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Abstract

An abdominal aortic aneurysm is a pathological dilation of the abdominal aorta, which carries a high mortality rate if
ruptured. The most commonly used surrogate marker of rupture risk is the maximal transverse diameter of the aneurysm.
More recent studies suggest that wall stress from models of patient-specific aneurysm geometries extracted, for instance,
from computed tomography images may be a more accurate predictor of rupture risk and an important factor in AAA size
progression. However, quantification of wall stress is typically computationally intensive and time-consuming, mainly due to
the nonlinear mechanical behavior of the abdominal aortic aneurysm walls. These difficulties have limited the potential of
computational models in clinical practice. To facilitate computation of wall stresses, we propose to use a linear approach
that ensures equilibrium of wall stresses in the aneurysms. This proposed linear model approach is easy to implement and
eliminates the burden of nonlinear computations. To assess the accuracy of our proposed approach to compute wall
stresses, results from idealized and patient-specific model simulations were compared to those obtained using conventional
approaches and to those of a hypothetical, reference abdominal aortic aneurysm model. For the reference model, wall
mechanical properties and the initial unloaded and unstressed configuration were assumed to be known, and the resulting
wall stresses were used as reference for comparison. Our proposed linear approach accurately approximates wall stresses for
varying model geometries and wall material properties. Our findings suggest that the proposed linear approach could be
used as an effective, efficient, easy-to-use clinical tool to estimate patient-specific wall stresses.
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Introduction

Abdominal aortic aneurysms (AAAs) are pathological dilations

of the abdominal aorta of at least 3 cm in diameter [1][2]. If

ruptured, AAAs carry a mortality rate of 90% [3], claiming

approximately 15,000 American lives annually [2]. Generally,

reparative surgery is performed if the AAA maximum transverse

diameter measured on computed tomography (CT) scan or

ultrasound imaging exceeds 5.5 cm or expands at a rate of

1 cm/year or greater [1]. But use of these criteria is concerning

because AAAs smaller than 5.5 cm can rupture, and larger but

stable AAAs may receive unnecessary surgery [3][4][5][6][7].

Thus, there is a need to more reliably assess the risks for AAA

rupture and expansion [8].

Wall stress has been shown to be a more accurate predictor

of AAA rupture and expansion than the maximum transverse

diameter [5][9][10]. This is because tissues tear apart when

wall stress exceeds a threshold stress for rupture, which

depends on the tissue strength. Recent theories of growth

and remodeling (G&R) [11][12] postulate that vascular tissues

grow and remodel so that homeostatic wall stresses are

conserved. According to G&R theories, an increase in wall

stress will result in tissue growth (e.g., increased wall thickness)

and remodeling (e.g., increased collagen deposition) that

lowers wall stress to homeostatic levels; likewise, an increase

in wall shear stress will result in an increase in vascular

diameter that will lower shear stresses to homeostatic values.

These G&R mechanisms are postulated to act during AAA

expansion, explaining the possible relationship between wall

stress and AAA progression. Thus, wall stress has been the

subject of extensive AAA biomechanical research [13] and is

typically obtained using finite element analysis (FEA)

[8][14][15][16]. To compute wall stress, average or systolic

intraluminal pressures are conventionally applied to image-

derived, patient-specific geometries that are assumed to be

unloaded and unstressed [17][18]. In these models, the AAA

walls are assumed to be nonlinear hyperelastic with mechanical

properties measured from cadaver tissues or tissues from

patients undergoing elective repair [13][19][20][21]. Incor-

rectly assuming that imaged geometries are unloaded, howev-

er, implies that application of intraluminal pressures to the

walls will result in overly distorted AAA geometries, typically

with overestimated wall stress distributions [21][22][23][24].

To resolve this problem, algorithms have been developed for
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approximating the tissue unloaded configuration from avail-

able loaded CT scan or magnetic resonance imaging (MRI)

geometries [18][22][23][25]. Applying intraluminal pressures

to these computed unloaded geometries results in wall

deformations that closely approximate the original loaded

AAA geometry and more accurately predict wall stress.

Although some of these promising methods have been

validated, they are difficult to implement and are computa-

tionally intensive [18]. This is because computation of the

undeformed unloaded configuration involves the solution of an

inverse nonlinear problem. In fact, given the nonlinear

properties of AAA walls, even calculation of wall stresses from

a known unloaded, unstressed configuration is involved and

requires extensive computations. Even when using methods to

recover the unloaded geometry, limitations of current models

include: residual stresses, which are characteristic of vascular

tissues, are neglected; spatial changes in aneurysmal tissue

properties along and across the wall are neglected; and ‘‘true’’

boundary conditions, including the effects of internal and

external structures (thrombus and external organs), are

unknown and frequently neglected or approximated. For

AAA wall stresses to become a useful clinical indicator and

be applicable in a clinical environment, a more efficient and

robust methodology is needed for estimating wall stresses from

patient-specific geometries.

In this study, we propose modeling AAAs using FEA linear

models as a means of obtaining equilibrium stresses in a more

robust and computationally efficient way. Because linear

models assume infinitesimally small displacements and strains,

the approach preserves the integrity of the imaged geometry,

and the application of intraluminal pressures achieves equilib-

rium of forces and wall stresses directly in the patient-specific

geometry. We assess the accuracy and effectiveness of our

proposed approach using idealized models and patient-specific

models of AAAs. We also explore the effect of employing

different nonlinear wall material properties and residual

stresses on wall stress computations in idealized models and

compare results with those obtained from linear models.

Problem Formulation and Equations Employed

To determine the relative accuracy of the linear approach to

compute AAA wall stresses, we employed three models: a

reference model, a conventional model, and our proposed

linear model (see Fig. 1). The reference model (Fig. 1A) was

used as a reference for wall stresses (see below for a more

detailed description of the model). In the reference model,

initial conditions and tissue properties are assumed to be

known. The conventional model (Fig. 1B) represents the most

commonly used approach to computing wall stress, in which

the patient deformed configuration is used as an unloaded,

unstressed initial configuration and walls are assumed to have

nonlinear, hyperelastic material properties. The linear model

(Fig. 1C) also uses the patient deformed configuration as an

unloaded, unstressed initial configuration, but solution of the

model does not change the wall geometry, and equilibrium

stresses are obtained in the patient geometry. Wall stresses

obtained using the linear and conventional models were

compared to stresses obtained using the reference model.

Comparisons were performed first using idealized models, such

as straight tubular models representing the arterial wall and

idealized curved axisymmetric models of the AAA. Compar-

isons were then extended to a subject-specific AAA geometry.

For the tubular models, we further explored the effects of using

different reported nonlinear tissue mechanical properties and

the effects of residual stresses on wall stress. We then compared

wall stresses obtained with nonlinear models to those obtained

using the linear model approach.

