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Abstract: Despite the availability of a variety of antifungal drugs, opportunistic fungal infections
still remain life-threatening for immunocompromised patients, such as those undergoing allogeneic
hematopoietic cell transplantation or solid organ transplantation. Suboptimal efficacy, toxicity,
development of resistant variants and recurrent episodes are limitations associated with current
antifungal drug therapy. Adjunctive immunotherapies reinforcing the host defense against fungi and
aiding in clearance of opportunistic pathogens are continuously gaining ground in this battle. Here,
we review alternative approaches for the management of fungal infections going beyond the state of
the art and placing an emphasis on fungus-specific T cell immunotherapy. Harnessing the power of
T cells in the form of adoptive immunotherapy represents the strenuous protagonist of the current
immunotherapeutic approaches towards combating invasive fungal infections. The progress that has
been made over the last years in this field and remaining challenges as well, will be discussed.

Keywords: fungal infections; fungus-specific T cells; T cell immunotherapy

1. Introduction

Fungal infections, either superficial or invasive, may affect both the immunocom-
petent and immunocompromised individuals. For vulnerable patients with underlying
disease, invasive fungal infections (IFIs) represent a major cause of morbidity and mor-
tality worldwide, resulting in nearly 1.5 to 2 million deaths per year [1,2]. Neutropenia,
allogeneic hematopoietic cell transplantation (allo-HCT), solid organ transplantation (SOT),
acquired or inherited immunodeficiencies and prolonged corticosteroid administration are
the major predisposing factors for IFI [3], most frequently caused by Candida, Aspergillus, or
Cryptococcus genera [4]. Despite the recent significant advances in antifungal pharmacother-
apy, mortality rates associated with IFIs remain high, especially in immunocompromised
patients, mainly due to delayed recognition and diagnosis of infection. Importantly, spe-
cific restrictions apply to antifungal drugs, associated with bioavailability to target tissues,
toxicity, treatment failure, route of administration, activity spectrum, drug interactions and
the most alarming, drug resistance [2]. Therefore, the development of effective and mini-
mally toxic, alternative antifungal therapies overcoming the well-recognized limitations of
conventional drug treatment, is a major unmet need.

In this review, we discuss therapeutic approaches beyond what is currently thought
as the gold standard for the management of fungal infections (Figure 1), focusing on the
progress and challenges of T cell immunotherapy against invasive fungal diseases.
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Figure 1. Standard and alternative therapeutic approaches for the management of invasive fungal infections. 
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In addition, antifungal drug resistance is more and more frequently now recognized 
and multi-drug resistant fungi, such as Candida auris, have risen spontaneously over the 
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Figure 1. Standard and alternative therapeutic approaches for the management of invasive fungal infections.

2. Treatment of Invasive Fungal Infections: The Unmet Clinical Need

The number of patients at risk for invasive fungal infections is continuously increasing
as a result of the emerging medical innovations and the use of immunomodulatory agents.
In contrast, the rate of development of new antifungal drugs is inversely correlated to
clinical demands; in fact, only one new class of antifungal drugs has been developed in the
last 30 years (echinocandins). A fundamental challenge in anti-fungal drug development is
the evolutionary relationship with conserved important biochemical and biological features,
between humans and fungi and because of this, toxicity against yeast will be also directed
to humans. Reasonably, the three classes of antifungal drugs (azoles, echinocandins and
polyenes) target structures unique to fungi.

In addition, antifungal drug resistance is more and more frequently now recognized
and multi-drug resistant fungi, such as Candida auris, have risen spontaneously over the
globe. Candida auris is a recently recognized yeast with high transmissibility, multi-drug
resistance and adverse outcomes, causing invasive infections and outbreaks in health care
facilities and intensive care units [5].

Given the above, the development of novel, alternative antifungal approaches that will
overcome current limitations and meet therapeutic needs, becomes imperative in patients
with compromised immunity.

3. Strategies to Reinforce the Host Defense against Fungi

Antifungal drugs often fail to eradicate the infection, mainly in immunocompromised
individuals. Immunomodulators, including cytokines, monoclonal antibodies and recently
check-point inhibitors, enhance the impaired host defense and are used as an adjunctive
immune therapy for invasive fungal diseases.
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3.1. Recombinant Cytokines

Cytokines are key players in controlling the homeostasis of the immune system and
commercially available recombinant cytokines have exerted a potential adjunctive role to
conventional antifungal therapy.

3.1.1. Colony-Stimulating Factors (CSFs)

Neutrophil defects or chemotherapy-induced neutropenia are the main risk factors
for the development of fungal infections. CSFs are a host-directed and non-specific therapy
stimulating the production, maturation and activation of neutrophils, thus enhancing the
host defense against a variety of pathogens. Three types of recombinant human CSFs
are available: Granulocyte CSF (G-CSF), granulocyte macrophage CSF (GM-CSF), and
macrophage CSF (M-CSF). Among CFCs, G-CSF is the most widely used and well-tolerated
CFC, used adjunctly to restore neutrophil counts after myelosuppressive chemotherapy.
G-CSF is a European Medicines Agency (EMA)- and United States Food and Drug Ad-
ministration (FDA)-approved growth factor, stimulating the growth and differentiation
of hematopoietic progenitor cells to neutrophils and enhancing phagocytosis and neu-
trophils’ antifungal activity in vitro and in experimental mouse models [6–9]. In clinical
settings, G-CSF when used alongside with antifungal agents as an adjunctive treatment,
resulted in faster neutrophil recovery and decreased risk of fungal infections in neu-
tropenic individuals following intensive chemotherapy or bone marrow transplantation
for hematological malignancies [10,11]. In the setting of immunodeficiencies, G-CSF alone
or in combination with antifungal agents was highly effective against Candida infection
and relapsing Candida meningoencephalitis in two patients with CARD9 immunodefi-
ciency [12,13]. By a meta-analysis of 14 randomized controlled trials addressing the role of
CSFs in chemotherapy-induced febrile neutropenia involving 1,553 participants, Mhaskar
et al., reported that the use of CSFs (G-CSF or GM-CSF), resulted in faster neutrophil and
fever recovery in those patients, although it did not improve overall mortality, including
fungus–related mortality [14]. Prophylactic treatment of 206 allogenic HCT recipients with
G-CSF, GM-CSF, or both in a phase IV randomized clinical trial comparing the effect of
each of the CFCs or their combination, although showed no difference in the invasive
fungal disease incidence, it resulted in significantly lower fungus-related mortality in the
GM-CSF and G-CSF+GM-CSF groups as compared to G-CSF-alone group (1.47%, 1.45%,
and 11.59%, respectively, p = 0.016) [15].

