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The bone marrow 
microenvironment of pre‑B 
acute lymphoblastic leukemia 
at single‑cell resolution
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Jennifer Tickner3, Jiake Xu3, Benjamin H. Mullin3,4, Dave Tang5, Sébastien Malinge1, 
Ursula R. Kees1, Rishi S. Kotecha1,2,6,7, Timo Lassmann1,7 & Laurence C. Cheung1,2,7*

The bone marrow microenvironment (BMM) plays a key role in leukemia progression, but its 
molecular complexity in pre-B cell acute lymphoblastic leukemia (B-ALL), the most common cancer 
in children, remains poorly understood. To gain further insight, we used single-cell RNA sequencing 
to characterize the kinetics of the murine BMM during B-ALL progression. Normal pro- and pre-B 
cells were found to be the most affected at the earliest stages of disease and this was associated with 
changes in expression of genes regulated by the AP1-transcription factor complex and regulatory 
factors NELFE, MYC and BCL11A. Granulocyte–macrophage progenitors show reduced expression 
of the tumor suppressor long non-coding RNA Neat1 and disruptions in the rate of transcription. 
Intercellular communication networks revealed monocyte-dendritic precursors to be consistently 
active during B-ALL progression, with enriched processes including cytokine-mediated signaling 
pathway, neutrophil-mediated immunity and regulation of cell migration and proliferation. In 
addition, we confirmed that the hematopoietic stem and progenitor cell compartment was perturbed 
during leukemogenesis. These findings extend our understanding of the complexity of changes and 
molecular interactions among the normal cells of the BMM during B-ALL progression.

The microenvironment of cancer is known to play a critical role in cancer progression and contributes to treat-
ment failure or success1. In the bone marrow, the microenvironment contains an array of cell types including 
immune cells, osteoblasts, osteoclasts, endothelial cells, mesenchymal stromal cells and adipocytes which play a 
key role in regulating hematopoiesis in a non-cell autonomous manner. During leukemia development, tumor 
cells alter the bone marrow microenvironment (BMM) to favor disease development at the expense of normal 
hematopoiesis. In acute myeloid leukemia (AML), tumor cells have been shown to reduce osteoblast numbers, 
with ablation of osteoblasts altering lineage determination of hematopoietic stem cells and promoting leukemia 
progression in vivo2. Furthermore, immune cells in the bone marrow contribute to leukemogenesis. Macrophages 
and CSF1R-expressing myeloid cells have been shown to promote the survival of chronic lymphocytic leukemia 
cells in vivo and promote AML cell growth, respectively3,4.

Rapid progress in the development of single-cell RNA sequencing technologies has permitted the study of cell-
specific gene expression in a complex environment at single-cell resolution. It has been used to identify distinct 
molecular signatures of leukemia stem cells in chronic myeloid leukemia and to determine clonal heterogeneity 
in T-cell acute lymphoblastic leukemia5,6. Recently, single-cell analyses have provided novel insights into the 
non-hematopoietic stroma, in both non-leukemic murine bone marrow under steady state and stress condi-
tions, and in a MLL-AF9-driven AML model7,8. While our understanding of the BMM in myeloid malignancies 
has advanced markedly over the past decade, little is known regarding the role of the BMM in pre-B cell acute 
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lymphoblastic leukemia (B-ALL), the most common cancer in children. To further investigate, we used single-
cell RNA sequencing to characterize the kinetics of the murine BMM during B-ALL progression. We examined 
the molecular changes of immune cell populations and our results shed light on the complexity of intracellular 
communication networks and the alteration of hematopoietic lineage in the BMM during B-ALL progression.

Results
To explore the dynamic changes of the BMM during leukemia progression, we profiled hematopoietic cells from 
an immunocompetent BCR-ABL1+ B-ALL model9 by droplet-based single-cell RNA sequencing and examined 
changes in gene expression and intercellular communication over time. In this model, 1000 BCR-ABL1+ cells 
were transplanted into each non-irradiated recipient, thus avoiding irradiation-induced changes to the micro-
environment. Leukemia cells homed to bone marrow and spleen, and mice developed BCR-ABL1+ leukemia 
within 3 weeks. Leukemia cells remained at a low level of < 1% for 10 days, followed by rapid expansion in bone 
marrow and spleen, and slightly later in blood9.