Model Formulation
For all models considered, we solved the equations of

equilibrium

+:s~0 in V ð1Þ

with boundary conditions

s:̂n~{pn̂ on Cl , s:̂n~0 on Co ð2Þ

Figure 1. Schematic showing the AAA models employed. In all
models, an internal pressure is applied to an initially unloaded,
undeformed configuration. Differences between models are in the
choice of the wall material properties and initial configuration
employed. (A) Reference model: the walls are characterized by
hyperelastic nonlinear material properties; the initial configuration,
which is assumed to be known, represents the clinically unknown
unloaded and unstressed wall configuration, and the deformed (loaded)
configuration represents the deformed geometry that is imaged from
the patient. (B) Conventional model: the walls are assumed to have
hyperelastic nonlinear properties; the initial configuration is chosen as
the deformed configuration obtained from the reference model (but
this configuration is assumed to be unloaded and unstressed). After
application of an internal pressure in the conventional model, the initial
configuration further deforms into a loaded configuration. (C) Linear
model: the walls are assumed to have linear elastic properties, with
infinitesimally small deformations and strains; the initial configuration is
chosen as the deformed configuration obtained from the reference
model (as in the conventional model). Because of the assumptions
made in the linear model, the initial configuration barely deforms,
preserving the geometrical characteristics of imaged patient geome-
tries.
doi:10.1371/journal.pone.0101353.g001

Linear Model of Wall Stress Computations
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where s is the Cauchy stress tensor; p is the intraluminal blood

pressure and was chosen here as the systolic pressure (0.016 N/

mm2 = 120 mmHg) unless otherwise stated; n̂n is a unit vector

normal to the wall surface; V is the body domain in the deformed

configuration; and Cl and Co refer to the lumen and outer surfaces

of the deformed configurations of the AAA models, respectively.

Note that the choice of using systolic pressure is arbitrary and does

not affect the results presented, since the hypothetical reference

models are also assumed to be subjected to systolic pressure.

The reference and conventional models assumed nonlinear,

hyperelastic wall material properties. Specifically, AAA walls were

assumed to be almost incompressible, homogeneous, and isotropic

with an energy density function W of the form [19][21]

W~a IB{3ð Þzb IB{3ð Þ2zc IB{3ð Þ3 ð3Þ

where a, b and c are coefficients that denote the properties of the

tissue; IB is the first invariant of the Left Cauchy-Green tensor B
(IB = trB) with B = FFT; and F is the deformation gradient tensor.

The constitutive relations corresponding to the nonlinear material

represented in Eq. 3 are described by

s~{HIz2
LW

LIB
B ð4Þ

where H is the hydrostatic pressure and I is the identity tensor.

The values of coefficients in Eq. 3 were determined from

human tissue samples subjected to tensile tests. Material

properties of AAA tissues have been measured in different

studies with varying degrees of accuracy [19][21][26]. One of

the pioneering studies, by Raghavan and Vorp [19], assumed

that W (Eq. 3) had two terms (c = 0) and fitted stress-strain

results from uniaxial tissue tensile tests to find the coefficients a
and b for each tissue sample. While the study found that the

coefficients vary from sample to sample, it provided a

population average, which is frequently used in the AAA

literature to represent the material properties of AAA tissues.

More recently, Polzer et al. [21] measured AAA patient tissue

samples using biaxial tensile tests and fitted the resulting stress-

strain curves to an energy-density function similar to that of

Eq. 3 but consisting of 5 terms, i.e., W = a(IB 2 3)+b(IB 2 3)2+
c(IB 2 3)3+f(IB 2 3)4+g(IB 2 3)5, where f and g are also

coefficients that denote the properties of the tissue. The study

found that even though W was assumed to be isotropic, it

approximated the mechanical behavior of the tissue well. The

study also found striking variations in mechanical properties

among sampled tissues. Here, for comparison, we used

mechanical properties obtained in the Raghavan-Vorp and

Polzer studies (see Table 1, f = g = 0 for the two patient-

specific tissue material properties selected from Polzer et al.).

We extensively employed the population average mechanical

properties found by Raghavan and Vorp (RV in Table 1) [19],

as these properties are widely used. To assess the effects of

patient-specific tissue mechanical properties, which are not

known in clinical practice, we varied the values of a and b
(c = 0) and also used coefficients obtained by Polzer et al. from

two different patient-tissue samples (P1 and P2; see Table 1) in

the reference models.

In the linear model, the wall was assumed to be an almost

incompressible, linear elastic material, characterized by an

arbitrary, albeit high, Young’s modulus E (which ensures

infinitesimal deformations without compromising wall stress

values, see Results). Linear constitutive relations were given by

s~Ce ð5Þ

where C is the stiffness tensor, which, for an isotropic material,

depends on E and the Poisson’s ratio n, and e is the

infinitesimal strain tensor. Unless otherwise stated, we used

E = 8.46109 N/mm2 and n = 0.4999 in computations using the

linear model.

Differences among the reference, conventional, and linear

models were in the choice of material properties and initial

configurations (see Fig. 1). In all models, the initial configu-

ration was assumed to be unloaded and unstressed. For the

reference model, the initial configuration was chosen arbi-

trarily and represented the unstressed and unloaded configu-

ration of the tissue that was assumed to be known in our

models (but which is unknown in clinical practice). For the

conventional and linear models, however, the initial configu-

ration was taken as the deformed configuration of the

reference model. This choice of initial configuration intended

to simulate the use of the loaded geometry obtained from CT

scans or other imaging techniques as an unstressed, unloaded

configuration, both in the conventional and linear approaches.

The reference model, conversely, simulates the loading of

tissues from the unknown unstressed configuration, and thus

represents a more accurate model of wall stress.

Once the stress distributions were computed for all models,

the wall stresses obtained from the conventional and linear

models were compared to the stresses from the reference model

in order to determine the degree to which conventional and

linear approaches approximated reference stresses. The analysis

was performed on both idealized and patient-specific models of

AAAs, which are described further below. For idealized thick-

wall tubular AAA models, analytical expressions exist for linear

models and were derived in what follows for the hyperelastic

tissue models.

Table 1. Coefficients of AAA tissue material properties used in this study (see Eq. 3).

Material Model a (N/mm2) b (N/mm2) c (N/mm2) Reference

Raghavan-Vorp (RV) 0.174 1.881 0 [19]

Polzer et al. sample (P1) 0.0145 0 2.259 [21]

Polzer et al. sample (P2) 0.022 1.461 1.0 [21]

doi:10.1371/journal.pone.0101353.t001

Linear Model of Wall Stress Computations
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Analytical Expressions for an Axisymmetric Thick-Wall
Tube under Internal Pressure

Consider an axisymmetric thick-wall tube as a simple

representation of a blood vessel (see Fig. 2). Initially, the

vessel is assumed to be undeformed, unloaded and unstressed

with an inner radius, A, and outer radius, B. In addition, the

vessel is assumed to be constrained at both ends in the

longitudinal direction, and a uniform internal pressure p is

applied on the luminal surface. Application of the internal

pressure results in a deformed geometry with inner and outer

radii a and b, respectively.

Employing cylindrical coordinates, the equilibrium equation

(Eq. 1) for this case reduces to

Lsrr

Lr
z

srr{shh

r
~0, ð6Þ

where r is the radius of the deformed configuration and srr and shh

are the Cauchy radial and circumferential stresses, respectively

[12].