3.1.2. Interferon-Gamma (IFN-γ)

IFN-γ, which is produced predominantly by NK cells and T lymphocytes, promotes
the production of reactive oxygen species and reactive nitrogen intermediates and enhances
phagocytosis by activating macrophages [16,17]. There are plenty of case reports and case
series demonstrating that the adjunctive use of IFN-γ to boost antifungal immunity can
provide therapeutic benefit against invasive mycoses [18], especially in patients with
congenital or acquired immunodeficiencies, including Signal Transducer and Activator of
Transcription 3 (STAT3)-deficiency or HIV infection [19,20], in whom the impaired immune
responses predispose to fungal infections [21]. Notwithstanding the promising results
from case series and two phase II trials with the use of IFN-g treatment, either alone or in
combination with standard antifungal treatment [19,22], larger randomized clinical trials
are needed to further validate its beneficial effect.

3.2. Antibodies

Monoclonal antibodies targeting fungal components, such as cell wall glycoproteins,
and other surface molecules, such as heat shock proteins (HSPs), could offer passive pro-
tection against fungi. Anti-HSP90 (efungumab) and anti-β-glucan antibody (2G8 or 18B7)
are two examples of monoclonal antibodies that have been evaluated as immunotherapy
of fungal infections in clinical trials.
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Efungumab is a single-chain variable fragment of a human monoclonal antibody
that “grabs” onto fungal HSP90. In a randomized, blinded, multicenter trial, the use of
lipid-associated amphotericin B in combination with Efungumab significantly improved
the clinical outcome for patients with invasive candidiasis when compared with the am-
photericin B monotherapy cohort [23]. Nevertheless, in November 2006, Europe’s Commit-
tee for Medicinal Products for Human Use (CHMP) refused marketing authorization of
Efungumab, raising major concerns on the product quality and safety [24]. Those concerns
included the lack of a suitable method to control aggregation in the drug substance and
the high levels of E. coli host cell protein in the final product that could potentially be im-
munogenic in vivo. Additional safety concerns included the induction of cytokine release
syndrome (CRS) and hypertension, which in March 2007 following re-examination, were
removed by CHMP, considered manageable in clinical practice [24].

The monoclonal anti-β-glucan antibody 2G8 has shown protection against Candida
albicans, Aspergillus fumigatus and Cryptococcus neoformans in vitro and in experimental
mouse models [25,26]. Interestingly, the administration of 2G8 has proven safe in human
immunodeficiency virus-infected patients with cryptococcal meningitis, while at high
doses, it transiently reduced serum antigen levels (glucuronoxylomannan) [27]. Further
clinical development of this monoclonal antibody was interrupted due to a lack of industrial
support [28].

An alternative antibody-mediated protection against fungi is radioimmunotherapy,
which is a combination of radiation and immunotherapy. Here, antifungal antibodies
are linked to radioisotopes to specifically deliver cytocidal radiation to target sites [29],
thus radioimmunotherapy offers several advantages over the standard antifungal therapy,
including (i) cytocidal function, (ii) invulnerability to drug resistance mechanisms, (iii) its
independence of the immune status of a host and of drug-drug interactions, and (iv) its
potential to provide benefit by a single dose or a limited number of doses for the treatment
of fungal diseases [29,30]; taken together, it seems to have the potential to overcome the
limitations of currently available antifungal agents.

3.3. Checkpoint Inhibitors

Immune checkpoint inhibitors (ICIs) are novel modulators of immune homeostasis,
targeting inhibitory receptors [e.g., programmed cell death protein 1 (PD-1), cytotoxic
T lymphocyte antigen 4 (CTLA-4)] and ligands (PD-L1) expressed on T lymphocytes,
antigen-presenting cells and tumor cells and aiming to stimulate immune cells to elicit
an anti-tumor response. Despite being a paramount achievement in cancer treatment,
ICIs claim also a place in antifungal treatment by reversing the hyporesponsiveness of
innate and adaptive immunity during IFI [31]. In particular, the blockade of the negative
co-stimulatory molecules, PD-1 and CTLA-4, improved survival in mouse models of
primary and secondary fungal sepsis [32]. In a clinical setting, the administration of IFN-γ
in combination with anti-PD-1 antibody resulted in an impressive clinical response in a
patient with life-threatening mucormycosis, unresponsive to conventional therapy [33].
Targeting inhibitory immune checkpoints appears thus promising for the treatment of
fungal infections in an era of increasing antifungal resistance.

3.4. Transfer of Innate Immune Cells to Control Fungal Infections

Neutropenia is a well-established risk factor for IFIs, especially aspergillosis and
mucormycosis. Consequently, several studies focused on enhancing innate immunity by
transfusion of granulocytes, NK cells or dendritic cells.

3.4.1. Granulocyte Transfusion (GTX)

Neutrophils belong to the first line of defense and are necessary for direct fungal killing,
while the risk of developing IFIs is inversely related to the number of circulating neutrophils.
Theoretically, GTX, which includes transfusions of high numbers of neutrophils from a
healthy ABO matched donor to a neutropenic patient who is at high risk of developing
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IFI, would increase a patient’s neutrophils and enhance the host’s defense against fungi,
however, there is no solid evidence on GTX efficacy as a treatment of life-threatening
fungal infections. By summarizing the existing evidence on GTX in IFIs from individual
case reports, case series, matched cohort studies and clinical trials, West et al. concluded
that while there is limited evidence that GTX may reduce the incidence of fungaemia, it
does not prevent mortality [34]. Given the GTX-associated risks for the recipients, such as
febrile transfusion reactions, pulmonary complications, platelet and leucocyte transfusion
refractoriness due to induced alloimmunization, and increased risk of infection with
intracellular pathogens, such as CMV, GTX is not recommended as anti-fungal prophylaxis
for all neutropenic patients. However, it may have a role in preventing the progression
of existing, severe fungal infections in salvageable patients with anticipated recovery
of neutropenia, such as patients post-HCT. Therefore, it is wise and safer, the treating
physicians to weigh the risks and benefits and proceed with GTX on a case-by-case basis,
at least until large, multicenter randomized clinical trials shed light on the role of GTX as
treatment of fungal infections in neutropenic recipients.