Cell types in the bone marrow microenvironment.  Clustering of the samples with Seurat (Supple-
mentary Fig. 1), followed by cell type classification with SingleR revealed 17 distinct cell type clusters (Supple-
mentary Figs. 2 and 3). Depletion of most cell types occurred by day 12 of disease progression (Supplementary 
Fig. 3, Supplementary Table 1). Seurat cluster 7 (Supplementary Fig. 1) contained a mix of cell types, and cells in 
this cluster had a much lower number of expressed genes per cell compared to other clusters, so this cluster was 
excluded from further downstream analysis. We combined pro- and pre-B cells as these cell types substantially 
overlapped based on their expression profile (Supplementary Figs. 2, 3 and 4). The hematopoietic stem and pro-
genitor cells (HSPCs) identified with SingleR are designated as five stem cell populations, the short term repopu-
lating cells (STSL), multilineage progenitors (MLP), granulocyte–macrophage progenitors (GMP), monocyte-
dendritic precursors (MDP) and common dendritic precursors (CDP) (Supplementary Table 1). We combined 
STSL and MLP and thereafter refer to them as ST-HSC & MLP (Supplementary Table 2). We excluded early T 
cell precursors (ETP) from further analysis due to small numbers (Supplementary Table 1). Many of the cells 
annotated as common lymphoid progenitor (CLP) B cells and macrophages were in cluster 7 and after exclusion 
of this cluster there were too few cells from these cell types for analysis. Finally, we excluded cells with discord-
ant annotation (e.g. cells annotated as monocytes that were present in the neutrophil cluster; Supplementary 
Fig. 2) and this left too few CDP for further analysis. The final cell types and numbers for downstream analysis 
are shown in Fig. 1 and Supplementary Table 2.

To check the validity of the inferred cell types, we identified conserved marker genes for each cluster (Sup-
plementary Fig. 4). The genes that characterized the B cell cluster included those involved in activation of the 
immune response (Iglc2), and antigen processing and peptide presentation (H2-Aa, H2-Eb1) in B lymphocytes. 
Pro-B, pre-B and B cells expressed Cd79a and Ebf1, which are required for B cell differentiation, proliferation and 
signaling. Pro- and pre-B cells were marked by expression of Mzb1 and Vpreb3, which are involved in regulation 
of B cell proliferation and maturation. Dendritic cells were characterized by expression of Tcf4 which controls 
dendritic cell lineage specification10, Ccr9 which is involved in dendritic cell maturation11 and Siglech which is 
involved in mediation of the immune response12. Marker genes for monocytes included Fn1 and Ctss which are 
involved in monocyte differentiation13,14. Natural killer cells were characterized by expression of well-known 
marker genes Klrd1, Klrk1, Klre1 and Gzma15. Marker genes for HSPCs included Prtn3 and Lmo2 which regu-
late hematopoietic stem and progenitor cell proliferation16, Cdk6 which regulates hematopoietic and leukemic 
stem cell activation17, Cd34 which may be required for attachment to the bone marrow extracellular matrix and 
Ms4a3 which is involved in regulation of the cell cycle and known to be expressed in developing hematopoietic 
cells. T cells expressed known marker genes Cd3d and Trbc2. We conclude that in silico annotation of cell types 
with SingleR is accurate, as evidenced by expression of known marker genes, and these cell types will be used 
for subsequent downstream analysis.

Differential expression analysis by cell type during disease progression.  We compared expres-
sion of genes during disease progression to expression at day 0 (Fig. 2, Supplementary Tables 3–6). Dendritic 
cells, monocytes, neutrophils and GMP had more underexpressed than overexpressed genes at days 3, 6 and 9 
compared to day 0. This finding was validated by qRT-PCR of select genes in the neutrophil population, the most 
abundant white blood cell type in the bone marrow (Supplementary Fig. 5). Our results suggest a reduction in 
gene expression in response to disease progression.

In contrast to the aforementioned cell types, the largest change in the number of differentially expressed genes 
was for pro- and pre-B cells at day 3, where increased expression for 64 genes and decreased expression for 38 
genes was seen. This included reduced expression of a number of genes that are members of the activating protein 
1 (AP-1) transcription factor complex (Jund: logFC = − 1.38, p = 3.2 × 10–34; Fos: logFC = − 1.42, p = 3.5 × 10–19; 
Fosb: logFC = − 1.26, p = 7.7 × 10–13; Jun: logFC = − 0.85, p = 2.8 × 10–10; Junb: logFC = − 0.87, p = 0.006). The 
reduced expression across these genes was still evident when comparing both days 6 and 9 to day 0 for pro- and 
pre-B cells, although the magnitude of reduction (logFC) was smaller. We also saw a significant reduction in 
expression for most or all of these genes in dendritic cells, monocytes, neutrophils, GMP and MDP up to day 9 
of disease progression, however pro- and pre-B cells were the only cell type showing consistent decreased expres-
sion of all five genes over time. At day 12, many of the cell types were depleted due to advanced disease (Supple-
mentary Table 2) and consequently we only saw significantly reduced expression of Jun and Junb in neutrophils.