The boundary conditions for the problem (Eq. 2) become

srr r~að Þ~{p, ð7Þ

srr r~bð Þ~0: ð8Þ

A. Analytical Solutions for Nonlinear Hyperelastic Tissue

Model. We assume the wall properties to be incompressible and

nonlinear hyperelastic with a parabolic strain energy density

function W as proposed by Raghavan et al. [19], see Eq. 3 (with

c = 0) and constitutive equations given by Eq. 4.

If lhh, lrr, and lzz represent the stretch ratios in the

circumferential, radial, and longitudinal directions, respectively,

then for a tube under internal pressure,

lhh~
r

R
, lrr~

Lr

LR
, lzz~1 ð9Þ

where r and R are the radii of the deformed and initial (unstressed)

configurations, respectively (see Fig. 2).

Thus, for the thick-wall tube model considered here, F and B
are

F~

lhh 0 0

0 lrr 0

0 0 lzz

0
BB@

1
CCA,

B~FFT~

l2
hh 0 0

0 l2
rr 0

0 0 l2
zz

0
BB@

1
CCA

ð10Þ

and s~

shh 0 0

0 srr 0

0 0 szz

0
B@

1
CA~2B az2b IB{3ð Þð Þ{HI ð11Þ

Replacing into Eq. 6 results in

Lsrr

Lr
~

1

r
2 l2

hh{l2
rr

� �
az2b l2

hhzl2
rr{2

� �� �� �
: ð12Þ

Further, for an incompressible material [12],

lrrlhhlzz~1 ð13Þ

and, therefore, using Eqs. 9 and 13 and solving for r,

r

R

Lr

LR
~1 ð14Þ

r~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2zb2{B2

p
, ð15Þ

lhh~
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2{b2zr2
p , lrr~

1

lhh
: ð16Þ

Using Eqs. 8, 12 and 16 and solving for srr then yields

srr rð Þ~ 2b{að Þ ln B2

B2{b2zr2

� �
za B2{b2
� � 1

r2
{

1

b2

� �

z2 a{2bð Þ ln b

r

� �

z4b
b2{B2

2B2
{

b2{B2

2 B2{b2zr2ð Þz
B2{b2
� �2

4

1

r4
{

1

b4

� �" #
,

ð17Þ

and using Eq. 7,

Figure 2. Thick-wall cylindrical model with applied internal
pressure used for the derivation of analytical solutions. The
undeformed configuration is assumed to be unstressed and unloaded;
the deformed configuration is obtained after applying an internal
pressure p. A, B and R represent the internal wall radius, external wall
radius and radial coordinate, respectively, in the undeformed config-
uration; a, b, and r, represent the internal wall radius, external wall
radius and radial coordinate, respectively, in the deformed configura-
tion.
doi:10.1371/journal.pone.0101353.g002
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{p~ 2b{að Þ ln B2

B2{b2za2

� �
za B2{b2
� � 1

a2
{

1

b2

� �

z2 a{2bð Þ ln b

a

� �

z4b
b2{B2

2B2
{

b2{B2

2 B2{b2za2ð Þz
(B2{b2)2

4

1

a4
{

1

b4

� �" #
:

ð18Þ

In order to solve Eq. 18 for a and b, an additional equation is

needed. Since the cross-sectional areas of the undeformed and

deformed configurations are equal due to incompressibility,

p b2{a2
� �

~p B2{A2
� �

, or a2~b2{B2zA2: ð19Þ

By substituting the equation for a in Eq. 19 into Eq. 18 and

numerically solving for b (given a, b, A and B), the values for b and

a that satisfy the boundary conditions (Eqs. 7 and 8) can be

obtained.

Once a and b are computed, Eqs. 6 and 17 are used to obtain an

expression for the circumferential stress,

shh rð Þ~ {2 2b{að Þr2

B2{b2zr2ð Þz
4b b2{B2
� �

r2

B2{b2zr2ð Þ2
{

a B2{b2
� �

r2

zb B2{b2
� �2 {3

r4
{

1

b4

	 

{2 a{2bð Þ

z 2b{að Þ ln B2

B2{b2zr2

� �
{

a B2{b2
� �

b2

z2 a{2bð Þ ln b

r

� �
z

2b b2{B2
� �

B2
{

2b b2{B2
� �

B2{b2zr2
:

ð20Þ

To solve for szz, we first find an equation for H using Eq. 11,

H~2al2
rrz4bl2

rr l2
hhzl2

rr{2
� �

{srr: ð21Þ

Substituting Eq. 21 into the expression for szz from Eq. 11 then

yields,

szz~2az4b l2
hhzl2

rr{2
� �

{2al2
rr{4bl2

rr l2
hhzl2

rr{2
� �

zsrr:ð22Þ

Thus the analytical solutions for wall stresses in a tubular model

when tissue properties are assumed to be nonlinear hyperelastic

(Eq. 3 with c = 0) are given by Eqs. 17, 20 and 22, once the

deformed internal and external tube radii, a and b, are calculated

using Eqs. 18 and 19.

B. Analytical Solutions for the Linear Tissue

Model. Analytical solutions for the case of a thick-wall tube

under internal pressure with linear wall properties under small

deformations can be found elsewhere (e.g. [27]). For completeness

we included the equations together with some of the steps required

in the derivation of equations. The constitutive relations for a

linear elastic material, assuming infinitesimally small displace-

ments in polar coordinates, are [27]

srr~
E

1znð Þ 1{2nð Þ nehhz 1{nð Þerr½ �,

shh~
E

1znð Þ 1{2nð Þ nerrz 1{nð Þehh½ �,

szz~n srrzshhð Þ,

ð23Þ

where E is the Young’s modulus and n is the Poisson ratio, and err

and ehh are the radial and circumferential strains, respectively,

with ezz = 0.

For a linear axisymmetric tube with internal pressure, the strain-

displacement relations in polar coordinates are

err~
Lur

Lr
, ehh~

ur

r
, ð24Þ

where ur is the radial displacement.

Substituting Eqs. 23 and 24 into Eq. 6 results in the following

differential equation:

E 1{nð Þ
1znð Þ 1{2nð Þ

L2ur

Lr2
z

1

r

Lur

Lr
{

ur

r2

" #
~0: ð25Þ

The solution of Eq. 25 is

ur~c1rzc2
1

r
, ð26Þ

where c1 and c2 are constants. Using the boundary conditions (Eqs.

7 and 8), wall stresses are obtained:

srr rð Þ~ {pa2b2

a2{b2ð Þ
1

b2
{

1

r2

	 

,

shh rð Þ~ {pa2b2

a2{b2ð Þ
1

b2
z

1

r2

	 

, szz~

{2npa2

a2{b2ð Þ :
ð27Þ

Note that, due to the assumption of small displacements, while

displacements are computed, the geometry is assumed to remain

unchanged (so that a = A, b = B, and r = R independent of p). Thus,

stresses depend on p but not E.

