT group (miR-134-5p and -433-3p). Importantly, miR-29a-3p
demonstrated a significant interaction between the two groups and time. Additionally,
levels of clinical and biochemical parameters related to impaired glucose metabolism
were concomitantly measured. Gestational weight gain was positively associated with
miR-134-5p and miR-433-3p levels, while changes in HOMA-IR and HDL were associated
with 134-5p and 103-3p, respectively.

Most studies on circulating miRNAs in relation to GDM have only investigated
the expression profile at a single time point in gestation [8,10,11,14–18,35–42], with the
exception of one study [4]. There is limited consistency between the investigated miRNAs,
although miR-16, -29a, -132, -223 and -330 are reported in more than one study.

Interestingly, four of the five miRNAs that were significantly increased during the
second visit (24–28 weeks of gestation), miR-29a, miR-134-5p, miR-433-3p and miR-330-3p,
are involved in pancreatic beta cell function [9,43–47]. MiR-29a, which increased with
increasing glucose concentrations, impairs glucose-stimulated insulin secretion at least
partially via targeting the exocytosis protein Syntaxin 1 [43–45], while miR-330-3p targets
glucokinase, the gene responsible for Maturity Onset Diabetes of the Young, subtype 2
(MODY2). Both miR-134-5p and miR-433-3p belong to a microRNA cluster (C14MC) within
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the imprinted DLK1-DIO3 locus on chromosome 14. This locus has a role in placental
and fetal development and is also important for beta cell function [47], although it should
be added that only miR-433-3p has been directly tested for a role in beta cells [46]. Thus,
the differential regulation of these four miRNAs in serum from women with GDM could,
perhaps, also reflect beta cell dysfunction. In this respect, it is also noteworthy that a
common pathway that is potentially regulated by the GDM-upregulated miRNAs (miR-29a,
miR-134-5p and miR-433-5p) is integrin signaling (Figure 2). During gestation, beta-cell
integrin signaling is important, because prolactin and placental lactogen increases the
expression of integrin α6 to increase beta-cell replication [48]. Given that microRNA tissue-
to-tissue crosstalk has been demonstrated [49], at least for miR-29a, it is an interesting
hypothesis that increased levels of these miRNAs could mediate beta cell dysfunction,
possibly via actions on integrin signaling.

We are able to confirm the findings by Cao and colleagues, who showed that plasma
miR-16-5p progressively increased during pregnancy (measured at 16–20 weeks,
20–24 weeks and 24–28 weeks of pregnancy) in women diagnosed with GDM [4]. Similarly,
high-throughput sequencing of serum samples collected at 16–19 weeks of pregnancy,
followed by validation by qPCR, showed an upregulation of miR-16-5p in GDM women
compared to pregnant women without GDM [39], which is also consistent with our results.
Others did not observe any significant differences in serum miR-16-5p at an average of
21 weeks of gestation [16] or plasma miR-16 at gestational weeks 23–31 [11]. Likewise,
levels of the blood leukocyte miR-16-5p measured in the third trimester (~gestational age
34) were similar between the control and GDM women [17]. In order to accommodate the
increased metabolic demands of the fetus, the β-cell mass of pregnant woman undergoes
an expansion. In mice, non-β-cells of unknown source(s) are recruited and contribute to
the increase in β-cell numbers during pregnancy, and the number of neurogenin 3 (NGN3)-
positive cells, as well as NGN3-expressing islets, decreases [50]. Interestingly, the NGN3
transcript is a validated target of miR-16-5p [51], and it could, at least in theory, explain how
increased levels of miR-16-5p during gestation could lead to impaired glucose metabolism.

In early pregnancy (6-15 weeks of gestation), serum exosomal miR-29a-3p was found
at higher levels in Canadian women with GDM [15], as were serum miR-29a-3p measured
at 18–23 weeks of gestation in Mexican women with GDM [16] and serum levels measured
prior to 20 weeks of gestation in European women with GDM in a previous report of the
DALI study [7]. While these studies are consistent with current results, decreased serum
miR-29a at 16–19 gestational weeks was found in Chinese women diagnosed with GDM
based on the American Diabetes Association (ADA) criteria [8]. The observed discrepancy
could be due to differences in GDM diagnostic criteria or ethnicity.

