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A B S T R A C T   

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and the leading cause of cancer- 
related deaths worldwide. Identification of gene biomarkers and their regulatory factors and signaling path-
ways is very essential to reveal the molecular mechanisms of NSCLC initiation and progression. Thus, the goal of 
this study is to identify gene biomarkers for NSCLC diagnosis and prognosis by using scRNA-seq data through 
bioinformatics techniques. scRNA-seq data were obtained from the GEO database to identify DEGs. A total of 158 
DEGs (including 48 upregulated and 110 downregulated) were detected after gene integration. Gene Ontology 
enrichment and KEGG pathway analysis of DEGs were performed by FunRich software. A PPI network of DEGs 
was then constructed using the STRING database and visualized by Cytoscape software. We identified 12 key 
genes (KGs) including MS4A1, CCL5, and GZMB, by using two topological methods based on the PPI networking 
results. The diagnostic, expression, and prognostic potentials of the identified 12 key genes were assessed using 
the receiver operating characteristics (ROC) curve and a web-based tool, SurvExpress. From the regulatory 
network analysis, we extracted the 7 key transcription factors (TFs) (FOXC1, YY1, CEBPB, TFAP2A, SREBF2, 
RELA, and GATA2), and 8 key miRNAs (hsa-miR-124-3p, hsa-miR-34a-5p, hsa-miR-21-5p, hsa-miR-155-5p, hsa- 
miR-449a, hsa-miR-24-3p, hsa-let-7b-5p, and hsa-miR-7-5p) associated with the KGs were evaluated. Functional 
enrichment and pathway analysis, survival analysis, ROC analysis, and regulatory network analysis highlighted 
crucial roles of the key genes. Our findings might play a significant role as candidate biomarkers in NSCLC 
diagnosis and prognosis.    
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LUSC Lung squamous cell carcinoma 
LUAD Lung adenocarcinoma 
GAPDH Glyceraldehyde-3 phosphate dehydrogenase 
t-SNE t-distributed stochastic neighbor embedding 
STRING Search Tool for the Retrieval of Interacting Genes 
AUC Area under curve 
logFC Log of Fold Change 
CI Confidence Interval 
SVM Support Vector Machine 
SCLC Small Cell Lung Cancer 

Introduction 

Cancer, a heterogeneous disease, poses a serious challenge for pre-
cise treatment at the individual level. Both bulk and single-cell RNA 
sequencing (scRNA-seq) technologies are used for studying transcrip-
tional profiles at the gene expression level. Several articles have iden-
tified biomarkers for NSCLC diagnosis using bulk RNAseq technology 
[1–5]. scRNA-sequencing categorizes the cell types across multiple tis-
sues, whereas bulk RNA sequencing involves the use of a tissue or cell 
population [6,7]. scRNA-seq is widely used to determine tumor het-
erogeneity, cellular identities, novel biomarkers, and molecular and 
functional strategies [8]. Several scRNA-seq based studies have been 
performed earlier to explore tumor heterogeneity and to identify novel 
biomarkers for different cancers [9–12]. 

Non-small cell lung cancer (NSCLC) is a highly heterogeneous lung 
cancer, accounting for approximately 85% of all the types of lung can-
cers, and it is strongly correlated with smoking habits [13,14]. NSCLC is 
mainly classified into two groups: lung squamous cell carcinoma (LUSC) 
and lung adenocarcinoma (LUAD). Most of the current treatment stra-
tegies for NSCLC are chemotherapies based on the histology and tar-
geted agents for patients [15,16]. Treatment outcomes of NSCLC are 
quite insufficient as the post-therapy relapse rate and drug resistance 
remains high, and the 5-year relative survival rate of the patients is 26% 
[17,18]. Further exploration into the underlying mechanisms of NSCLC 
is thus quite urgent, which will impact the discovery of novel diagnostics 
and provide effective & key targets for NSCLC. 