Effective Stress
The effective or von Mises stress is a measure of local maximum

stresses that takes into account the contribution of normal stresses

in addition to shear stresses and is extensively used to report

stresses in the AAA literature [16][23][28]. However, it is worth

mentioning that other measures of stress or perhaps stretch might

be more relevant in determining AAA risks of expansion and of

rupture [13]. Because of their wide use, however, we chose to

report effective stresses in this manuscript, and for idealized AAA

geometries circumferential and radial stresses were also consid-

ered. Note further that, for the purpose of this manuscript, we are

not employing effective stresses as a rupture criterion, but only as a

Linear Model of Wall Stress Computations
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convenient way of reporting wall stresses. In cylindrical coordi-

nates the effective stress is calculated as follows:

seff ~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
srr{shhð Þ2z srr{szzð Þ2z shh{szzð Þ2z6 s2

rhzs2
rzzs2

hz

� �
2

s
ð28Þ

Models of AAA

The specific geometrical models of AAA considered and

strategies employed to solve for the model wall stresses are

described below.

Axisymmetric Thick-Wall Tubular Model of AAA
The arterial wall was first modeled as an axisymmetric, thick-

wall, straight circular tube with applied internal pressure and no

longitudinal strain. To determine how geometry affects stress

distributions, wall stresses were computed from the analytical

solutions using different initial configurations (i.e. initial tube

dimensions, see Fig. 2). These initial configuration geometries were

employed in the reference model, and the resulting deformed

configuration of the reference model was used as the initial

unloaded configuration in the conventional and linear models (see

Fig. 1). Additionally, an array of material property values was

tested to assess the effect of tissue mechanical properties on stress

distributions. To simulate the clinical situation in which wall tissue

properties are not known, we allowed the values of a and b to vary

in the reference model (c = 0), while using RV population average

values in the conventional model (see Table 1) and a constant

elasticity (E = 8.46109 N/mm2) in the linear model. Wall stresses

from the linear and conventional models were then compared to

corresponding reference stresses.

We also studied the effect of using different AAA tissue

properties (RV, P1, and P2, see Table 1) on wall stresses. Since

analytical expressions were not available for all material proper-

ties, we employed FEA implemented in ADINA (v8.8.3, ADINA

R & D, Inc., Watertown, MA) to solve for wall stresses in an

idealized 2D axisymmetric tubular model. To discretize the 2D

geometry, we used optimal 9/3 axisymmetric elements, which are

quadrilateral mixed displacement/pressure based elements (with 9

displacement degrees of freedom and 3 pressure degrees of

freedom) that satisfy the inf-sup condition, ensuring numerical

stability when solving problems involving incompressible or almost

incompressible media such as the AAA wall tissue [29]. In our

models, we used six elements spanning the thickness of the wall.

Simulations were performed such that the deformed configuration

of the hyperelastic models, used here as reference models, was the

same regardless of the specific nonlinear material property

employed. This deformed configuration, further, was used as the

initial unloaded geometry for the linear model. Wall stresses

obtained from the reference models were then compared to

stresses from the linear model.

For the nonlinear FEA models presented here and throughout

the study, the convergence criterion for equilibrium iterations was

specified by energy. The convergence ratio for out-of-balance

energy was set to a tolerance value of 0.001. The nonlinear

iteration scheme used was the full Newton method, and the

maximum number of iterations implemented for every time step

was set to 15. Convergence was achieved for non-linear models

using 15 to 60 time steps.

We further explored the effect of residual stresses on wall stress

distributions. Residual stresses are the stresses that remain on a

vascular wall after loads imposed on the tissue have been removed.

They manifest in blood vessels as a shrinkage in the axial length

when vessel segments are cut longitudinally (axial stresses) and as

an opening of the unloaded circular cross-section, characterized by

an opening angle [30], when vessel segments are cut radially

(circumferential stresses). To model circumferential residual

stresses in tubular models of AAA, we started from a 2D open

sector in the initial configuration (see Fig. 3A). The dimensions of

the sector were determined so that the closed unloaded

configuration was the same, independent of opening angle. The

open sector was modeled as a plane strain 2D problem in ADINA,

and symmetry was considered by modeling half of the sector (see

Fig. 3B). The open sector was then closed by imposing a

displacement in the direction of closure on one end of the sector.

Note that this way of modeling residual stresses cannot be

implemented in patient-specific models of the AAA. Once the 2D

segment was closed, an internal pressure (p = 0.016 N/mm2) was

imposed to obtain the distribution of wall stresses. The obtained

deformed configuration served as the initial, unloaded, unstressed

geometry of the linear model, and wall stresses obtained with the

linear model and nonlinear models with varying residual stresses

were then compared. Different hyperelastic material properties

(RV, P1 and P2; see Table 1) were employed to determine the

effect of tissue mechanical properties on residual and loaded wall

stresses. The geometry was discretized using mixed 9/3 elements,

and convergence of results was achieved using 180 elements, with

3 elements spanning the wall thickness.

Idealized AAA Models with Non-Uniform Wall Thickness
We implemented idealized geometrical models of AAAs with

non-uniform wall thickness to explore the effect of varying

thickness on wall stress computations. To this end, we started

using a thick-wall tubular model of the AAA with no residual

stresses, in which wall thickness varied longitudinally. We also

simulated a model in which the wall thickness varied circumfer-

entially, assuming plane strain conditions. Analytical solutions

were not available for these cases; therefore, the analysis was

performed using FEA in ADINA. Mixed 9/3 elements were used

to discretize the geometries. RV material properties were used

here for the reference and conventional models. Reference,

conventional, and linear models were simulated with the described

non-uniform wall thickness. Wall stresses were then compared to

establish the accuracy of the linear model in accounting for

changes in wall thickness.

Idealized Curved Axisymmetric Model of AAA
To assess the effect of wall curvature on the stresses, the arterial

wall was modeled as a curved axisymmetric structure. The outer

wall radius B of the 2D axisymmetric initial configuration was

specified by the following equation:

B~7:5 cos (
pZ

65
)z17:5, Z [ {65,65½ �, ð29Þ

where Z is the height, and B and Z are in mm. The height was

chosen to be 130 mm [31]. The maximum diameter was 50 mm,

and the wall thickness was 1.5 mm, the reported median thickness

[14][19]. The model was constrained at both ends in the

longitudinal direction but was allowed to move and deform freely

in the radial direction. The analysis was performed using FEA in

ADINA, with the AAA wall discretized using 9/3 mixed elements.

Linear Model of Wall Stress Computations
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For these models, we further incorporated an intraluminal

thrombus (ILT) in our FEA simulations and compared results with

and without the thrombus. When the ILT was modeled, the lumen

radius, L, was specified by,

L~1:25 cos (
pZ

65
)z8:75, Z [ {65,65½ �, ð30Þ

and the ends of the thrombus were fixed in the longitudinal

direction only. The thrombus was also discretized using mixed 9/3

elements.