3.4.2. Natural Killer and Dendritic Cell Therapy

NK cells, after direct interaction with the pathogen, are activated and exert antifungal
activity through the secretion of soluble factors such as perforin and granzyme. Primary
NK cells or NK cell lines such as NK-92 exhibited considerable in vitro antifungal activity
against medically important fungi, such as Aspergillus, Candida, mucormycetes, and Fusar-
ium [35,36] Recent technical advances allowing for successful expansion of activated NK
cells have resulted in reduction of fungal burden in a pulmonary aspergillosis immuno-
compromised mouse model [37], therefore indicating the translational potential of NK cells
as an immunotherapeutic option of IFI, which, however, requires clinical verification.

Dendritic cells (DCs) are a key part of the immune system acting as a bridge between
innate and adaptive immunity by capturing pathogens, presenting them to T cells and
controlling the polarization of the latter via expression of costimulatory molecules and
cytokine secretion. To date, adoptive transfer of Aspergillus conidia-pulsed DCs or conidial
RNA-transfected DCs induced antifungal Th1 priming and protected post HCT mice from
invasive aspergillosis [38]. However, the jury is still out on whether DC vaccination will be
effective in patients suffering from IFIs.

4. Harnessing T Cells to Control Fungal Infections

T cell immunotherapy has emerged as a promising approach for the treatment of fun-
gal infections in severely immunocompromised patients, such as those undergoing HCT.

In contrast to the early recovery of innate immunity in the first weeks to months
after HCT, the reconstitution of adaptive immunity, including fungus-specific T cells
(FSTs), can take up to a year [39,40], depriving patients for a long period of time from
the natural, infection-fighting army of T cells. Indeed, circulating Aspergillus-specific T
cells were detected at a low frequency 9 to 12 months after transplantation, displaying
a non-protective, low IFN-γ/high interleukin-10 secretion phenotype [41]. Based on the
premise that upon encountering a target antigen, pathogen-specific T cells undergo in vivo
expansion, the adoptive transfer of FSTs is expected to benefit the immunocompromised
patients to rapidly reconstitute their antifungal immunity and effectively tackle emerging
fungal threats. The strategy of transferring antigen-specific T cells after allogeneic HCT
is well established as prophylaxis and treatment of viral infections; the administration
of virus-specific T cells (VSTs), across multiple centers and clinical trials worldwide, has
safely and effectively controlled viral infections caused by a broad spectrum of viruses
such as cytomegalovirus (CMV), Epstein–Barr virus (EBV), adenovirus, human herpes
virus 6 (HHV-6) and polyomavirus type I (BK virus—BKV) or type II (JC virus) [42–58].

Although FSTs have been shown to increase the resistance against Aspergillus fumigatus
infection or prolong the survival of mice with invasive pulmonary mycosis [59–61], as of
today, and in contrast to the numerous VST trials, there are only two completed, clinical
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trials of adoptive T cell immunotherapy against fungal diseases [41,62]. In the first study,
conducted 16 years ago, Perrucio et al. showed that the administration of anti-Aspergillus
T cell clones was safe, enhanced the control of Aspergillus antigenemia and improved the
survival of transplanted patients with invasive aspergillosis as compared to the control
cohort not receiving immunotherapy (survived patients 9/10 vs. 7/13, respectively).
Since then, only recently, Gottlieb’s group evaluated the safety and biological efficacy
of administering mobilized donor peripheral blood-derived specific T cells with activity
against Aspergillus, CMV, adenovirus, EBV, varicella-zoster virus (VZV), influenza, and
BKV, as prophylaxis of fungal and viral reactivation and/or disease following allogeneic
HCT [62]. Grade III/IV graft-versus-host disease (GvHD) was developed in 4/11 patients,
however, the early prophylactic administration (median 37 days post-HCT) of multi-
pathogen-specific T cells (mp-STs) did not allow the dissociation of the GvHD risk that
could be derived from the mp-STs from the GvHD risk originating from the transplant
procedure per se, which is expected to be high anyway, early post-transplant. In terms of
their efficacy as fungal prophylaxis in particular, none of the enrolled patients including
4 and 2 patients who had positive PCR for Aspergillus post HCT and prior to T cell transfer,
respectively, required antifungal treatment for invasive fungal infection [62]. An ongoing
clinical trial (EudraCT #2013-002914-11) at the Universitätsklinikum Würzburg with highly
awaited results, assesses the efficacy of adoptive immunotherapy with donor-derived
anti-Aspergillus T cells in HCT recipients with probable or proven invasive aspergillosis.

It is thus clear that, despite the early promising clinical results with Aspergillus-specific
T cells, their use as adoptive immunotherapy for mold infections lags far behind the clinical
experience with VST adoptive T cell therapy. The main reasons for the delay in moving
this approach to the bedside was the complex, lengthy, labor-intense and costly procedures
of manufacturing FSTs [63]. Several groups have now developed good manufacturing
practice (GMP)-compliant and less sophisticated methods resulting in significant progress
of clinical-grade/scale FST manufacturing [63,64]. Such manufacturing strategies involve
T lymphocyte harvest from donor’s blood and subsequently, the isolation of activated T
cells after stimulation with the appropriate target-antigens or ex vivo expansion of the
endogenous antigen-specific T cells or genetic modification of T cells towards re-directing
their specificity via a chimeric antigen receptor (CAR) (Figure 2). Table 1 summarizes the
preclinical and clinical studies on the production and administration of FSTs.
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Figure 2. Strategies for mono-fungus-, multi-fungus- or multi-pathogen-specific T cell manufacturing. A: PBMCs collected
from a healthy donor can be activated with fungal extracts or with overlapping peptide libraries of fungal and viral antigens
and directly be selected ex vivo with monoclonal antibody capture of cytokine-producing cells or antibodies binding to
activation antigens attached to magnetic beads. Selected cells can subsequently be expanded in culture. B: Alternatively,
FSTs or multi-pathogen-specific T cells can be expanded ex vivo upon stimulation with fungal extracts or with overlapping
peptide libraries of fungal and viral antigens. C: Finally, FSTs can be produced by genetically modifying T cells to
express a chimeric antigen receptor (CAR) that redirects their specificity to a desired antigen, e.g., Dectin-1 (D-CAR T
cells). FST: fungal-specific T cells; PBMCs: peripheral blood mononuclear cells; APCs: antigen-presenting cells; mAb:
monoclonal antibody.
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Table 1. Preclinical and clinical studies of the generation of fungus-specific T cells.