Expanding research recommends that affluent genes, miRNAs, TFs, 
and/or biological enriched pathways are associated with the develop-
ment and progression of cancers. The altered expression of miRNAs has a 
strong correlation with distinct disease and carcinoma [19]. 
Gene-miRNAs interactions have been generally exhibited to control the 
convoluted molecular systems’ basic oncogenesis, advancement, intru-
sion, and tumor metastasis [20]. Several studies have recently shown a 
link of miRNA in cancer development [21]. Some studies have high-
lighted the importance of miRNA expression in lung tissues [22]. The 
deregulation of miRNA might play a role in fatal NSCLC progression 
[23]. Thus, several studies have identified some important TFs and 
miRNAs as transcriptional and post-transcriptional factors for cancer 
through the regulatory interaction networks [24,25]. 

In the last decade, several biomarkers have been reported as prog-
nostic and predictive markers for NSCLC [2,26-30]. Song et al. identified 
STAT3,  EGFR, PTEN, KRAS, TP53, RHOA, CTNNB1, and VEGFA, as 
efficient targeted genes associated with six miRNAs (hsa-miR-21-5p, 
hsa-miR-31-5p, hsa-miR-708-5p, hsa-miR-30a-5p, hsa-miR-451a, and 
has-miR-126-3p) by expression analysis and miRNA-hub gene network 
for NSCLC [2]. Chen et al. discovered four genes viz. CDK1, PLK1, 
RAD51, and RFC4 as novel biomarkers using microarray gene expres-
sion profiles that might be potential therapeutic targets in NSCLC [26]. 
Valk et al. identified SPAG5, POLH, KIF23, RAD54L, SGCG, NLRC4, 
MMRN1, and SFTPD as the novel genes that are involved in multiple 
pathways leading to NSCLC [31]. Puzone et al. showed that the over-
expression of glyceraldehyde-3 phosphate dehydrogenase (GAPDH) 
correlates with poor prognosis in NSCLC patients [32]. These findings 
are important to understand NSCLC pathogenesis. 

Although much research has already been conducted to reveal the 

molecular mechanism of NSCLC progression, the heterogeneity and 
complexity of NSCLC still poses a great challenge and need for novel and 
effective biomarkers. Recently, scRNA-seq technology has been used to 
detect tumor heterogeneity and explore the gene expression pattern in 
tissues that can help the researcher to detect the novel biomarkers. Here, 
we utilized computational models for analyzing the scRNA-seq data to 
reveal the tumor heterogeneity of NSCLC tissues. We identified differ-
entially expressed genes (DEGs), their associated pathways, and PPI 
network to screen the key genes (KGs), key miRNAs, and key TFs for 
personalized diagnosis and prognosis of NSCLC and performed further 
analysis to validate the result. Thus, the identification of important 
genes, miRNAs, and TFs as well as the signaling pathways related to 
cancer via bioinformatics analysis, will provide worthy enlightenment 
in cancer research. 

Materials and methods 

scRNA-seq data collection and processing 

The publicly available scRNA-seq data (GSE127471, data collected 
from the peripheral blood of a patient with NSCLC by Newman and the 
team) were downloaded from the gene expression omnibus (GEO) 
database [33]. The data were sequenced on Illumina NextSeq 500 
(Human). Data processing was performed using the Seurat package 
V3.1.1 in R V3.6.1 [34]. For quality control check, we extracted genes 
with a minimum number of features 200 having non zero counts and a 
minimum number of cells as 3. The filtered data were normalized using 
log-transformation and was used for further analysis. We used two 
datasets associated with NSCLC from the GEO database with accession 
numbers GSE19188 and GSE75037 to assess the diagnostic performance 
of the identified KGs. 

Clustering and DEG identification 

For dimensionality reduction, we performed principal component 
analysis (PCA) on the scaled data. The t-distributed stochastic neighbor 
embedding (t-SNE) was used to demonstrate two-dimensional data by 
first 10 principal components. The cell cluster was identified using K- 
means clustering based on the original Louvain algorithm. We used the 
Seurat’s VlnPlot function to determine the expression of acquainted 
marker genes to assign clusters. Moreover, we constructed the trajectory 
analysis to reveal the tendency curve of the eight clusters using 
"Monocle" package [35]. The R package Seurat was used to analyze 
DEGs with scRNA-seq data. 