Like the AAA wall, the thrombus was treated as a nonlinear,

homogeneous, isotropic, incompressible material but with the

following energy-density function:

W~D1 IIB{3ð ÞzD2 IIB{3ð Þ2, ð31Þ

where D1 and D2 are coefficients [32], and IIB is the second

invariant of the Left Cauchy-Green deformation tensor B
(IIB = 0.5 [(trB)2-tr(B)2]). The ranges of measured values for D1

and D2 (95th percentile confidence intervals) obtained from

patients undergoing elective repair were as follows: D1 = 0.0199–

0.036 N/mm2 and D2 = 0.0216–0.0356 N/mm2 [32]. In general,

the thrombus is more compliant than the tissue wall. The stiffness

ratio between the wall and the ILT, which we refer to as the

material property ratio (MPR), was computed from the nonlinear

models using the ratio of the wall coefficient a (Eq. 3) and the

intraluminal thrombus coefficient D1 (Eq. 31), i.e., (a/D1). Because

the MPR determines differences in stresses between the wall and

ILT, the linear models that included a thrombus were imple-

mented assuming an MPR between the elastic moduli E of the wall

and ILT. MPR was first set at 6.7, which is the ratio of the

population average values of the wall and ILT, i.e., a = 0.174 N/

mm2/D1 = 0.026 N/mm2. In order to determine how implemen-

tation of different MPRs affected the distribution of stresses, we

varied MPR in our computations and compared computed wall

stresses. The AAA wall material properties were modeled using the

energy-density function W proposed by Raghavan and Vorp [19],

Eq. 3 with c = 0. Varying MPRs were obtained by changing the

coefficient of the thrombus D1 and the coefficient a, for the wall.

Values of MPR considered were 4, 6.7, and 10.25. An MPR of 4

was achieved by modeling a weak wall stiffness (a = 0.144 N/mm2,

b = 1.152 N/mm2) and relatively stiff thrombus (D1 = 0.036 N/

mm2, D2 = 0.0356 N/mm2). Conversely, an MPR of 10.25 was

achieved by modeling a relatively stiff wall (a = 0.204 N/mm2,

b = 2.61 N/mm2) and weak thrombus (D1 = 0.0199 N/mm2,

D2 = 0.0216 N/mm2) [19][32]. For the linear model, the wall

elasticity modulus was set at a value of E = 8.46109 N/mm2, and

different MPR values were generated by varying the elasticity

modulus of the thrombus. For the models excluding and including

the ILT, convergence was achieved with 390 and 1,690 elements,

respectively, with 3 and 10 elements spanning the thickness of the

wall and thrombus, respectively.

Subject-Specific Model of AAA
To assess the effect of AAA geometry on wall stress

distributions and the degree to which the conventional and

linear models correctly capture these distributions, a patient-

specific model was implemented. The initial configuration of

the patient-specific AAA had no ILT and was extracted from

contrast-enhanced spiral CT scan images of a de-identified

patient. The images for this retrospective study were provided

by the Oregon Health & Science University Department of

Vascular Surgery following OHSU Institutional Review Board

(IRB) protocols. Patient consent has been waived by the

OHSU IRB, as this retrospective study constituted a minimal

risk chart review. This study was approved by the OHSU IRB.

Extraction of the AAA geometry from CT scan images was

achieved by using a semi-automated custom-made segmenta-

tion program. The segmentation of the vessel lumen com-

menced below the aortic-renal intersection and ended at the

aortic-iliac bifurcation. The first contour was manually traced

around the contrast-enhanced lumen of the image. Subsequent

contours were automatically obtained along the AAA midline

and around the contrasted lumen. Automatically segmented

contours were examined and corrected manually when needed.

Smoothing algorithms were applied to reduce surface-extrac-

tion noise. Contours were then ‘‘stacked’’ to generate the

three-dimensional AAA lumen geometry in the form of a

surface mesh. The mesh coordinates were imported into a

custom-made MATLAB (vR2010b, MathWorks, Inc., Natick,

MA) program written to uniformly displace each vertex

1.5 mm radially outward to generate the AAA outer wall

geometry. This geometry was used as the unloaded configu-

ration of the reference model. The deformed configuration

obtained from the reference model, assuming RV material

properties, was subsequently employed as the unloaded

configuration for the conventional and linear models, as done

with the other geometrical AAA models described before. The

patient-specific AAA geometry was imported into ADINA and

discretized using 3D, 27/4 hexahedral mixed elements with 3

elements spanning the wall thickness. The 27/4 mixed

Figure 3. Modeling of residual stresses in a tubular vessel. (A)
Schematics of the physical tissue configurations: an initial unloaded,
unstressed and undeformed circular section (with radii A and B) is
closed, which generates residual stresses in the unloaded configuration.
This closed configuration (with radii a0 and b0) is loaded to generate the
final deformed and loaded configuration (radii a and b) that represents
arterial tissues under load. The open sector schematics also show the
definition of the opening angle, Q, in relation to the angle h. (B)
Schematics of the FEA model implemented to compute residual
stresses and their effects on the loaded configuration. We first modeled
an unstressed, unloaded and undeformed open sector. We then
imposed a horizontal displacement on the open end of the sector to
close the segment and generate residual stresses. The closed sector was
then loaded with an internal pressure to compute the loaded
configuration and resulting wall stresses.
doi:10.1371/journal.pone.0101353.g003
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displacement/pressure elements are the 3D counterparts of the

9/3 mixed elements (with 27 displacement degrees of freedom

and 4 pressure degrees of freedom) and also satisfy the inf-sup

condition [29]. The ends of the model were constrained in the

longitudinal direction, and selected end-nodes were con-

strained in all directions to prevent rigid body motion.

Convergence of results was achieved using 4,800 elements.

Wall Stress Comparisons
Wall stresses obtained from the conventional and linear models

were compared to stresses obtained from reference models. Point-

by-point differences in stresses were computed as follows:

Dsi{s�i D
Ds�i D

ð32Þ

where si is the stress of interest (conventional or linear model;

circumferential, radial or effective stress) and s*i is the

corresponding stress in the reference model. Eq. 32 was also

used to calculate differences in maximum effective stresses with

respect to those in the reference model. For models solved

using FEA, stress differences with respect to the reference

model were plotted for the whole model and over the wall

thickness. These analyses allowed for an objective comparison

of wall stress.

To facilitate comparisons of solutions over a range of tissue

mechanical properties (characterized by Eq. 3 with a and b; c = 0),

differences in stress were integrated over the normalized thickness

and normalized to the reference stress integral,

ð1

0

si{s�i
�� ��dr0

� �
ð1

0

si{s�i
�� ��dr0

ð33Þ

where dr’ is the normalized thickness differential. For convenience,

this calculation was employed only for the axisymmetric tubular

models using analytical solutions of stresses.

Results

Convergence of Linear Model to Equilibrium Stresses
To ensure that the linear model with applied internal

pressures achieved the same equilibrium stresses independent

of the Young’s modulus, E, employed, a convergence study was

first performed. Analytically, for the axisymmetric tubular

model, wall stresses depended on the radius and wall thickness

of the initial, undeformed configuration and the applied

internal pressure. Further, wall stresses depended on wall

material properties in the case of hyperelastic tissues (see Eqs.

17, 20 and 22) but were independent of wall mechanical

properties when tissues were assumed to be linear and elastic

with infinitesimally small deformations and strains (see Eqs.

27). As expected, when the linear axisymmetric models were

implemented using FEA (assuming small displacements and

strains), wall stresses did not vary significantly (,0.1%) as E

was increased from 1 to 1010 N/mm2. Similarly, wall stresses

did not vary significantly with varying values of E (,0.2%) in

linear idealized and patient-specific models of an AAA.

Estimation of equilibrium stresses using the linear model

was therefore effectively independent of the E employed.