Targeted
Pathogen(s) Manufacturing Protocol Group Antigen

Competition Cross-Reactivity Clinically
Tested

Monofungus-
specific T cell

products

A. fumigatus Ex vivo expansion post stimulation of PBMCs
with A. fumigatus extract

Ramadan et al.,
2004 [65] n/a Not tested No

A. fumigatus Ex vivo expansion post stimulation of PBMCs
with A. fumigatus extract

Perrucio et al.,
2005 [41] n/a Not tested Yes

A. fumigatus IFN-γ selection post stimulation of PBMCs with
Aspergillus extract

Beck et al., 2006
[66] n/a

Against A. flavus, A. niger, and P.
chrysogenum-not against A. alternata and C.
albicans

No

C. albicans IFN-γ selection and ex vivo expansion post
stimulation of PBMCs with C. albicans extract

Tramsen et al.,
2007 [67] n/a Against C. tropicalis but not C. glabrata, P.

chrysogenum, A. alternata, and A. fumigatus No

A. fumigatus Ex vivo expansion post stimulation of PBMCs
with A. fumigatus Af16

Zhu et al., 2008
[68] n/a Not tested No

A. fumigatus IFN-γ selection and ex vivo expansion post
stimulation of WBC with A. fumigatus extract

Tramsen et al.,
2009 [69] n/a

Limited cross-reactivity against other
filamentous fungi (data not shown), but not
Candida species

No

A. fumigatus Ex vivo expansion post stimulation of PBMCs
with A. fumigatus lysate

Gaundar et al.,
2012 [70] n/a

Against A. niger and A. flavus, C. albicans, S.
apiospermum and Penicillium species—not
against A. terreus, C. glabrata, Fusarium
species and Mucor species

No

R. oryzae
CD154 selection, ex vivo expansion and IFN-γ
enrichment post stimulation of PBMCs with R.
oryzae cell extract

Schmidt et al.,
2012 [71] n/a

Against R. microsporus, R. pusillus,
M. circinelloides, A. fumigatus,
P. chrysogenum and C. albicans.
No response against A. flavus,
A. alternata and M. racemosus

No

A. fumigatus
CD137 selection and ex vivo expansion post
stimulation of PBMCs with Crf1 and catalase-1
(A. fumigatus)

Jolink et al., 2013
[72] n/a Not tested No

Aspergillus species
Dectin-1 CAR T cells specific for β-glucans and
bispecific T cells co-expressing Dectin-1-CAR
and CD19-CAR

Kumaresan et al.,
2014 [73] n/a Not tested No
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Table 1. Cont.

Targeted
Pathogen(s) Manufacturing Protocol Group Antigen

Competition Cross-Reactivity Clinically
Tested

A. fumigatus CD137 selection post stimulation of PBMCs with
A. fumigatus lysate

Bacher et al., 2015
[74] n/a Against other Aspergillus spp. and C.

albicans No

A. fumigatus
CD154 or CD137 selection and ex vivo expansion
post stimulation of PBMCs with fungal extract or
Crf1 and/or Pmp20 and/or Gel1

Stuehler et al.,
2015 [75] n/a

Against A. flavus, A. terreus, and A. niger, S.
apiospermum, S. prolificans, F. solani, R.
microsporus, L. corymbifera, and C. albicans

No

A. fumigatus or A.
flavus or A. terreus
or C. albicans or C.
krusei or F. solani
or F. oxysporum or
R. oryzae or L.
prolificans

Ex vivo expansion post stimulation of PBMCs
with fungal extract

Deo et al., 2016
[76] n/a

A terreus, F oxysporum and L prolificans T cell
cultures cross-reacted with one another and
against A. fumigatus, A. flavus and F. solani.
C. krusei T cell cultures cross-reacted against
C. albicans, or with Aspergillus and Fusarium
species. Cross-reactivity with R. oryzae was
observed in a subset of the T cell cultures

No

R. oryzae Ex vivo expansion post stimulation of PBMCs
with R. oryzae lysate

Castillo et al.,
2018 [77] n/a Against A. fumigatus No

A. fumigatus Ex vivo expansion post stimulation of PBMCs
with A. fumigatus lysate or Crf1, Gel1 and SHMT

Papadopoulou
et al., 2019 [78] n/a Against A. flavus, A. niger, F. solani, F.

oxysporum, C. tropicalis and C. albicans No

Multifungus
specific T cell

products

A. fumigatus, C.
albicans and R.
oryzae

IFN-γ selection and ex vivo expansion post
stimulation of PBMCs with fungal extract

Tramsen et al.,
2013 [79]

Lower numbers
of T cells

responding to
A. fumigatus were

detected in the
multifungus T

cell product

Against A. niger, P. chrysogenum, C.
tropicalis, M. circinelloides, R. pusillus, R.
microsporus and R. microsporus-oligosporus

No

A. terreus, C.
krusei and R.
oryzae

Ex vivo expansion ±TNF-α selection post
stimulation of PBMCs with fungal extract

Deo et al., 2016
[76] Not illustrated Against A. fumigatus, C. albicans, C. krusei

and Lomentospora, A. flavus and R. oryzae No

C. krusei and A.
terreus

CD137 selection and ex vivo expansion post
stimulation of PBMCs with fungal extract

Castellano-
Gonzalez et al.,

2020 [59]
Not illustrated

Higher cross-reactivity against A. fumigatus,
A. flavus, A. terreus, C. albicans and C. krusei
and lower against F. solani, F. oxysporum
and S. prolificans

No



J. Fungi 2021, 7, 451 10 of 23

Table 1. Cont.