Functional enrichment and pathway analysis of DEGs 

We used a stand-alone software tool FunRich (version 3.1.4) for gene 
ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis of DEGs [36]. We considered the 
threshold P-value < 0.01 to obtain significant functional and pathway 
terms. KEGG and GO were used to annotate the enrichment analysis of 
bio-term classification processes and genes clusters as well as to impart a 
fantasy module for inference [37,38]. 

PPI network analysis of DEGs 

Protein-protein interactions (PPIs) networks facilitate the analysis of 
pathogenic mechanisms and disease progression by providing knowl-
edge on the molecular mechanism underlying cellular activity. In this 
study, we used the Search Tool for the Retrieval of Interacting Genes 
(STRING v11.0) database for constructing PPI network of DEGs [39]. 
Cytoscape (version 3.7.1) was used to discern the PPI networks between 
the DEGs [40]. We identify 12 KGs using two topological methods 
Betweenness and Stress in Cytoscape plugin cytoHubba [41]. 
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Survival analysis and expression level of KGs 

We used SurvExpress to check the impact of the expression pattern 
and survival analysis of KGs. SurvExpress (http://bioinformatica.mty. 
itesm.mx/SurvExpress) is an online tool for analyzing cancer gene 
expression data for the validation and survival analysis of multi-gene 
biomarkers [42]. Here we used it to verify and estimate the impact 
the expression pattern and prognostic value of KGs using the 
Kaplan-Meier curve and log-rank test. 

ROC analysis of the KGs 

Receiver operating characteristic (ROC) curve analysis was carried 
out to assess the true positive rate (Sensitivity) and false-positive rate 
(1− Specificity) of the identified KGs using the "pROC" package in R 
[43]. Area under curve (AUC) was determined and used to screen the 
ROC values. 

Regulatory interaction network analysis of KGs 

We constructed a regulatory interaction network (KGs-miRNAs and 
KGs-TFs) of 12 KGs using an online tool NetworkAnalyst 3.0 [44]. It is a 
bioinformatics tool that visualizes and deciphers the information in the 
association of network settings. This tool included three gene-miRNAs 
interaction databases TarBase [45], miRTarbase [46] and miRecords 
[47] and three gene-TFs interaction databases such as ENCODE [48], 
JASPAR [49], and ChEA [50]. We used TarBase and JASPAR databases 
for KGs-miRNAs and KGs-TFs interaction networks, respectively. 

Results 

Tumor heterogeneity and identification of DEGs 

The scRNA-seq technology provided a good transcriptional detailing 
of cancer cells and gene expression in NSCLC patients. The 1803 cells 
were adopted for advanced analysis. The 1803 cells were analyzed and 
then classified into 8 separate clusters based on the identical gene set. 
Every cluster was separated by identical gene set. To make the segre-
gation clearer among clusters, DEG analysis in cell types based on their 
covariance patterns and mean expression levels were evolved. We found 
that the identified marker gene sets were significant to ascertain cell 
types individually with high potentiality. Heatmap of the top ten genes 
showing high heterogeneity among clusters based on logFC has been 
illustrated in Fig. 1(A). The results of trajectory analysis showed the cells 
of only cluster1 may have a significant difference from other cells in 

NSCLC Fig. 1(B). We identified DEGs using the Wilcoxon rank sum test, 
based on the threshold adj.P.Val < 0.01 and logFC > 2 for up-regulated 
genes and adj.P.Val < 0.01 and logFC < -2 for down-regulated genes. A 
total of 158 DEGs, of which 48 were up-regulated and 110 down- 
regulated genes were identified. All DEGs (up- and down-regulated) 
are listed in Table 1. 

Functional enrichment and pathway analysis of DEGs 

For further investigation, the GO functional and KEGG pathway 
enrichment analyses associated with the DEGs was performed in Fun-
Rich software. The top GO (BP, CC, and MF) and KEGG enrichment 
functions/terms of DEGs are shown in Fig. 2. In BP, 47.3% genes were 
enriched with protein metabolism, 8.90% genes were enriched in im-
mune response, and 9.5% genes were enriched with cell growth and/or 
maintenance. In CC, 54.4% of genes were enriched in cytosol and 
cytoplasm; more than 40% of genes were enriched in exosomes, nucle-
olus, and ribosome; and approximately 30% of genes were enriched with 

Fig. 1. (A) The heatmap of the top 10 marker genes of each cluster where each row represents genes and column represents clusters. (B) Trajectory plot differentiated 
by eight clusters. 