We chose an arbitrary high Young’s modulus (E = 8.46109 N/

mm2) to use in our linear models. In applying this choice

of elasticity modulus, the wall displacements computed for

the idealized and patient-specific AAA models were negligible

(,1.361029 mm).

Axisymmetric Tubular Model of an AAA with Parabolic
Energy-Density Function

Wall stress versus normalized wall thickness plots were initially

generated for the axisymmetric tubular model to determine how

the wall stresses of the linear and conventional models compared

to those of the reference model (see Fig. 4). Here, conventional and

reference models used the RV material properties (see Table 1).

Compared to the radial (srr) and axial stresses (szz), the

circumferential stresses (shh) had larger magnitude values,

contributing the greatest weight to the calculation of effective

stresses (see Eq. 28). Values of shh computed using the linear

model were closer to those obtained from the reference model

than values obtained using the conventional model. A similar

finding was observed for the effective stress. On the other hand, srr

was almost the same throughout the wall thickness for all models,

representing the effect of the pressure boundary conditions on

radial stresses.

Figure 4. Stress comparisons among the reference, conven-
tional, and linear models of an axisymmetric thick-wall tubular
geometry. (A) Circumferential wall stress; (B) effective wall stress; and
(C) radial wall stress distributions are plotted across the normalized wall
thickness. For the reference model, the inner and outer radii in the
deformed configuration were 14.8 mm and 16.1 mm, respectively; for
the conventional model, the inner and outer radii in the deformed
configuration were 16.27 mm and 17.53 mm, respectively; applied
internal pressure, p = 0.016 N/mm2 (120 mmHg); RV material properties
were used for both the reference and conventional models.
doi:10.1371/journal.pone.0101353.g004
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For a thick-wall tubular model under equilibrium, the following

condition is satisfied,

h

ð1

0

shhdr0~p a, ð34Þ

where h and a are the wall thickness and lumen radius of the

deformed configuration, respectively; dr’ is the normalized

thickness differential; and p the applied internal pressure (see

Fig. 2). The integral of shh over the thickness (left hand side of Eq.

34), was about 0.24 N/mm for both the linear and reference

models. This was expected since the deformed wall configuration

was practically identical for both models, and the boundary

conditions were the same. The integral, however, was larger for

the conventional model (0.26 N/mm), reflecting the additional

radial expansion of the wall under the conventional approach.

To assess how closely the linear and conventional approaches

approximated reference stresses under different conditions, com-

putations were performed for a range of a and b values (c = 0) and

different initial geometries (see Fig. 5). To effectively compare and

visualize stress differences (with respect to reference stresses) as a

function of the parameters a and b in the reference model, we used

Eq. 33 so that each case (linear, conventional) was represented by

one value, which we chose to report as a percent stress difference.

We found that, irrespective of the tissue properties used in the

reference model, stresses obtained using the linear model were

Figure 5. Relative differences in effective wall stress distributions for the case of a tubular arterial model. The figure shows differences
of effective wall stress distributions obtained from the conventional and linear models, with respect to the stress distributions from the reference
model, computed using Eq. 33. To simulate the clinical situation where the material properties of the AAA are unknown, the material constants a and
b (c = 0) were varied in the reference model (aref and bref reported values), whereas population average a and b (a = 0.174 N/mm2, b = 1.881 N/mm2;
RV material properties) were used in the conventional model, and constant elasticity (E = 8.46109 N/mm2) was used in the linear model. Further, the
initial geometry was varied to represent different aneurysm sizes and wall thicknesses. In all cases, applied internal pressure was 0.016 N/mm2

(120 mmHg). Reported geometrical model external radius, B, and wall thickness, h0, correspond to the initial configuration of the reference model.
The dashed lines indicate the physiological range of the material property values for aref.
doi:10.1371/journal.pone.0101353.g005
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closer to the stresses in the reference model than were the stresses

obtained using the conventional model (see Fig. 5). Differences

with respect to reference stresses decreased for both the linear and

conventional models as a increased. Increasing b, however, had

only a small effect on stress differences. Increasing the model

external radius, B, while keeping a constant wall thickness, h0,

resulted in increased stress differences between the conventional

and reference models and decreased differences between linear

and reference models (compare Figs. 5A, 5C and 5E; and 5B, 5D

and 5F). Both B and h0 correspond to the initial configuration of

the reference model. Increasing h0 while keeping B constant

resulted in decreased stress differences between the conventional

and reference models but an increased difference between the

linear and reference models (compare Figs. 5A and 5B; 5C and

5D; 5E and 5F). In general, however, the linear model

approximated reference stresses better than the conventional

model.

To determine how well the maximum effective stress is

approximated by the linear and conventional approaches, we

examined our previous results (Fig. 5) but reported differences in

maximum effective stress (see Fig. 6). Maximum stresses were

generally overestimated in the conventional model and underes-

timated in the linear model (see Fig. 4) when tissue properties for

the reference model were within physiological range. We found

that in most cases, the linear model approximated the maximum

stress better than the conventional model within the physiological

range of a and b, and the difference gap between linear and

Figure 6. Relative differences in maximum effective wall stress distributions for a tubular arterial model. Models simulated are the
same as for Fig. 5, but differences in maximal wall stresses with respect to reference stresses, computed using Eq. 32, are reported instead. The
reported material coefficients aref and bref correspond to those of the reference model. RV material properties (a = 0.174 N/mm2, b = 1.881 N/mm2)
were used in the conventional model, and a constant elasticity (E = 8.46109 N/mm2) was used in the linear model. Applied internal pressure was
0.016 N/mm2 (120 mmHg). The initial geometry was varied to represent different aneurysm sizes and wall thicknesses. The dashed lines indicate the
physiological range of the material property values for aref.

doi:10.1371/journal.pone.0101353.g006
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conventional models increased with increasing diameter and

decreased with increasing thickness.

Increasing the applied internal pressure in the models from

0.016 N/mm2 to 0.027 N/mm2 (120 mmHg to 200 mmHg)

increased the magnitude of the differences in wall stresses for the

conventional model but not for the linear model (see Figs. S1 and

S2). After increasing internal pressure, the linear model provided

the better approximation of maximum effective stresses within the

physiological range of tissue mechanical properties.

Idealized AAA Models with Non-Uniform Wall Thickness
To explore whether the linear model could be used to effectively

study the effect of varying wall thickness, wall stresses were

computed on idealized models of non-uniform wall thickness (see

Fig. 7). RV material properties were used for the reference and

conventional models. While the wall stresses obtained from the

reference, conventional and linear models were similar, the stresses

obtained using the linear model were closer approximations of the

reference stresses. The linear approach could therefore be used for

estimating wall stresses and studying the effects of wall thickness.

Idealized and Subject-Specific AAA Models
To determine how the wall stresses of the linear and

conventional models compared to the wall stresses from the

reference model when curvature was considered, we used an

idealized axisymmetric model of an AAA in which the walls were

curved and an internal pressure was applied to the inner wall (see

Fig. 8A). RV tissue mechanical properties were used for the

reference and conventional models. Effective wall stresses com-

puted using the reference, conventional or linear models were

similar, with larger stresses found in the wall region with greater

curvature. Plots of wall stresses across the wall thickness and

differences in effective stresses with respect to the reference

configuration computed using Eq. 32 further revealed that the

linear model approximated the reference stresses better than the

conventional model.