Maternal pancreatic β-cell mass increases, as does the efficiency of glucose-stimulated
insulin secretion, due to the rising levels of human placental lactogen and prolactin and
as a response to insulin resistance in pregnancy. An initial increase in miR-433 levels
was observed in both groups. However, after GDM diagnosis, miR-433 levels dropped in
women with GDM, while miR-433 continued to increase in women with NGT. In a high-
glucose environment in vitro, miR-433 was downregulated in insulin-secreting MIN6 cells,
while the restoration of miR-433 levels through miR-mimics protected the β-cells [46]. As
speculation, it is possible that miR-433 could contribute to the compensatory effects in
an attempt to maintain glucose homeostasis and that this effect was blunted in the GDM
group. Alternatively, the treatment of GDM could have influenced miR-433 levels.

During the pregnancy period, circulating miR-134-5p levels continued to increase
in both groups. It does not appear that changes in glucose or insulin levels nor changes
in insulin sensitivity or insulin resistance influenced the expression of miRNA levels in
the third trimester, except for miR-134-5p. Interestingly, the induction of miR-134-5p by
hyperglycemia in vitro resulted in impaired cell migration and tube formation abilities in
endothelial cell progenitors [52]. Elevated levels of miR-134-5p are associated with both
GDM [7,40] and pre-eclampsia and the suppression of infiltration of trophoblast cells [53],
suggesting that dysregulated miR-134 could contribute to GDM pathology. We observed
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that both miR-433-3p and miR-134-5p were positively associated with gestational weight
gain. This locus has been found important for fetal viability and placental development
and function [54,55], as well as the predisposition to diabetes outside pregnancy [56]. With
advancing gestational age, miRNAs within the C14MC increase from 4th to 16th weeks
of gestation [57]. When primary first and third trimester trophoblastic cells were profiled,
the expression of members of the C14MC cluster decreased from the first to third trimester
trophoblasts when compared to miRNAs belonging to another placenta-associated miRNA
cluster, i.e., C19MC [58]. The reason for the discrepancy between these observations could
be that cell types other than trophoblasts contribute to the total circulating miR-134 and
miR-433 pool.

Elevated serum miR-103 has been associated with HNF1A-MODY carriers [59], and a
meta-analysis of multiple tissue types found an association between upregulated miR-103
and T2D [19]. In relation to our study, regardless of the time point investigated, miR-103-3p
levels were higher in women with GDM, although no significant differences were observed
at the individual time points. This is in accordance with two other studies measuring
miR-103 before 20 weeks of gestation [7] or at 26–30 weeks of gestation [13]. Inhibition of
miR-103 in obese mice improved insulin sensitivity and glucose homeostasis [60]. Lowering
miR-103 using miRNA inhibitors could, thus, potentially be a treatment option for GDM.
We observed that miR-103-3p progressively decreased in both groups and that miR-103
was inversely associated with changes in the LDL levels at the time of GDM diagnosis.

miR-103-3p, -122-5p and -223-3p had predicted targets related to the 5HT3-type
receptor-mediated signaling pathway. During pregnancy, glucose-stimulated insulin secre-
tion in mouse pancreatic β-cells is partly controlled by the 5HT3-type receptor-mediated
signaling pathway through simultaneous increases in serotonin levels [61]. The serotonin
transporter (HTT, also known as SLC6A4) is a predicted target of miR-103-3p. Interestingly,
infants born to mothers with GDM showed decreased methylation of placental SLC6A4,
with resulting increased SLC6A4 mRNA levels [62]. The functional consequences of de-
creased miR-103, potentially on SLC6A4 mRNA levels, in GDM remain to be identified.

Four studies have investigated miR-223, either in plasma [11,12,18] or serum [7], and
consistently found higher miR-223 levels in GDM than in NGT pregnancies, at least in
early gestation. Moreover, outside pregnancy, islet miR-223 is upregulated in subjects with
diabetes. In vitro stimulation of MIN6 cells with high glucose or tumor necrosis factor α
increased miR-223 levels [63]. We observed that, compared with the controls, the mean miR-
223 levels increased at every time point measured during pregnancy. Women who develop
GDM are often insulin-resistant, even before conception, which is often associated with
maternal obesity. Insulin-resistant women displayed higher levels of adipose tissue miR-223
compared with non-insulin-resistant women [64], potentially explaining why circulating
miR-223 levels were also elevated in our GDM group. Being a hematopoietic-cell–derived
miRNA, miR-223 is highly involved in immune responses. A successful pregnancy depends
on a shift towards an immune tolerant and anti-inflammatory state, in order to support the
growing fetus. Thus, dysregulated miR-223 might contribute not only to impaired glucose
metabolism but might also influence immune cells at the maternal–placental interface.