Table 1 
Differentially expressed genes (DEGs) in NSCLC.  

Up-regulated DEGs Down-regulated DEGs 

TREML1, TAGLN2, LTB*, CCL5*, FTL, 
MNDA, LST1, SPARC, AIF1, ACRBP, 
AHSP, MS4A1*, CD79B, VCAN, ALAS2, 
CD74*, CST3, FCN1, PRF1, KLRB1, 
GZMB*, FGFBP2, TYROBP*, CMC1, 
CTSS, NRGN, RGS18, MYL9, HBD, CLU, 
TUBB1, SDPR, HIST1H2AC, S100A12, 
GNG11, CD79A, RP11-1143G9.4, CA1, 
LYZ, S100A9, S100A8, HBA2, GNLY, 
HBB, IGLL5, PF4, HBA1*, PPBP 

MALAT1, RPS29, RPL39, MT-ND3, 
RPS27, RPS28, RPL37, RPL34, RPS26, 
ACTB*, RPS21, RPL23A, RPL36, MT- 
ND2, PTMA, EEF1A1*, MT-CO1, 
RPL28, RPL41, RPL38, RPL26, 
TMSB4X, HLA-C, RPL10, TMSB10, 
RPLP2, MT-CO3, MT-ND4, MT-ND1, 
RPL3, RPS18*, RPL27A, HA2, S100A6, 
RPS2, RPL27, RPS25, RPL36A, MT- 
ATP6, RPS8, B2M, RPS15A, HLA-B, 
RPL17, RPS24, RPL23, RPLP1*, MT- 
CO2, RPS19, RPL13A, RPL35A, MT- 
CYB, RPSA, RPS23, RPS3, RPL35, 
RPS10, RPS16, RPS15, RPS6, VIM, 
RPL32, RPS13, RPL13, S100A4, RPS4X, 
RPL30, RPL31, NBEAL1, TXNIP, TPT1, 
HLA-A, FAU, RPS7, NEAT1, GAPDH*, 
RPS3A, RPSAP58, RPS9, RPL19, RPL12, 
RPL15, RPL9, RPL11, RPS14, RPL6, 
ACTG1, H3F3A, RPL7, RPL7A, 
GNB2L1, RPS20, RPL5, PFN1, RPL29, 
RPL18, NKG7, RPL24, RPL22, TOMM7, 
RPL14, PABPC1, BTG1, RPL21,CFL1, 
RPS11, SRGN, RPL10A, RPL18A, 
HNRNPA1 

N.B. Bold with star (*) indicates key genes (KGs). 
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cytosolic large ribosomal subunit, extracellular, lysosome, etc., where 
the MF enrichment was mainly correlated with structural constituent of 
ribosome, MHC class I receptor activity, MHC class II receptor activity, B 
cell receptor activity, and chemokine activity terms in Table S1. The 
enriched KEGG pathways for the DEGs included peptide chain elonga-
tion, eukaryotic translation elongation, eukaryotic translation termina-
tion, viral mRNA translation, 3′ -UTR-mediated translational regulation, 
and metabolism of proteins pathways, which are associated with lung 
cancer development (Table S2). 

PPI network of DEGs 

Based on the online tool STRING, a total of 158 DEGs were used in 
the PPI network, involving 156 nodes and 3282 edges with an average 
node degree 42.2 and PPI enrichment P-value < 1.0e-16 (Fig. 3). The top 
15 genes were selected using each of the two network scoring methods 
Betweeness and Stress in Cytoscape plugin, cytoHubba. We then 
extracted 12 common genes from the top 15 genes of the two methods 
and considered them as KGs, such as MS4A1, CCL5, GZMB, HBA1, 
TYROBP, CD74, LTB, EEF1A1, RPLP1, RPS18, GAPDH, and ACTB, as 
shown in Table 2. In addition, we assessed the significance of the 12 KGs 
through survival analysis, cancer prediction model, and regulatory 
interaction network analysis. 