Targeted
Pathogen(s) Manufacturing Protocol Group Antigen

Competition Cross-Reactivity Clinically
Tested

Multi-pathogen-
specific T cell

products

AdV, EBV, CMV,
C. albicans,
and/or A.
fumigatus or AdV,
EBV, C. albicans,
and A. fumigatus

CD154 selection and ex vivo expansion post
stimulation of PBMCs with hexon (AdV), LMP2
(EBV), pp65 (CMV), mannose protein 65 (MP65,
C. albicans) and Crf1 (A. fumigatus)

Khanna et al.,
2011 [80]

Notable decrease
in the frequencies

of antigen-
specific T cells

in the
multipathogen-
specific cultures
vs. single lines

Not tested No

EBV, CMV, BKV,
and A. fumigatus

Ex vivo expansion post stimulation of PBMCs
with IE1 and pp65 (CMV), EBNA1, LMP2 and
BZLF1 (EBV), Large T and VP1 (BKV) and Crf1,
Gel1 and SHMT (A. fumigatus)

Papadopoulou
et al., 2021 [81] No Cross-reactivity against C. albicans, C.

tropicalis, F. solani, F. oxysporum No

AdV, EBV, CMV,
BKV, VzV,
influenza and A.
fumigatus

Ex vivo expansion post stimulation of PBMCs
with pp65 (CMV), Hexon (AdV), EBNA1,
LMP2A and BZLF1 (EBV), Large T and VP1
(BKV), Vzv vaccine, Influenza vaccine and lysate
(A. fumigatus). Cultures from individually
stimulated products were combined and
restimulated for further expansion.

Gottllieb et al.,
2021 [62] n/a Not tested Yes

AdV, EBV, CMV,
BKV, and A.
fumigatus—
steroid
resistant

Ex vivo expansion post stimulation of PBMCs
with hexon and penton (AdV), IE1 and pp65
(CMV), EBNA1, LMP2 and BZLF1 (EBV), Large
T and VP1 (BKV) and Crf1, Gel1 and SHMT (A.
fumigatus) and genetical modification to
inactivate the glucocorticoid receptor

Koukoulias et al.,
2021 [82] No Cross-reactivity against A. flavus, A. niger, F.

solani, F. oxysporum No

AdV: adenovirus; A. alternata: Alternaria alternata; A. fumigatus: Aspergillus fumigatus; A. flavus: Aspergillus flavus; A. niger: Aspergillus niger; A. terreus: Aspergillus terreus; BKV: BK virus; C. albicans: Candida albicans;
C. glabrata: Candida glabrata; C. krusei: Candida krusei; C. tropicalis: Candida tropicalis; CAR: Chimeric antigen receptor; CMV: cytomegalovirus; EBV: Epstein Barr virus; F. solani: Fusarium solani; F. oxysporum:
Fusarium oxysporum; IFN-γ: Interferon-γ; L. corymbifera: Lichtheimia corymbifera; L. prolificans: Lomentospora prolificans; M. circinelloides: Mucor circinelloides; M. racemosus: Mucor racemosus; P. chrysogenum: Penicillium
chrysogenum; PBMCs: peripheral blood mononuclear cells; R. microsporus: Rhizopus microsporus; R. oryzae: Rhizopus oryzae; R. pusillus: Rhizomucor pusillus; S. apiospermum: Scedosporium apiospermum; S. prolificans:
Scedosporium prolificans; TNF-α: tumor necrosis factor-α; Vzv: Varicella zoster.
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4.1. Adoptive Immunotherapy with FSTs: The Pros

The recent successes in FST manufacturing paved the way towards clinical application.
FST immunotherapy can at least theoretically be superior over the conventional treatment
approaches in the battle against fungi (Table 2), for various reasons, mainly associated with
the characteristics and potentialities of FSTs.

Table 2. Advantages and considerations of adoptive immunotherapy with FSTs.

Pros Cons

High specificity and potential efficacy Selection of the appropriate antigenic target

Broad coverage against multiple pathogens Antigenic competition

Long-lasting immunity with graft
donor-derived FSTs “Off-target” or/and “on-target” toxicity

Immediate availability as an off-the-shelf
therapy

No long-term persistence of anti-fungus
immunity with third-party, off-the shelf FSTs

Triggering of epitope spreading Sustainability of the clinical benefit?

4.1.1. High Specificity and Potential Efficacy

Unlike the conventional, universal interventions, adoptive immunotherapy involving
antigen-specific T cells is a targeted and personalized approach, aiming to eliminate a
particular pathogen or multiple pathogens and control the infection on a per patient basis.
VSTs have documented target-specific, effective control of active viral reactivations and/or
diseases post allo-HCT [83–85], irrespective of full (graft donor-derived) or partial (third-
party donor-derived) HLA-matching between the VST products and patients. In particular,
persistent and/or drug-refractory infections/diseases from multiple viruses [86–88] and
EBV-associated posttransplant lymphoproliferative disorders (PTLD) [89,90], or de novo
EBV lymphomas [45,91–93] were successfully eliminated after VST infusion.

Despite the paucity of clinical data, FSTs, either non-engineered or genetically en-
gineered, have been characterized by strong in vitro specificity against particular fungal
antigen(s) (Table 1). Although for the majority of the reported FST products, strong antifun-
gal activity in vitro is provided by the dominant Th1 cytokines IFN-γ or/and TNF-α, other
described FSTs additionally produce low to high levels of IL-17, yet an important factor in
antifungal immunity [94]. Given that Th17 cells are key players in the host defense against
fungal infections, especially at mucosal sites [95–97], it remains to be elucidated whether
the adoptive transfer of Th17- enriched FSTs will be more powerful against mucosal fungal
infections over those with low content in Th17 cells.

Nonetheless, similar to the well-documented efficacy of VSTs and as evidenced by
the few published clinical data with FSTs, mold-specific T cells are expected to also have
great potential to eradicate mold-infected cells, overcoming the limitations of non-specific
pharmacotherapy and the resistance to emerging mold variants.

4.1.2. Broad Protection against Multiple Pathogens

The susceptibility of immunocompromised patients to opportunistic infections by
a plethora of pathogens [98], makes them ideal candidates for a treatment providing
broad protection against multiple pathogens. The adoptive transfer of multi-targeting
antigen-specific T cells may serve as a therapeutic intervention for active infection(s) while
providing prophylaxis against other targeted pathogens, not responsible for the infection
at the time of cell administration.