Two other genes that were differentially expressed in pro- and pre-B cells at day 3 are Cdkn2a (logFC = 0.68, 
p = 1.9 × 10–25) and Tmem119 (logFC = 0.59, p = 1.5 × 10–22). Both genes were not differentially expressed at the 
other time points, nor were they differentially expressed in any other cell type. Cdkn2a acts as a tumor suppressor 
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Figure 1.   Inferred cell type clusters used in downstream analyses. t-SNE dimensionality reduction plots show 
all samples (a) and individual samples at each time point (b). Cells were clustered using Seurat and annotated 
by SingleR. ST-HSC & MLP = short term repopulating cells and multilineage progenitors, GMP = granulocyte–
macrophage progenitors, MDP = monocyte-dendritic precursors.
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in ALL through regulation of the cell cycle18,19 and Tmem119 is involved in osteoblast differentiation20. Finally, 
a number of the differentially expressed genes for pro- and pre-B cells at day 3 were enriched for regulation by 
RNA binding protein NELFE and transcription factors MYC (Enrichr ENCODE and ChEA Consensus TFs from 
ChIP-X: NELFE p = 6.0 × 10–12; MYC p = 5.4 × 10–11) and BCL11A (Enrichr TF Perturbations Followed by Expres-
sion: p = 1.2 × 10–27). A large study of hepatocellular carcinoma21 found that disease progression was associated 
with oncogenic activation of NELFE which led to enhancement of MYC signaling and global transcriptomic 
imbalance. Deregulation of BCL11A has been associated with hematopoietic malignancies and AML22,23.

For GMP we found reduced expression of long non-coding RNA Neat1 at all time points except day 12 
(D3vsD0: logFC = − 0.73, p = 2.1 × 10–7; D6vsD0: logFC = − 0.66, p = 1.3 × 10–5; D9vsD0: logFC  = − 0.71, 
p = 2.4 × 10–10). Neat1 is highly expressed in hematopoietic stem and progenitor cells24 and has previously been 
described as a tumor suppressor in hematological malignancies25,26. In summary, we found that most cell types 
had reduced gene expression during disease progression, contrasting with pro- and pre-B cells which showed 
the strongest initial response to disease, with more overexpressed than underexpressed genes.

Intercellular communication networks of the BMM.  To understand how different cell types inter-
act during disease progression we constructed intercellular communication networks of known ligand/receptor 
pairs (Fig. 3). The edge widths on these networks allow us to visualize the strength of communication of each cell 
type and how this communication changes during disease progression. The most communicative cells on these 
networks that also showed the largest changes in communication during disease progression were monocytes 
and HSPCs. Monocytes showed increased communication with ST-HSC & MLP and MDP at all days compared 

Figure 2.   Number of differentially expressed genes by cell type and direction of change (↓ = underexpressed and 
↑ = overexpressed) during disease progression. Results are adjusted for multiple testing (Bonferroni correction) 
and genes have an absolute log fold change of at least 0.4. ST-HSC & MLP = short term repopulating cells and 
multilineage progenitors, GMP = granulocyte–macrophage progenitors, MDP = monocyte-dendritic precursors.
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Figure 3.   Intercellular communication networks of known ligand/receptor pairs. Edge widths correspond to 
the number of links between cell pairs or within the same cell type. A link is one-way directional and is defined 
when a cell type expresses the ligand and another cell type (or the same cell type) expresses the corresponding 
receptor. ST-HSC & MLP = short term repopulating cells and multilineage progenitors, GMP = granulocyte–
macrophage progenitors, MDP = monocyte-dendritic precursors.
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to day 0 (Supplementary Fig. 6). Ligands expressed by monocytes were primarily enriched for GO Biological 
Processes (GO-BP) associated with cell migration and positive regulation of phosphorylation at days 6 and 9 
(Supplementary Fig. 7). When considering receptors expressed by monocytes, we saw enrichment for GO-BP 
associated with inflammatory response at day 3 and reduced enrichment for genes involved in extracellular 
matrix organization, neutrophil-mediated immunity and cellular response to cytokine stimulus at all days com-
pared to day 0 (Supplementary Fig. 8).

For ST-HSC & MLP, increased communication with other cell types was most evident at day 6 (Supplementary 
Fig. 9). Enriched GO-BP for expressed ligands at day 6 was primarily for cytokine-mediated signaling pathways, 
though we also saw enrichment for positive regulation of cell migration and phosphorylation (Supplementary 
Fig. 10). Expressed receptors showed enrichment for GO-BP associated with regulation of apoptotic process and 
extracellular matrix organization at day 3 and reduced enrichment for genes involved in positive regulation of 
protein phosphorylation at all days compared to day 0 (Supplementary Fig. 11).

Increases in communication for GMP was primarily seen at days 3 and 6 (Supplementary Fig. 12). Similarly 
to ST-HSC & MLP, the primary enrichment for expressed ligands was for cytokine-mediated signaling pathways 
at day 6, and to a lesser extent we saw enrichment for positive regulation of cell migration, positive regulation 
of phosphorylation and platelet degranulation (Supplementary Fig. 13). When considering expressed receptors, 
increased enrichment for genes involved in extracellular matrix organization was seen at day 6 (Supplementary 
Fig. 14). There was also a marked difference when comparing enrichment of GO-BP at day 12 versus all other 
days. At day 12 there was decreased enrichment of a number of GO-BP, including amongst others, regulation 
of apoptotic process, leukocyte cell–cell adhesion, cell–matrix adhesion and regulation of B cell proliferation. 
Conversely there was increased enrichment of GO-BP associated with neutrophil-mediated immunity.