Survival analysis and expression level of KGs 

The prognostic value of the identified KGs was evaluated by fitting 
Cox-proportional hazards regression model between high-risk and low 
risk group patients in Fig. 4(A), where red indicates high-risk group 
patients and green indicates low-risk group patients. We observed that 
the overall survival probability for the high-risk group compared to the 

low-risk group decreased over time based on the expression level of KGs 
(Hazard Ratio = 1.85 at 1.36-2.53 Confidence Interval (CI), and the log- 
Rank p-Value = 9.766e-05) This indicates that the proposed KGs have a 
strong prognostic power for NSCLC. The expression patterns of the KGs 
by the risk group are shown in the boxplot in Fig. 4(B). The overall re-
sults showed that the KGs displayed a significant prognostic perfor-
mance for NSCLC that support our original results. 

Performance measure of the identified KGs using ROC analysis 

A supervised machine learning algorithm SVM classifier was 
considered to develop a Cancer Prediction Model for 12 KGs. We 
developed the cancer prediction model through the ROC curve for the 
training dataset with access number GSE19188 (red) and for the test 
dataset with access number GSE75037 (green) in Fig. 5. We observed 
that the AUC values range from 0.64 to 0.99 for the training dataset and 
0.63 to 0.97 for the test dataset, which indicate the good prediction 
performance. 

KGs-miRNAs and KGs-TFs interaction network analysis 

To identify the key miRNAs associated with KGs, we constructed the 
interaction network between the KGs and miRNAs. We uploaded the 
official symbol in the gene list of human lung tissue and select the 
TarBase database in NetworkAnalyst to identify miRNAs that targeted 
the KGs (Fig. 6(A)). On the basis of degree score >= 4, we selected 8 key 
miRNAs (hsa-miR-124-3p, hsa-miR-34a-5p, hsa-miR-21-5p, hsa-miR- 
155-5p, hsa-miR-449a, hsa-miR-24-3p, hsa-let-7b-5p, and hsa-miR-7- 
5p) as post-transcriptional regulatory factors of KGs. From the litera-
ture review, we found that these miRNAs have a close relationship with 
drug resistance of lung cancer, basically NSCLC [51]. Similarly, the 

Fig. 2. Top GO and KEGG terms enriched by DEGs ((A) Biological processes, (B) Cellular components, (C) Molecular functions, and (D) Kyoto encyclopedia of genes 
and genome (KEGG)). 
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interaction network of KGs and TFs was constructed from the JASPAR 
database in NetworkAnalyst. Seven TFs (FOXC1, YY1, CEBPB, TFAP2A, 
SREBF2, RELA, and GATA2) with degree >= 4 were selected as tran-
scriptional regulatory factors of KGs (Fig. 6(B)). Key miRNAs and TFs 
with their degree scores are listed in Table 3. 

Discussion 

NSCLC is a disease with a very high concern and is life-threatening 
for humans. Due to the heterogeneity of NSCLC, its treatment is very 
challenging. Hence, it will be helpful if NSCLC is managed by targeted 
treatment; however, patients with NSCLC have a lower prognosis. 
Hence, the identification of novel biomarkers based on the heteroge-
neity and the scRNA-seq data are one of the key tasks to improve the 
personalized and targeted medicine of NSCLC in the future. 

In this study, we analyzed scRNA-seq data from the tumor tissue of 
peripheral blood of NSCLC patients to bioinformatically explore the 
cellular heterogeneity, DEGs, associated biological pathways, PPI 
network, key genes, miRNAs and TFs. The 1803 cells were classified into 
8 explicit clusters while each cluster was mixed up with variant numbers 

Fig. 3. Protein-protein interaction (PPI) network of DEGs. The green and yellow colors indicate up- and down-regulated genes respectively. The key genes (KGs) are 
highlighted in diamond shape. 

Table 2 
The summary of the key genes (KGs) identified from the Cytoscape in NSCLC.  