The generation of a single T cell product targeting multiple viruses has been pioneered
by Leen et al., who initially produced a tri-valent specific product expanded in response
to viral challenge and targeting CMV, EBV and adenovirus [51]. This study laid the
groundwork for the generation of multi-VSTs with activity extending to VZV [99], BKV,
HHV-6 [53] or against respiratory viruses [100,101].
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Similarly, the potential of producing multi-FSTs against medically important molds
has also been investigated (Table 1). Tramsen et al. generated a memory, Th1 T cell line with
tri-fungal specificity against Candida albicans, Aspergillus fumigatus, and Rhizopus oryzae [79].
Likewise, Gottlieb’s group has proved the feasibility of generating multi-FSTs targeting
Aspergillus terreus, Candida krusei and Rhizopus oryzae [76] and recently Candida krusei
and Aspergillus terreus [59]. To further unleash the potential of adoptive immunotherapy,
Khanna et al. increased the range of targeting against 2–3 viruses and 1–2 fungi [80].
We have also recently shown the generation of GMP-compliant mp-STs simultaneously
targeting 3–4 viruses and Aspergillus fumigatus [81,82]. These T cell products emerge as a
powerful, one-time treatment for severely immunosuppressed patients who suffer from
multiple, simultaneous or sequential, life-threatening infections post-transplant.

A key feature of FSTs is their cross-reactivity to different fungi, other than those used
for their production. In fact, from the early efforts to develop highly functional Th1 cells
against Aspergillus fumigatus, Beck et al. advocated that T cells pulsed with a cellular
extract derived from Aspergillus fumigatus were also responsive against Aspergillus flavus,
Aspergillus niger and Penicillium chrysogenum upon cross-challenge [66]. Cross-protective
immunity has been previously reported for Candida and Aspergillus fumigatus [102,103],
and has been also observed in the context of pathogen-specific T cells across multiple
centers including ours; Aspergillus fumigatus-specific T cell products exerted broad anti-
fungal cross-immunity to clinical isolates of other Aspergillus species (niger, terreus, and
flavus), as well as various species of different fungal genera, such as Candida (albicans
and tropicalis), Scedosporium (apiospermum and prolificans), Fusarium (solani and oxysporum),
Rhizopus microspores, Lichtheimia corymbifera and Penicillium species (Table 1). Ex vivo
generated Rhizopus oryzae-specific T cells cross-reacted with either Aspergillus fumigatus or
Rhizopus (microsporus, pusillus), Mucor circinelloides, Penicillium chrysogenum and Candida
albicans [71,77]. Cross-protective immunity was also documented on multi-FSTs [59,76,79]
and mp-STs targeting 3 viruses and Aspergillus fumigatus [81,82]. These data suggest an
enhanced breadth of fungal recognition, however, whether the broad anti-fungal cross-
immunity observed in vitro can provide global fungal protection in vivo, remains to be
answered in clinical trials.

4.1.3. Long-Lasting Immunity

Allo-grafted patients are vulnerable to fungal infections even during the late post-
transplant period. The existing antifungal armamentarium fails to convey long-term
protection leaving those patients at risk for infection recurrence, after cessation of drug
therapy [104–106]. Longevity is a prominent characteristic of T cell immunity. Following
the expansion phase of an immune response, effector CD4+ and CD8+ T cells that survive
the contraction phase which usually coincides with the clearance of the antigen, slowly
convert into memory cells [107]. This reservoir of cell memory pools is homeostatically
maintained and capable of vigorous proliferation following antigen re-encounter, thus
acting as a safeguard against possible re-exposure to the same pathogen.

Following the initial report by Riddell et al. [108] revealing the requirement of CD4+
T cells for prolonged survival of adoptively transferred CD8+ T cells in vivo, many groups
developed polyclonal CD4+ and CD8+ T cell products. Heslop et al. showed that ex vivo
expanded, donor-derived, EBV-specific, polyclonal T cells, expressing an effector memory
phenotype, persisted for as long as 12.5 years post-infusion [49] and provided persistent
activity against viral reactivation with no evidence of monoclonal outgrowth. Other groups
also have demonstrated long-term presence of polyclonal, donor-derived, single- or multi-
virus-specific T cells after adoptive transfer [52,109] or stable remission over the years
of patients with refractory PTLD receiving EBV-specific T cells [110]. Notably, even in
third-party settings, off-the-shelf, partially HLA-matched VSTs persisted up to 12 weeks
following infusion, offering durable benefits [86,87], or provided up to 12 months control
of previously refractory CMV infections in the majority of treated patients [111]. Given
that FSTs share multiple phenotypic and functional characteristics with VSTs in vitro, it
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could be extrapolated that polyclonal, CD4+ and CD8+ FSTs displaying an effector and
central memory phenotype will propagate in vivo upon relevant challenge and successfully
eradicate the fungus, promoting a durable and long-lived immunological memory.

4.1.4. Off-the-Shelf Therapy

Recent efforts seem to be geared towards the use of off-the-shelf antigen-specific T
cells for adoptive immunotherapy. In this context, antigen-experienced cells have been
manufactured from healthy, previously exposed to the targeted antigens individuals,
immunophenotypically and functionally characterized, cryopreserved and banked to serve
as directly accessible, “on-demand” products for patients who share with the T cell product
at least one HLA through which the targeted pathogen is recognized.

Concerning safety, off-the-shelf antigen-specific T cells, have been associated with
strikingly low incidences of GvHD and CRS, by virtue of the narrow specificity of en-
dogenous TCRs or attenuated capacity after extended culture to recruit and/or activate
macrophages and inflammatory mediators. As regards efficacy, the best possible VST
product-recipient matching needs to be considered. In most cases, preference is given to
products with the highest HLA matching and mapped antiviral activity through shared
HLA antigens.

Infusions of banked, partially HLA-matched VSTs have led to considerable clinical
benefit in single or multicenter, phase I and II clinical studies [45,86,87,89,90,93]. There has
been no correlation between viral control and the degree of HLA matching (low 1–3 vs.
high 4–8 matching alleles) in the HCT context [86,87], even when the treated patient and the
VST product were matched only at a single HLA allele, should that allele was mediating
strong antiviral activity [86]. In the SOT context, response rates were reported higher as
HLA matching was increasing between the donor and the VSTs recipient [90].

The aforementioned studies with off-the-shelf VSTs suggest that multiple infusions
may be required due to transient T cell engraftment or no response in some cases; however,
a careful selection of T cell products on the basis of partial HLA matching with the recipient
and appropriate HLA restriction or switching to another T cell product specific for a
different epitope and presented by an alternate shared allele in non-responders, would
offer significant clinical benefit against pathogens. Currently, at least two companies,
Allovir and Atara Biotherapeutics, are in the process of commercializing such cell products.