We then incorporated an intraluminal thrombus (ILT) to the

idealized AAA model to assess its effect on wall stress and

determine the degree to which the linear and conventional

approaches approximate the reference stresses in the presence of

the ILT (see Fig. 8B). To this end, we used average values of

material properties for both the wall (RV properties) and thrombus

in the reference and conventional models, and we used the average

MPR for the linear model. We found that effective stresses that

Figure 7. Effect of variable wall thickness on wall stress distributions. (A) Axisymmetric model with longitudinally-varying wall thickness. (B)
Plane strain model with circumferentially-varying wall thickness. In all cases, an internal pressure of 0.016 N/mm2 (120 mmHg) was applied. For both
geometries considered, effective wall stresses (in units of N/mm2) are shown as computed using reference, conventional and linear models (left).
Differences in the effective wall stress with respect to reference wall stresses for the linear and conventional approaches are also shown (right).
doi:10.1371/journal.pone.0101353.g007
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were computed using the reference model were better approxi-

mated by the linear model than by the conventional model. We

then varied the model MPRs (in the reference, conventional and

linear models). Values of MPR considered were 4, 6.7 (average),

and 10.25. The stresses of the linear model were found to be closer

to those of the reference stresses for all MPRs considered (see

Fig. 9). We also observed that as the MPR of the reference

configuration is varied, wall stresses considerably change.

To assess the effect of complex curvature and asymmetrical

geometry on wall stresses, we considered a patient-specific

geometrical AAA model with applied internal pressure (see

Fig. 8C). We made the assumption that the patient AAA geometry

obtained from CT scan images corresponded to the unloaded

configuration; therefore, we used this geometry as the initial

configuration in the reference model. Conventional and linear

models used the deformed configuration obtained from the

Figure 8. Effective wall stress distributions in different geometrical models of AAA. (A) Idealized bended-tubular axisymmetric model. (B)
Idealized axisymmetric model of AAA with inclusion of thrombus. (C) Patient-specific model. In all cases, an internal pressure of 0.016 N/mm2

(120 mmHg) was applied. For the geometries considered, effective wall stresses (in units of N/mm2) are shown as computed using reference,
conventional and linear models (left). Plots of the effective wall stress with respect to the normalized thickness in the regions indicated by the black
arrows are shown (middle). Differences in the effective wall stress with respect to reference wall stresses for the linear and conventional approaches
are also shown (right).
doi:10.1371/journal.pone.0101353.g008
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reference model (after applying an internal pressure) as their initial

configuration. While stress distributions looked similar for the

linear, conventional and reference models, local effective stress

plots across the wall thickness (from selected regions) showed that,

in general, linear stresses better approximated the reference

stresses. Computed differences in stress with respect to the

reference stress values (using Eq. 32) at the inner and outer

surfaces, where differences in stress were expected to be larger,

further revealed that stresses from the linear model, compared to

those of the conventional model, were closer to the reference

stresses (see Figs. 8C and S3).

Axisymmetric Tubular Model of an AAA with Varying
Tissue Properties and Residual Stresses

To determine how the choice of tissue mechanical properties

affects wall stresses, we simulated the axisymmetric tubular model

using different nonlinear tissue properties (RV, P1 and P2; see

Table 1). For these models, the initial, unloaded configuration

varied slightly, such that the deformed configuration was the same

for all nonlinear models, while the linear model employed this

deformed configuration as its initial geometry. Two cases were

considered in which the external diameters and thicknesses of the

deformed configuration were: 1) 35.5 mm and 1.25, respectively;

and ii) 73.9 mm and 1.21 mm, respectively. The applied internal

pressure (0.016 N/mm2) was the same for the two cases. We found

that the wall stresses computed using the nonlinear models (RV,

P1 and P2) varied significantly and were different from those

computed using the linear model (see Fig. 10). As expected,

however, the integral of the circumferential stresses over the

deformed wall thickness, left hand side of Eq. 34, was the same for

all models (since the deformed configuration was the same),

indicating that equilibrium of stresses was obtained.

Next, we considered the effect of residual stresses (see Fig. 3) on

computed wall stresses. We considered cases with different

material properties and different initial opening angles. We varied

the angle h in the initial unstressed configuration, ensuring that the

closed configuration (unloaded configuration with residual stresses)

was the same for all cases. In the closed configuration, the outer

radius, b0, was 30 mm, while the wall thickness was 1.5 mm. An

internal pressure (p = 0.016 N/mm2) was then applied to the

closed configuration, and the loaded, deformed configuration was

obtained. For comparison, the linear approach was applied to the

deformed configuration of the case with no residual stresses

(h = 0u). We found that, as expected, increasing the opening angle

increased the magnitude of residual stresses (see Fig. 11, left

panels). Residual stresses were negative in the inner portion of the

wall and positive in the outer portion of it, with magnitudes that

depended on both the opening angle and wall material properties.

Loading the closed geometries with an internal pressure resulted in

wall stresses that were progressively smaller in magnitude with

increasing opening angle (see Fig. 11, right panels). As a

consequence, the gradient of stresses across the wall decreased

with increasing h until a flat wall stress profile across the wall

thickness was obtained. Increasing the opening angle beyond this

point resulted in a change in the sign of the wall stress gradient

(inner wall had lower stress than the outer wall). The opening

angle at which a flat wall stress profile across the wall thickness was

achieved strongly depended on the wall material properties

considered. Computations performed using the linear model

showed a relatively flat stress profile across the wall thickness (see

Fig. 11, right panels) that was representative of nonlinear models

that accounted for residual stresses. These results serve as a way of

elucidating possible effects of residual stresses on AAA tissue

stresses, even though the residual stresses cannot currently be

computed on patient-specific models.

Discussion

Wall stress computations of vascular tissues and, in particular, of

AAA tissues are difficult to achieve. This is because tissue

mechanical properties are nonlinear and anisotropic and could

Figure 9. Effective stress distributions versus normalized wall
thickness for the idealized AAA model with thrombus.
Simulations were performed assuming a wall/thrombus material
property ratio (MPR) of 4, 6.7 and 10.25, in the reference, conventional
and linear models. In all cases, an internal pressure of 0.016 N/mm2

(120 mmHg) was applied. Ref: reference model, Conv: conventional
model.
doi:10.1371/journal.pone.0101353.g009

Figure 10. Comparison of circumferential stress distributions
obtained using different tissue material properties in a tubular
model. Material properties employed were those listed in Table 1 (RV,
P1, and P2), and results using the linear model (Lin) are also shown for
comparison. For each panel shown, regardless of the material property
employed in the model the deformed configuration (described by the
outer radius b and wall thickness h) was the same, while the initial,
unstressed configuration was adjusted. (A) Circumferential stress
distributions obtained for the case of a small aneurysm. (B)
Circumferential stress distributions for a larger aneurysm model.
doi:10.1371/journal.pone.0101353.g010
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vary spatially; cardiovascular loads generate large tissue deforma-

tions; and patient-specific geometries can be intricate while proper

boundary conditions can be difficult to estimate. When stresses are

computed using numerical techniques, such as FEA, nonlinearities

introduce convergence problems, in which the solution does not

converge to equilibrium (i.e., equilibrium of forces is not achieved).