Third-trimester miR-330-3p levels were found to be upregulated in two separate stud-
ies in lean women with GDM [13,14]. This is consistent with our study for a similar time
point (24–28 weeks). Since most of our subjects were obese, higher miR-330-3p levels
in GDM than in NGT appear to be independent of the BMI of the pregnant woman. A
bimodal expression pattern was observed for miR-330-3p for unknown reasons. How-
ever, a target gene analysis demonstrated the post-transcriptional modulation of genes
relevant for insulin secretion, as well as the differentiation and proliferation of β-cells by
miR-330-3p [9,65,66]. It remains to be studied whether the bimodal miR-330-3p levels are
related to the increasing insulin concentrations in women between weeks 24 and 30 [67].

The liver-enriched miR-122 progressively decreased during gestation in both the
NGT and GDM groups but consistently showed higher levels in the subjects with GDM.
Encapsulated within extracellular vesicles and measured early in gestation (between 6
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and 15 weeks of gestation), serum miR-122 was significantly higher in women diagnosed
with GDM compared with controls [15], in line with our study. Outside pregnancy, a
higher degree of adiposity, inflammation, insulin resistance and triglycerides and lower
HDL cholesterol were all associated with higher levels of circulating miR-122, especially in
participants with either a diagnosis of T2D or metabolic syndrome [20]. Insulin resistance
peaked in both groups around the time of diagnosis, and HOMA-IR correlated positively
with miR-122 at this time point, strengthening the role of miR-122 as a marker of impaired
metabolism.

Strengths and Weaknesses

The study population, although mostly obese, was largely of European descent. This
reduces the potential confounding effects of ethnicity, which is a well-known risk factor
of GDM. However, this also warrants validation studies in a more ethnically diverse
population, as well as in lean women. A strength of the current study is its temporal
nature, allowing us to investigate the changes over time within each woman of the two
groups. It is worth mentioning that after GDM diagnosis appropriate treatment according
to local guidelines was initiated. In our study, a lack of information on treatment modalities
precluded a sub-analysis on whether treating GDM influenced the temporal miRNA profile,
a question that warrants further study. The recruitment site was associated with GDM at
baseline and at 24–28 weeks [68], and performing a sub-analysis including only women
within the same recruitment site could have resulted in a more homogenous, but less
representative, study population. Furthermore, by matching for maternal BMI and age,
differences in insulin sensitivity between women with GDM and those who remained NGT
might have been reduced. However, now, the differences in the temporal profiles of the
miRNAs can be attributed to the impaired metabolism causing GDM, independent from
changes due to higher BMI or age.

We employed a targeted miRNA profile approach. Thus, other potentially impor-
tant miRNAs may have been overlooked. As of now, there is limited knowledge of the
population baseline levels of circulating miRNAs in healthy individuals, let alone in preg-
nancy. Establishing such reference ranges would aid in translating and using miRNAs as
diagnostic/prognostic markers in the clinic.

An interesting but open question is the origin of the circulating miRNAs. Recent
advances within the field of sequencing (SLAM-seq [69]) using tissue-specific incorporation
of 4-thiouridine (4-TU) could prove useful for in vivo tracking of miRNAs released into
circulation. Despite miRNA levels demonstrating high correlations between repeated
samples over a larger sampling period in healthy individuals [70,71], more longitudinal
studies within pregnant women are needed should miRNAs be utilized in clinical practice.

5. Conclusions

In summary, overweight/obese pregnant women who are later diagnosed with GDM
present with miRNAs levels above those of obese pregnant women without GDM. Levels
of miR-29a-3p change significantly over time and between the two groups. Dysregulated
miRNA levels during gestation could contribute to decreased insulin sensitivity, an in-
appropriate response to the increasing insulin resistance associated with pregnancy and,
ultimately, to impaired glucose metabolism. Additionally, a higher degree of adiposity has
been associated with higher miRNA level. It remains to be identified which cells contribute
to the total pool of circulating miRNAs in pregnancy. However, our study highlights the
importance of investigating miRNA levels at multiple time points and contributes to a
further understanding of GDM pathophysiology.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10020482/s1, Figure S1: Temporal profile of selected
anthropometric variables, Figure S2: Correlations between clinical variables and the selected miRNA
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