Although this strategy has not been tested with FSTs, its adaptation as prophylaxis of
high-risk patients or treatment of invasive fungal infections seems promising. Whether
however, banked FST cells will have equivalent to VSTs activity against molds, remains to
be answered in clinical trials.

4.1.5. Triggering of Epitope Spreading

The risk of pathogen escape from T cell recognition after VST transfer is low [112,113]
and further minimized by simultaneous targeting of multiple epitopes and a plethora of
antigens for each targeted pathogen. Antigen-experienced T cells offer an added value in
the battle against opportunistic infections over other approaches, through the potential
induction of what is known as “epitope spreading”. Epitope spreading is a phenomenon
whereby a variety of endogenous T cells are activated, diversify and spread their specificity
against epitopes other than the ones primarily targeted, either of the same (intramolecular
spreading) or a different antigen (intermolecular spreading), thus reinforcing the immune
response [114]. Epitope spreading has been detected with both virus-specific and tumor-
specific T cells [115]. There are several reports where the infusion of VSTs in patients
with malignancies triggered this phenomenon and led to an increase in T cells specific for
tumor-associated antigens [115,116] or the infusion of tumor-specific T cells resulted in
complete metastatic tumor regression even when the targeted antigen (NY-ESO-1) was not
uniformly expressed by the patient’s tumor cells [117].

The potential of epitope spreading as a bystander effect induced by the adoptive
transfer of mold-specific T cells, along with their ability to cross-react with a broad spectrum
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of fungi, may contribute to the development of a compact and powerful T cell product,
providing long-term infection control, and the potential to tackle resistant fungal variants.

4.2. Adoptive Immunotherapy with FSTs: The Cons

FSTs stand as an attractive strategy against invasive fungal infections, however, certain
challenges need to be considered towards moving into the clinic (Table 2).

4.2.1. Selection of the Antigenic Target

The first challenge towards generating non-engineered FSTs is the selection of a proper
and GMP-compliant antigenic target. The use of heat-treated conidia or fungal extracts as
antigen source seems to be an ideal antigenic stimuli of T cells, as they contain a plethora
of antigens and epitopes which in turn can be targeted through a range of HLA types,
thus making feasible the generation of FSTs from all donors, irrespective of their HLA
alleles. Indeed, heat-treated conidia or lysate of Aspergillus Fumigatus were used for the
expansion of Aspergillus-specific T cells administered in both clinical trials of adoptive
immunotherapy with FSTs [41,62]. However, the variability in the quantity of antigens
contained in the fungal lysates, along with the potential inclusion of molecules involved in
immune evasion [118], makes the preparation of a GMP-compliant fungal lysate complex,
demanding and profitless, therefore limiting its commercial availability. GMP-grade
overlapping peptide pools from known immunogenic fungal antigens, such as Crf1, Gel1,
Pmp20, catalase-1 and SHMT proteins of Aspergillus or mp65 for Candida albicans, offer an
alternative source of antigens for the generation of FSTs for clinical use [72,75,81,82].

4.2.2. Antigenic Competition

Antigenic competition could be a limiting factor in the generation of multivalent
antigen-specific T cells. Antigenic competition has been documented in multi-VST products
most commonly when derived from CMV-positive donors where there is skewing to a
CMV-specific T cell response at the expense of T cell responses of other virus specificities.
Such preferential expansion of CMV-specific T cells may be related to the high frequency
of CMV-specific T-lymphocytes in peripheral blood of healthy seropositive donors, being
several hundred or thousand times higher when compared with circulating T cells of other
antigen specificities [119].

Multi-fungus or multi-pathogen-specific T cells may be subjected to antigenic com-
petition especially in the presence of CMV interference. Indeed, Tramsen et al. [79] and
Khanna et al. [80] observed a notable decrease in the frequencies of antigen-specific T cells
in multi-fungus/pathogen-specific cultures versus single-pathogen cell lines, probably
attributed to antigenic competition arising from shared antigen-bearing antigen-presenting
cells, as well as from the varying frequencies of subsets of antigen-specific Tcells in the start-
ing PBMCs [120,121]. To overcome antigenic competition, Gottlieb’s group has stimulated
individual cultures of viral- and fungal-specific T cells, which they subsequently combined
and expanded further after restimulation [62]. We have recently mitigated antigenic com-
petition showing rapid and GMP-compliant generation of a multi-pathogen-specific T cell
product as well as a CRISR/CAS9-edited glucocorticoid-resistant multi-pathogen-specific T
cell product simultaneously targeting up to 4 viruses and Aspergillus fumigatus, to overcome
pathogen-specific T cells’ susceptibility to steroids [81,82].

4.2.3. FSTs Outside the Allogeneic Transplantation Context?

While the utility of antigen-specific T cells has been established in the SOT and HCT
settings, there is a paucity of data outside the transplant setting. There has been a report on
the use of off-the-shelf, EBV-specific T cells in a group of non-transplanted patients with
immunosuppression-associated lymphoproliferative diseases who had failed conventional
treatments or were too frail to tolerate chemotherapy, showing 64% overall response
and 54% survival rates [122]. In addition, partially HLA-matched, BKV–specific T cells
administered for progressive multifocal leukoencephalopathy (PML) to a patient with
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acquired immunodeficiency syndrome resulted in a complete clearance of JC virus in the
cerebrospinal fluid and regaining of independent mobility [123]. Although limited, those
pilot studies set the scene for considering immunotherapy with FSTs in different settings.

Autologous FST immunotherapy could arise as an alternative to overcome the hurdle
of HLA matching. Autologous EBV- and CMV-specific T cells have successfully performed
in vivo post SOT [124,125]. However, unlike VSTs, T cells from patients with Paracoccid-
ioidomycosis or Candidemia were shown to express CTLA-4 or other T cell exhaustion
markers, respectively [126,127]. Likewise, we observed that autologous T cells derived
from patients with invasive aspergillosis, displayed an anergic phenotype that prohibited
sufficient ex vivo expansion of Aspergillus-specific T cells [78], thus suggesting that adoptive
immunotherapy with FSTs may not be feasible in the autologous setting due to failure to
proliferate upon antigen encounter and control the infection in vivo.

Another alternative to surmount the constraints of MHC restriction is the use of
engineered, mold-specific CAR T cells. A second-generation CAR that incorporates the
pattern-recognition ability of Dectin-1 to recognize β-glucans expressed on the cell wall
of fungi (D-CAR T cells) was designed to target Aspergillus fumigatus and infused D-
CAR T cells effectively reduced the fungal burden in an immunocompromised invasive
aspergillosis mouse model [73]. Despite the introduced innovation, limitations associated
with the potential complications of CAR T cells, should be seriously considered.