S. 
N 

Betweenness Stress Key Genes  

Name Score Name Score MS4A1, CCL5, GZMB, 
HBA1, TYROBP, CD74, LTB, 
EEF1A1, RPLP1, RPS18, 
GAPDH, ACTB 

1 GAPDH 6144.813 GAPDH 146026 
2 MS4A1 2329.161 MS4A1 43470 
3 CCL5 1094.994 CCL5 23206 
4 ACTB 1056.283 HBA1 22566 
5 GZMB 830.074 CD74 20158 
6 HBA1 663.953 GZMB 20044 
7 TYROBP 662.6554 ACTB 17804 
8 CD74 634.4065 LTB 14866 
9 HBA2 551.3868 TYROBP 12728 
10 EEF1A1 474.6351 EEF1A1 11602 
11 HBB 462.9838 RPS18 11596 
12 RPS3 433.276 RPLP1 10574 
13 RPLP1 407.0451 RPL13A 10386 
14 LTB 399.4331 PPBP 10344 
15 RPS18 378.9975 RPL19 10194  
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of cells. By comparing gene expression profiles, a total 158 DEGs con-
taining 48 up- and 110 down-regulated genes were found. To infer the 
biological functions and pathways associated with NSCLC, GO and 
KEGG pathway enrichment analyses were performed. We identified 12 
KGs (MS4A1, CCL5, GZMB, HBA1, TYROBP, CD74, LTB, EEF1A1, RPLP1, 
RPS18, GAPDH, and ACTB) based on the two methods of Betweenness 
and Stress using PPI network results, and the expression pattern and 

survival analysis of KGs were affirmed on the basis of the TCGA data. 
Using the TarBase and JASPAR databases in NetworkAnalyst, we iden-
tified 8 key miRNAs (hsa-miR-124-3p, hsa-miR-34a-5p, hsa-miR-21-5p, 
hsa-miR-155-5p, hsa-miR-449a, hsa-miR-24-3p, hsa-let-7b-5p, hsa-miR- 
7-5p) and 7 key TFs (FOXC1, YY1, CEBPB, TFAP2A, SREBF2, RELA, 
GATA2). 

All the identified 12 KGs have been supported by different studies for 

Fig. 4. (A) Kaplan-Meier plot displaying the prognostic effect of the KGs on NSCLC. (B) Boxplot displaying the expression pattern of KGs between risk groups. Red 
indicates high-risk group and green indicates low-risk group. 

Fig. 5. ROC curve evaluating the diagnostic performance of the KGs in NSCLC. Red color indicates GSE75037 dataset and green color indicates GSE19188.  
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lung and other cancers. The deregulation of MS4A1 in lung squamous 
cell cancers might occur because of the expression of CD20 stromal 
lymphocytes [52]. Another study showed MS4A1 as a prognostic 
biomarker for LUAD [53]. hsa-miR-147a can inhibit the outgrowth and 
metastasis of NSCLC by aiming the CCL5 gene [54]. It has been found 
that GZMB is significantly associated with poor prognosis in SCLC [55]. 
Over expression of HBA1 showed low overall survival in non-smoker 
female lung cancer patients [56]. YAP1 promotes multidrug resistance 
of SCLC through signaling pathways associated with CD74 [57]. LTB-4 
participates in the recruitment of neutrophils in the airways at NSCLC 
[58]. ACTB, EEF1A1, and RPS18 are reported to be relevant genes for 
qRT-PCR analysis of lung cancer also EEF1A1 is responsible for lung 
cancer development in smokers [59–61]. Aberrant methylation and high 
expression of GAPDH are associated with poor prognosis in LUAD pa-
tients [62]. TYROBP is a novel key gene with prognostic value in gastric 
cancer by integrated network analysis [63]. The gene biomarker RPLP1 
is an anti-metastasis candidate therapeutic target with poor prognosis in 
triple-negative breast cancer [64]. To our knowledge TYROBP and 
RPLP1 are not yet been reported for lung cancer progression. Hence, we 
can say that these two genes (TYROBP and RPLP1) are novel with good 
prognostic value in our study for NSCLC. 