Finally, for MDP, communication increases were seen between most cell types at all days compared to day 0 
(Supplementary Fig. 15). For the expressed ligands increased enrichment for many GO-BP was evident, particu-
larly for days 3 and 12 compared to day 0 (Supplementary Fig. 16). These included processes such as cytokine-
mediated signaling pathway, regulation of cell migration, positive regulation of cell proliferation, positive regula-
tion of phosphorylation and neutrophil-mediated immunity. For the expressed receptors, the trend was also for 
increased enrichment of GO-BP at later time points in comparison to day 0 and these included amongst others, 
positive regulation of protein phosphorylation, neutrophil-mediated immunity, leukocyte cell–cell adhesion, 
integrin-mediated signaling pathway and receptor-mediated endocytosis (Supplementary Fig. 17).

RNA velocity analysis.  To better understand global transcriptional dynamics during disease progression 
we estimated RNA velocity (transcription rate) for each cell, which also allows inference of the future state of 
the cell (Fig. 4). For pro- and pre-B cells the strongest velocity was observed for a sub-population of cells at 
day 3 and this also aligned with our differential expression results where pro- and pre-B cells showed the most 
differentially expressed genes at day 3. From day 9 onwards velocity is markedly reduced, suggesting an initial 
response to the disease that is not sustained.

At day 0, GMP had high velocity and their inferred future state showed a continuous direction of movement 
(trajectory) from neutrophils through to MDP, both of which differentiate from GMP. This trajectory split from 
day 3 onwards into GMP that are clustered near neutrophils, and those that clustered near ST-HSC & MLP and 
MDP. Those that clustered near neutrophils had higher velocity than those that clustered near ST-HSC & MLP 
and MDP. Hence, we found evidence for disruption in global transcriptional dynamics commencing at day 3 of 
disease progression, particularly for GMP, due to individual cells exhibiting changes in velocity that affect their 
future state.

Enumeration of the bone marrow HSPC compartment during leukemia development.  Our 
single-cell data suggests that leukemia progression changes the molecular profiles of the hematopoietic cell 
populations in the bone marrow. While we have previously shown that B-ALL impairs hematopoiesis in bone 
marrow9, the changes in the HSPC compartment have not been explored. Thus, we enumerated subpopulations 
of HSPC in mice with low (< 1% at day 6) and high (> 40% at day 18) disease burden in the bone marrow (Sup-
plementary Fig. 18)27. We identified that mice with a high leukemia burden had a reduction of the lineage nega-
tive (lin−) population (Fig. 5a), suggesting that leukemia development significantly impairs the hematopoietic 
progenitors and stem cells. We observed a higher proportion of the LSK (lin−Sca1+cKit+) population and a lower 
proportion of myeloid progenitors within the lin− fraction (Fig. 5b). Furthermore, we found that expansion of 
the LSK compartment in mice with a high leukemia burden resulted in a significantly higher proportion of the 
HSC and multipotent progenitor (MPP) 2 populations (Fig. 5c,d). The observed increase of the MPP2 popula-
tion and corresponding drop in myeloid progenitors suggests that leukemia development impairs MPP2 to mye-
loid progenitor differentiation. In addition, we recorded a significantly lower proportion of the CMP, GMP and 
MEP populations but not CLPs in mice with a high leukemia burden (Fig. 5e). Finally, we enumerated mature 
hematopoietic cells in the peripheral blood to show that mice with a high leukemia burden showed reductions in 
red blood cell count, hemoglobin, hematocrit and platelet counts (Fig. 5f), recapitulating the clinical symptoms 
of anemia and thrombocytopenia in children diagnosed with B-ALL.