4.2.4. “Off-Target” or/and “On-Target Toxicity”

T cell transfer with FSTs derived from the graft source donor and especially a third-
party donor, could be associated with an increased risk of alloreactivity against recipient’s
cells as a manifestation of “off-target” toxicity, resulting in GvHD. Importantly, GvHD
has not been associated with VSTs administration so far, even when used in a third-party
setting [128–131], although it still remains as a possibility, should tissue upregulation of
HLA class II molecules in an inflammatory environment occurs, facilitating the presentation
of cross-reacting antigens to FSTs [132].

On the other hand, in the presence of high pathogen burden, there is a risk of “on-
target” toxicity attributed to an excessive immune response against the targeted pathogens,
such as CRS or immune reconstitution inflammatory syndrome (IRIS). CRS is a systemic
and potentially life-threatening inflammatory response frequently observed with CAR
T cell administration and its severity usually correlates with the anti-target potency of
the treatment [133]. IRIS occurs during the course of various invasive fungal diseases
in immunodeficient hosts at the time of reversal of immune deficiency, is triggered by
the recovery of immune cells and presented as CRS and excessive host inflammatory
response [134].

CRS is only rarely observed when unmodified antigen-specific T cells are admin-
istered [135,136], thus it is not anticipated to arise using non-engineered anti-fungal T
cells recognizing targets through their endogenous T cell receptor. On the contrary, in
the case of D-CAR T cells targeting fungi, CRS will be rather expected as an “on target”
toxicity, manageable although with IL6 blockade (tocilizumab). Nonetheless, even with the
unmodified anti-fungal T cells, neither CRS nor IRIS, could be ruled out.

Additionally, the otherwise advantage of FSTs to cross-react with other than the
targeted fungi thus broadening their targeting repertoire involves the “off-target” risk
of their activation by harmless commensal or symbionts, such as gut mycobiota. This
activation could potentially lead to ‘dysbiosis’ and an imbalance of immune homeostasis,
which may subsequently promote inflammation or drive pathogenesis [137–139]. Although
it has not yet been addressed if such CD4+ T cell activation is directly driving pathogenesis
or it is simply an epiphenomenon to preceding intestinal barrier disruption and a similar
“off-target” effect has not been reported after administration of Aspergillus-specific T
cells [41,62], activation of FSTs toward mycobiota cannot be excluded.
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4.2.5. Sustainability of the Clinical Benefit?

Another concern when using a “living drug” as a treatment strategy is to ensure that
this “drug” survives and remains functional in the recipient’s, often hostile, microenvi-
ronment. Since immunosuppressive compounds, such as cyclosporine, mycophenolic
acid and steroids, which are routinely used in SOT or HCT patients, impair optimal T
cell functionality [140–144], we have previously suggested that adoptive T cell therapy
in the transplantation context could exhibit its full potential when anti-GvHD prophy-
laxis is not required, such as in cases of T cell depleted HCT [63]. To allow transplanted
patients with opportunistic viral infections to enjoy the benefits of adoptive immunother-
apy, regardless of the intensity of immunosuppression, groups have recently genetically
modified VSTs to render them resistant to glucocorticoids [145–147]. In this setting, we
edited the glucocorticoid receptor (GR) and developed a powerful T cell product, called
“Cerberus” T cells, exhibiting multiple specificities against 4 viruses (adenovirus, CMV,
EBV and BKV) and Aspergillus Fumigatus, along with resistance to glucocorticoids [82].
The genetic modification, was highly on-target with very low or meaningless off-target
cutting while the generated GR-resistant mp-STs shared similar phenotypic and functional
characteristics to their unedited counterparts. In the unlikely case of induced alloreactivity,
the retained susceptibility to complement-mediated lysis by other immunosuppressants
(anti-thymocyte globulin), allows their elimination on demand [82]. Even under intense
immunosuppression, “Cerberus” T cells targeted 5 pathogens and also cross-reacted with
other Aspergillus genera (flavus and niger) and fungi species (Fusarium; Oxysporum and
Solani), suggesting strong potential if used as prophylaxis or treatment of fungal infections
in transplanted and highly immunocompromised patients. Finally, while the use of banked
T cell products constitutes a safe and attractive plan for the management of opportunis-
tic infections and diseases, its efficacy is limited by a shorter, approximately 12 weeks,
in vivo persistence as compared to graft donor-derived cells. A strategy to overcome the
inappropriate alloreactive T cell response eventually leading to rejection of partially-HLA
matched T cell products has recently been proposed by Mo et al. They engineered a
chimeric 4-1BB-specific alloimmune defense receptor (ADR) that enabled ADR-expressing
T cells to selectively target activated T and NK cells eliminating alloreactive lymphocytes
but spare their resting counterparts evading immune rejection [148]. This approach for
reduced recognition of therapeutic cells by the host’s cellular immunity could be adapted
for the generation of FSTs to overcome the limitations of short-term persistence or repeated
infusions of banked FSTs.

5. Conclusions

There is an increasing prevalence of IFIs in immunodeficient or transplanted patients
who are highly prone to fungal infections. As the outcomes of IFIs in these patients are
poor, the transfer and subsequent reconstitution of antifungal immunity might enable
overcoming the underlying deficiency causing the infection rather than simply suppress
the fungal growth by pharmacological agents. Advances in adoptive immunotherapy
with VSTs including simpler and rapid manufacturing, underscore a potential therapeutic
opportunity for FSTs in the prevention and treatment of IFIs. The results of the only
two reported up-to-date clinical studies with FSTs have been very promising, however
additional clinical trials are needed to provide solid evidence of mold-specific T cell safety
and efficacy. The availability of GMP-compliant and simple protocols for the generation of
clinical doses of T cells recognizing a single mold or a wide spectrum of viral and fungal
targets, their potentiality for broad anti-fungal coverage via cross-immunity, the successful
use of banked antigen-specific T cells on a best HLA-matched basis to treat viral infections,
and the recent development of tools to further reinforce FSTs by rendering them resistant
to immunosuppressive agents or fortifying them to avoid rejection, suggest that adoptive
immunotherapy with FSTs has a major role to play in improving the often dismal outcomes
of patients with IFIs.
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