Furthermore, hsa-miR-124-3p is reported as a tumor suppressor and 
inhibits the progression of several tumors, including NSCLC [65–67]. 
hsa-miR-34a-5p resists the brainstem glioma cell invasion [68]. 
hsa-miR-21-5p is one of the most important prognostic biomarkers for 
NSCLC [69]. hsa-miR-155-5p, hsa-miR-24-3p, and hsa-let-7a-5p were 
reported to be up-regulated in LUAD tissues [70]. hsa-miR-449a is re-
ported as a genetic risk factor for gastric cancer [71]. hsa-miR-7-5p is a 

prognostic biomarker for small cell lung cancer [72]. Among the iden-
tified TFs, FOXC1 is one of the pioneer TF and plays an important role in 
the development of lung, breast, and prostate cancer [73]. The expres-
sion of FOXC1 is increased in NSCLC tissues, and it has an adverse 
relationship with survival [74]. TFAP2C is contributed to NSCLC 
tumorigenesis by downregulating numerous tumor silencers such as 
GADD45B, PMAIP1, and XAF1 [75]. 

The GO functional enrichment and KEGG pathway analysis revealed 
that the KGs are related to Protein metabolism, MHC class I receptor 
activity, B cell receptor activity, viral mRNA Translation, 3′ -UTR- 
mediated translational regulation etc. pathways. Most of the DEGs 
(47.3%) have enriched with protein metabolism (associated with KGs: 
EEF1A1, RPS18, RPLP1, and GZMB) term, and several studies have 
further claimed that NSCLC-causing genes are enriched in protein 
metabolism term [76,77]. The prognostic effect of the KGs with TCGA 
datasets in LUAD showed the worst survival rate which indicates that 
these KGs might be the prognostic biomarkers in LUAD. The differential 
expression stated the discriminating power of the KGs. Finally, the 
diagnostic effects of KGs were assessed by ROC analysis. The AUC values 
in ROC analysis indicated a comparatively good prediction performance 
of the KGs in NSCLC patients with higher sensitivity and specificity. 
Therefore, our overall analysis will provide valuable insights into NSCLC 
progression, KGs, key miRNAs, key TFs might be a novel diagnostic and 
prognostic biomarkers as well as potential regulators for the progres-
sion, diagnosis, and prognosis of NSCLC. In this study, we predicted the 
results through computational analysis; hence, we cannot recommend 
for treatment directly. We emphasize for further assessed at the mo-
lecular level by the wet-lab experiments in prior to clinical investigation. 

Conclusion 

The scRNA-seq data of peripheral blood cell allows the identification 
of distinct cell types and provides a new perspective on the pathogenesis 
of NSCLC. On the viewpoint of clustering analysis, we conclude that 
NSCLC is heterogeneous in numerous aspects. Through bioinformatics 
analysis, we identified 12 KGs (MS4A1, CCL5, GZMB, HBA1, TYROBP, 
CD74, LTB, EEF1A1, RPLP1, RPS18, GAPDH, and ACTB); among them, 
there were 2 novel KGs (TYROBP and RPLP1). Their targeted miRNAs 
and TFs were also identified, which play a significant role in NSCLC. 
Survival and ROC analysis showed the prognostic and diagnostic effect 
of KGs. Our overall findings suggested that these KGs might be the 
prognostic and diagnostic biomarkers for NSCLC. 

Fig. 6. Gene-miRNAs and Gene-TFs interaction network. (A) In the Gene-miRNAs interaction network, the red bigger circles indicate genes and the blue squares 
indicate miRNAs. (B) In Gene-TFs interaction network, the red circles indicate genes and the blue diamond shape indicates TFs. 

Table 3 
Targeted transcription factors (TFs) and miRNAs from regulatory interaction 
network (Gene-TFs and Gene-miRNAs).  

S.N TFs S.N miRNAs 
Label Degree Label Degree 

1 FOXC1 6 1 hsa-miR-124-3p 5 
2 YY1 4 2 hsa-miR-34a-5p 5 
3 CEBPB 4 3 hsa-miR-21-5p 4 
4 TFAP2A 4 4 hsa-miR-155-5p 4 
5 SREBF2 4 5 hsa-miR-449a 4 
6 RELA 4 6 hsa-miR-24-3p 4 
7 GATA2 4 7 hsa-let-7b-5p 4    

8 hsa-miR-7-5p 4  
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