Discussion
The tumor microenvironment influences disease progression and response to therapy. Understanding the tumor 
microenvironment can lead to identification of novel therapeutic targets. Previous studies have shown that 
development of B-ALL alters immune cell constitution and the BMM9,28–30. In this study, we dissected responses 
of normal bone marrow immune cells during early stages of B-cell leukemia development at a single-cell level.
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Figure 4.   RNA velocity estimates for each cell type over time. Estimates (arrows) are plotted on a Uniform Manifold 
Approximation and Projection (UMAP) dimensionality reduction. The length of the arrows represents the transcription 
rate (velocity) and the direction of the arrows points to the inferred future state of the cell based on other cells present on the 
UMAP plot. Transparent points are those cells that were filtered out as described in “Results” (cell types in the bone marrow 
microenvironment). ST-HSC & MLP = short term repopulating cells and multilineage progenitors, GMP = granulocyte–
macrophage progenitors, MDP = monocyte-dendritic precursors.
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Figure 5.   B-ALL alters the HSPC compartment in the bone marrow of leukemia-bearing mice. (a) Percentage 
(left) and number (right) of lineage negative (lin−) cells. (b) Percentage of LSK cells and myeloid progenitors. (c) 
Percentage of HSCs. (d) Percentage of multipotent progenitors. (e) Percentage of CMPs, GMPs, MEPs and CLPs. 
(f) Red blood cell count, hemoglobin, hematocrit and platelet count in the peripheral blood of leukemia-bearing 
mice (n = 3–8). (a–e) n = 5–7. Throughout, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Error bars represent 
mean ± SEM.
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We found reduced expression of Jun, Junb, Jund, Fos and Fosb, all members of the AP-1 transcription factor 
complex, particularly for pro- and pre-B cells at day 3 of disease progression. AP-1 has been implicated across 
a wide range of cancers, where it has been reported to be both upregulated or downregulated31. This points to 
opposing roles of AP-1 depending on the cancer type, where increased expression leads to tumor development 
and reduced expression leads to loss of tumor suppression32. In AML, reduced expression of Junb and Jun was 
found to be associated with myeloid leukemogenesis through loss of regulation of differentiation, programmed 
cell death and cellular proliferation33. Given the reduced expression we see across these genes, it is likely that 
AP-1 is similarly acting as a suppressor in our disease model.

For pro- and pre-B cells we also found Cdkn2a and Tmem119 to be over expressed at day 3 of disease progres-
sion but not at other time points. In ALL Cdkn2a is a tumor suppressor involved in cell cycle regulation18,19, and 
in our disease model there was an acute response to the disease during the early stages of leukemia development, 
but this response was attenuated as the disease progressed. Tmem119 is involved in osteoblast differentiation20, 
and we have previously identified that the number of osteoblastic cells decreases during disease progression9. 
Similarly to Cdkn2a, it points to an initial response to the disease that is attenuated during disease progression.

Finally, differentially expressed genes for pro- and pre-B cells at day 3 were enriched for regulation by NELFE, 
MYC and BCL11A. Disease progression in hepatocellular carcinoma was found to be associated with global 
transcriptomic imbalance due to oncogenic activation of NELFE and enhanced MYC signaling21. BCL11A has 
been implicated in hematopoietic malignancies and AML22,23. Enrichment for these regulatory factors was only 
seen in pro- and pre-B cells at day 3, one of the first signs of induced changes in global transcription in this model.

GMP were found to have reduced expression of Neat1 at all time points of disease progression other than 
day 12. Loss of Neat1 has been shown to induce global transcriptome changes that enable transformation and 
cancer initiation in oncogene-expressing fibroblasts34. In hematological malignancies, Neat1 has previously been 
described as a tumor suppressor, with reduced expression associated with multidrug resistance in leukemia and 
impairment of myeloid differentiation in acute promyelocytic leukemia25,26. Our data suggests that Neat1 also 
exerts a suppressor function in GMP, although further investigations are required to identify the global effects 
it may induce.

Intercellular communication networks revealed that monocytes communicate mostly with ST-HSC & MLP 
and MDP which are monocyte precursor cells. The strong communication between monocytes and MDPs may 
occur because MDPs give rise to monocytes and the development of leukemia enhances the communication 
between these cells35. Expression of ligands at days 6 and 9 were associated with cell migration and regulation 
of phosphorylation, whereas expression of receptors were associated with extracellular matrix organization, 
neutrophil-mediated immunity and cellular response to cytokine stimulus at days 3, 6, 9 and 12. Furthermore, 
we observed enrichment for GO-BP associated with an inflammatory response in monocytes. Our data supports 
a recent finding that monocytes are involved in B-ALL development, possibly in response to leukemia-induced 
inflammation in the bone marrow30. For all HSPCs, expression of ligands was associated with enrichment of 
cytokine-mediated signaling, cell migration and regulation of phosphorylation, though MDP were the only type 
showing consistent enrichment of these processes at all time points compared to day 0. Enriched processes for 
receptors expressed by GMP were different at day 12 when compared to all other time points, with decreased 
activity evident for processes such as apoptosis, cell adhesion and B cell proliferation, but increased involvement 
was seen for neutrophil-mediated immunity. MDP were the most communicative during disease progression 
with changes across many GO-BP for both ligands and receptors. Overall, our results support the notion that 
the leukemia BMM can alter the activities of HSPCs36.

Velocity analysis showed changes in GMP from day 3 onwards, where instead of the continuous direction of 
movement (trajectory) observed at day 0 from neutrophils through to MDP, we observe a disjointed trajectory 
with GMP grouping with either neutrophils or other HSPCs. This may explain our observations at day 12 in the 
intercellular communication networks, where we saw an increase in expressed receptors involved in neutrophil-
mediated immunity and a decrease in expressed receptors involved in other stem cell like processes such as 
regulation of apoptotic process and cell–matrix adhesion. This points to GMP remaining responsive to signals 
from neutrophils during disease progression, but becoming non-responsive to signals from other cell types. This 
could also be linked to the reduced expression of Neat1 that we observed in our differential expression analysis.

Consistent with our previous results9, we observed a lower proportion of B cells and a higher proportion 
of neutrophils, the most abundant myeloid cells, during leukemia development. However, key lineage specific 
transcription factors (PU.1, GATA-1, IKAROS, PAX5) were not differentially expressed in HSPCs, suggesting 
that the immunocompetent leukemia microenvironment may contribute to deregulation of hematopoiesis. It 
is also possible that single-cell transcriptomics was not able to detect changes in expression of these transcrip-
tion factors due to complex dynamics that are better captured with targeted assays37. We further explored the 
HSPC compartment in our in vivo model. While HSPC suppression has been observed in mice with myeloid 
malignancy38,39, our results display skewing of the LSK compartment in B-ALL. Furthermore, we observed a 
significant decrease of myeloid progenitors during the late stages of leukemia development and a reduction of 
MEPs, contributing to the clinical features of anemia and thrombocytopenia that occur during leukemogenesis.

In recent years, emerging evidence supports the concept of leukemia-induced BMM remodeling in myeloid 
malignancies. We are now also beginning to see this concept evolve in lymphoid malignancies. Additional 
research to translate the immunophenotypic features of the leukemia microenvironment into therapeutic targets 
remains imperative. Taken together, our results expand the understanding of the complexity of the immune 
context and the network of molecular interactions within the bone marrow during B-ALL progression.
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Methods
Mice and single‑cell preparation and sequencing.  Eight-week old C57BL/6J mice were purchased 
from the Animal Research Centre, Perth. Animals were housed under pathogen-free conditions and all studies 
were approved by the Animal Ethics Committee, Telethon Kids Institute, Perth. Using our previously described 
non-irradiated immunocompetent BCR-ABL1+ B-ALL mouse model, marrow plugs were flushed from femurs 
and tibias9. These long bones were crushed and incubated with 337.5 U/mL collagenase (Worthington Bio-
chemical Corp., Lakewood, NJ, USA) and 40 U/mL DNase I (Sigma-Aldrich, Sydney, NSW, Australia) at 37 °C 
for 60 min in a shaking water bath. The digested marrow cells and the cells from marrow plugs were pooled 
together. Bone marrow cells were treated with red blood cell lysis buffer. Cell suspensions were counted using a 
Countess II FL Automated Cell Counter (Thermo Fisher Scientific, Waltham, MA, USA). For single-cell RNA 
sequencing experiments, five mice were transplanted with 1000 BCR-ABL1+ B-ALL cells via tail vein injection. 
One mouse was euthanized immediately post-transplantation (Day 0, D0). The remaining animals were eutha-
nized 3 (D3), 6 (D6), 9 (D9), and 12 (D12) days post-transplantation. A BD LSRFortessa X-20 (BD Biosciences, 
Franklin Lakes, NJ, USA) was used to measure the percentage of leukemia cells in the bone marrow (D0 = 0%, 
D3 < 0.01%, D6 < 0.01%, D9 = 0.017%, D12 = 4.6%). 10 × 106 cells were cryopreserved in 1 mL of freezing solution 
(90% fetal calf serum + 10% dimethyl sulfoxide) and the frozen samples were sent to BGI Genomics (Shenzhen, 
Guangdong, China) for single cell sequencing using the 10× Genomics platform (San Francisco, CA, USA). All 
experiments were performed in accordance with relevant guidelines and regulations.

Pre‑processing, alignment and clustering of single‑cell RNA‑Seq samples.  Raw sequencing data 
was processed using the 10× Genomics Cell Ranger pipeline (version 2.1.1) and we set the expected number of 
recovered cells to 6000. BAM files and Cell Ranger processed data are available at the Gene Expression Omnibus 
repository under accession number GSE148115. We used DropletUtils40,41 to infer empty droplets for exclusion 
for each sample. This method compares each barcodes distribution of counts to the distribution of ambient RNA 
(i.e. droplets with no cell that may contain small amounts of RNA). If the barcode has a significantly different 
distribution to the ambient RNA (using Benjamini-Hochberg42 corrected p-values < 0.01) it is deemed to be a 
cell-containing droplet. We used scater43 to calculate quality control metrics for each sample and removed cells 
with a high proportion of reads mapping to the mitochondrial genome (mean absolute deviation > 3). After 
filtering we obtained 6079 cells for sample D0; 4405 for sample D3; 5137 for sample D6; 6561 for sample D9 and 
4378 for D12.

Filtered data was loaded into Seurat version 2.3.444 and we excluded genes detected in less than 3 cells or 
with counts of zero across all cells. After filtering there were 14,230 genes for sample D0; 14,454 for sample D3; 
14,674 for sample D6; 14,780 for sample D9 and 13,237 for sample D12. We normalized each sample using the 
NormalizeData() function and implemented the global-scaling log-normalization method with a scale 
factor of 10,000. The data was scaled using the ScaleData() function and we regressed out the effects of the 
number of detected molecules per cell and the percentage of reads mapping to the mitochondrial genome. We 
determined the top 1000 highly variable genes for each sample using the FindVariableGenes() function 
and removed those that were not found in at least two samples. To identify common sources of variation across 
our samples we used the RunMultiCCA() function to perform canonical correlation analysis on the highly 
variable genes. We used the MetageneBicorPlot() function to investigate how many canonical correlation 
vectors were required to explain the structure in our data and chose vectors 1 to 20. The samples were aligned 
across the canonical correlation vectors using the AlignSubspace() function which applies dynamic time 
warping. The RunTSNE() function was used to perform t-distributed Stochastic Neighbor Embedding (t-SNE) 
dimensionality reduction. Clusters were determined using the FindClusters() function which imple-
ments a shared nearest neighbor modularity optimization based clustering algorithm45 and we set the resolution 
parameter to 0.6.

Cell type classification.  SingleR46 was used to annotate cells with cell type. Cell types are inferred by corre-
lating the gene expression profile of each cell to reference transcriptome datasets of pure cell types. We used ref-
erence data generated by the Immunological Genome Project (ImmGen)47, which profiled 830 samples of mouse 
immune cells using microarrays. Basophils, endothelial cells, eosinophils and macrophages were excluded from 
further analysis because very few cells (less than 5 per sample) were annotated with these cell types. Although 
the bones were subjected to enzymatic digestion, there were not enough CD45− stromal cells detected for fur-
ther analysis. To check the biological validity of these annotations we used the Seurat FindConserved-
Markers() function to find highly expressed marker genes for each cell type cluster. This function performs 
pairwise differential expression analysis (using the Wilcoxon rank sum test) of each cell type versus all other 
cell types and combines the resulting p-values using meta-analysis methods. For this analysis we required (1) at 
least five cells per cell type group, (2) at least 75% of the cells in either group to express the gene, (3) a minimum 
50% difference in the percentage of cells expressing the genes between the groups and (4) a minimum two-fold 
increase in expression. We omitted day 12 from the analysis because many cell types are severely depleted at this 
time point due to disease progression.

Differential expression analysis.  We performed differential expression analysis for each cell type using 
the Seurat SubsetData() function to subset the data by cell type and input this cell-type-specific expres-
sion to the FindMarkers() function where the Wilcoxon rank sum test was used to test for differences in 
expression at days 3, 6, 9 and 12 compared to day 0. For this analysis we required (1) at least five cells per time 
point, (2) at least 10% of the cells at either time point to express the genes and (3) an expression fold change of 
at least 1.5. We used Bonferroni adjusted p-values to determine significantly differentially expressed genes and 
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present natural log fold changes (logFC) in the results. For comparisons where there were at least 20 differentially 
expressed genes, we performed functional gene set enrichment analysis using Enrichr48,49 and we used Benja-
mini–Hochberg corrected p-values when determining significance.

Intercellular communication networks.  Networks were constructed using the approach of Skelly et al.50 
In particular, we used Table S3 from the publication as our set of 2009 mouse ligand-receptor pairs which were 
adapted from the human set of ligand-receptor pairs51. Similarly to Skelly et al., we required 20% of the cells of 
each type to express the ligand or receptor for inclusion in our analysis. Intercellular communication networks 
were constructed by counting links between pairs of cells. A link is formed where a ligand is expressed in one 
cell type and the corresponding receptor is expressed in another cell type. The R igraph package52 was used to 
plot the networks where the edge width corresponds to the number of links. We determined enrichment of GO 
Biological Processes 2018 (GO-BP) for all of the expressed ligands and receptors for each cell type at each time 
point using Enrichr, and significance was determined using Benjamini–Hochberg corrected p-values. We plot-
ted significance of GO-BP using the aheatmap() function from the R NMF package53.

RNA velocity.  We used velocyto54 to estimate the transcription rate and future transcriptional state of cells. 
This method uses the frequency of unspliced introns to estimate the transcription rate (velocity) of cells. Tran-
scripts with unspliced introns are likely to be recently transcribed, as the presence of introns points to the mol-
ecule being a pre-mRNA, rather than a fully processed mRNA. RNA velocity is determined using an inferred 
steady state model of transcription for each gene, where velocity is the difference between the observed ratio of 
unspliced to spliced Unique Molecular Identifiers (UMIs) and the expected ratio under the model. For each cell, 
consideration of velocities across all genes allows estimation of the transcriptional rate and the predicted future 
state of the cell (typically a few hours into the future). The prebuilt mouse genome annotation file (mm10, ver-
sion 3.0.0) was downloaded from Cell Ranger (https​://suppo​rt.10xge​nomic​s.com/singl​e-cell-gene-expre​ssion​/
softw​are/pipel​ines/lates​t/advan​ced/refer​ences​). Repetitive elements were masked using the mm10 GTF annota-
tion file available on the UCSC genome browser (downloaded 30th October 2019). Velocyto was run on the 
Cell Ranger filtered feature-barcode matrices for each time point using the run10x command and specifying 
the aforementioned genome and repetitive elements annotation files. Output files were read into Seurat using 
the ReadVelocity() function from the SeuratWrappers package (https​://githu​b.com/satij​alab/seura​t-wrapp​
ers). The data was normalized using the SCTransform() function and principal component analysis was per-
formed with the runPCA() function. Clusters of cells were identified by constructing a shared nearest neighbor 
graph using the FindNeighbors() function based on the first 20 principal components, followed by use of 
the FindClusters() function which implements a shared nearest neighbor modularity optimization based 
clustering algorithm45. Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction 
was performed using the RunUMAP() function on the first 20 principal components. Estimates of velocity were 
calculated using the RunVelocity() function from the SeuratWrappers package, using 25 nearest neighbors 
for slope calculation smoothing and the top 2% quantiles of expression for the gamma fit. Velocity estimates 
were visualized on the UMAP dimensionality reduction with the show.velocity.on.embedding.
cor() function from the veloctyo.R package (https​://githu​b.com/veloc​yto-team/veloc​yto.R), using a square 
root velocity scale with a neighborhood size of 100 and 40 grid points on each axis, with a minimal cell mass of 
15 around each grid point.

Quantitative reverse transcription polymerase chain reaction (qRT‑PCR) expression analy‑
sis.  Total RNA was extracted from neutrophils using a RNeasy Mini kit with RNase-free DNase I (Qiagen, 
Hilden, Germany). cDNA was synthesized using SuperScript VILO Master Mix (Thermo Fisher Scientific, 
Waltham, MA, USA). Quantitative PCR was performed on an ABI 7900HT thermocycler using Taqman Gene 
Expression Assays (Thermo Fisher Scientific, Waltham, MA, USA) for mouse Atf3 (Mm00476033_m1), Klf2 
(Mm00500486_g1), H3f3b (Mm00787223_s1), Fos (Mm00487425_m1) and Gapdh (Mm99999915_g1). Relative 
expression was calculated using the ΔΔCT method normalized to Gapdh levels for each individual sample (n = 4 
mice per time point) measured in duplicate.

Flow cytometry and cell sorting (FACS).  All FACS studies were performed using single-cell suspen-
sions, and cells were stained using standard protocols. Bone marrow cells were treated with red blood cell lysis 
buffer. Cell suspensions were counted using a Countess II FL Automated Cell Counter (Thermo Fisher Scientific, 
Waltham, MA, USA). Flow cytometry was performed on a BD LSRFortessa X-20 and FACS on a BD FACSAria 
III cell sorter. BD Horizon Fixable Viability Stain 700 (BD Biosciences, Franklin Lakes, NJ, USA) was used 
for exclusion of dead cells. To enumerate subpopulations of hematopoietic stem and progenitor cells (HSPCs) 
including hematopoietic stem cells (HSCs), short-term HSCs (ST-HSCs), multipotent progenitor (MPP) 2, 
MPP3, MPP4, common myeloid progenitors (CMPs), granulocyte–macrophage progenitors (GMPs), megakar-
yocyte-erythroid progenitors (MEPs) and common lymphoid progenitors (CLPs)27,55,56, bone marrow cells were 
stained with biotinylated rat anti-lineage (B220, CD2, CD3, CD4, CD5, CD8a, CD19, Gr-1, Ter119) antibodies 
followed by streptavidin-PE as well as anti-mouse CD34-FITC, CD48-BV421, CD150-BV711, CD16/32-PerCP-
Cy5.5, IL7Rα-PE-Cy7, Flk2-APC, cKit-APC-H7 and Sca1-BV510 antibodies. The mCherry+ leukemia cells were 
excluded from analysis. For purification of neutrophils, anti-mouse CD11b-BV605 and Ly6G-APC-Cy7 anti-
bodies were used. The gating strategy for subpopulations of HSPCs is shown in Supplementary Fig. 18.

Peripheral blood cell analysis.  Approximately 50 μL of blood was collected from each mouse via car-
diac puncture and stored in BD Microtainer blood collection tubes (BD Biosciences, Franklin Lakes, NJ, USA). 

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references
https://github.com/satijalab/seurat-wrappers
https://github.com/satijalab/seurat-wrappers
https://github.com/velocyto-team/velocyto.R
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Blood cell counts were performed using a Mindray BC-5000Vet Auto Hematology Analyzer (Mindray, Shenz-
hen, Guangdong, China).
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