These difficulties force researchers to seek solutions by loading the

tissues in small increments. These steps, however, introduce

computational and model-preparation challenges that make

achievement of solutions extremely difficult for non-experts and

tedious for experts. Moreover, wall stresses are typically computed

assuming that the loaded geometries obtained from CT scans,

MRI scans, or ultrasound images are unstressed and unloaded

[17][18]. Application of internal pressures to these geometries

results in large, artificial deformations and stress overestimation

[22][23], which are shown in this study. While methodologies to

find the initial unloaded and unstressed configuration have been

proposed [23], they are difficult to implement [18]. Moreover,

current methodologies do not account for residual stresses,

unknown spatial changes in material properties, or the effects of

Figure 11. Effect of varying opening angle on circumferential residual stresses and loaded stress distributions. The model employed
to compute residual stresses is schematically shown in Fig. 3. The angle h was varied as indicated (with h = 0u corresponding to the case of no residual
stresses), and results obtained from employing different tissue material properties, listed in Table 1, are presented: (A) P1; (B) P2; (C) RV material
properties. Results show residual stresses (left panels) in the unloaded (closed) configuration; and wall stresses after applying an internal pressure,
p = 0.016 N/mm2 (right panels). Circumferential wall stresses obtained using the linear model are included for comparison. For the cases considered,
the unloaded, closed configuration, which exhibits residual stresses, was the same, and characterized by b0 = 30 mm and a wall thickness of 1.5 mm.
As the opening angle increased, the magnitude of residual stresses and gradient of stresses across the wall increased (right column). The magnitude
of wall stresses in the loaded configuration, in contrast, decreased, and the gradient of wall stresses across the wall thickness decreased. Irrespective
of the material properties employed, as h increased, the magnitude of the stresses obtained using the nonlinear material properties (P1, P2, RV)
approached the stress values obtained using the linear model. Dotted lines show the case at which a relatively uniform stress distribution across the
wall was obtained.
doi:10.1371/journal.pone.0101353.g011
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external organs on AAA tissues. Thus, computations of wall stress

are extremely time-consuming and might not yet be accurate given

that patient-specific tissue mechanical properties, residual stresses

and outside boundary conditions are not known.

To facilitate the computation of wall stresses, we propose using

linear models of AAAs. Our linear models assume not only linear

wall material properties, but also infinitesimally small displace-

ments and strains. Thus, the linear models can compute

equilibrium wall stresses while preserving the loaded patient-

specific geometry. The simplicity of the approach allows compu-

tations to be achieved quickly, without nonlinear iterations or

small incremental load steps and without the need to know the

tissue mechanical properties. We found that the proposed linear

approach not only offers the benefits of computational efficiency

and simplicity, but also approximates reference stresses better than

conventional models in various AAA geometries. Additionally,

computations using the linear model provided a desirable and

physiologically relevant flat wall stress profile over the wall

thickness.

Limitations
Our linear, conventional, and reference models involved several

simplifying assumptions. These assumptions included the follow-

ing: i) tissue mechanical properties used were isotropic and

uniform; and ii) residual stresses were generally neglected,

although we included an analysis of residual stresses for idealized

tubular models. These simplifications, nevertheless, are typically

used in models of AAA [9][13][17] and therefore our study is

relevant in elucidating uncertainties introduced by these assump-

tions.

AAA walls are best characterized as nonlinear anisotropic

tissues [7][13][20][26][33][34]. Like our study, many studies of

AAA, however, have been performed assuming isotropic and

uniform nonlinear mechanical properties for wall tissues

[9][13][16][21][35][36]. This is because anisotropic material

properties, including the anisotropy directions, are unknown for

a specific patient; are more difficult to implement than the

hyperelastic isotropic material properties typically assumed; and

are more prone to model convergence issues. Likewise, heteroge-

neities in AAA tissue properties are also not known and cannot

currently be measured on patients. Similar to the conventional

modeling approach with isotropic material properties, use of

anisotropic and even heterogeneous material properties generates

artificial model distortions. Large uncertainties are nevertheless

introduced by the lack of precise knowledge of the patient-specific

tissue material properties. In a recent study [21], biaxial tensile test

results from anisotropic AAA tissues obtained from patients were

fitted to an isotropic energy-density function with relative good

correlation among tensile test data and function values. Like our

study, this previous study showed that the specific choice of tissue

mechanical properties employed has a large effect on wall stress,

including wall stress gradients across the wall thickness. The study

concluded that tissue material properties are important, and that

residual stresses, which decrease stress gradients across the wall,

might be needed to more accurately estimate wall stresses. Further,

other studies [21][37][38][39] also acknowledged that, physiolog-

ically, wall stress is likely to be nearly uniformly distributed in

blood vessel walls, with residual stresses helping to achieve a more

uniform stress distribution. Because equilibrium of forces is

satisfied for the linear models in the intact patient geometrical

configuration, and stress gradients across the wall thickness

obtained using linear models of AAA are minimal, the linear

approach holds promise as an effective, computationally efficient

method for estimating wall stresses in patient-specific AAAs.

Even though circumferential residual stresses and longitudinal

loads are present in blood vessels [37], we generally assumed the

unloaded configurations to be unstressed, as done conventionally

[9][17]. We also assumed that external organs do not affect AAA

wall stress. We explored, however, the effect of residual stresses on

loaded tissue wall stresses. In an idealized straight tube model,

residual stresses result in a more uniform circumferential stress

distribution than the case with no residual stresses (see Fig. 11). A

more uniform stress distribution is postulated to optimize smooth

muscle performance [39] and thus it is assumed to be a more

physiological scenario. This is because a uniform stress distribution

also implies uniform strains (elongation) of smooth muscle cells

across the wall thickness. Smooth muscle contraction efficiency is

optimized when individual cells share the same strains and

contract together at the same time. Residual stresses (and residual

strains) therefore help to bring smooth muscle cells across the wall

to a similar strain under loading conditions, which results in a

more uniform mechanical environment that improves contractility

[38]. AAA walls, however, have expanded and weakened through

extensive remodeling, and might hold only little residual stresses

and/or longitudinal stresses. This is supported by the clinical

observation that AAA tissue collapses when the aneurysm is

unloaded and pathology studies that demonstrate a paucity of

smooth muscle cells in the wall of AAAs compared to normal

aorta. Nevertheless, accurate estimations of patient-specific wall

stresses might be elusive in light of large differences in wall stresses

obtained using different tissue material properties from actual

AAA tissue samples. Thus, even in the absence of residual stresses,

the linear approach may remain effective in approximating wall

stresses in AAA tissues, regardless of the limitations in our

approach.

Another limitation of the linear model is its inability to capture

AAA deformations throughout the cardiac cycle, which may be

useful to assess wall stiffness and, perhaps, tissue mechanical

changes and tissue degradation. Typically, the change in diameter

of a normal aorta near the renal-aortic bifurcation throughout the

cardiac cycle is about 2 mm [40]. Although AAA tissue has been

reported to have less distensibility than a normal aorta due to a loss

of tissue elasticity, an increase in collagen deposition, and a

possible mechanical cushioning effect from the thrombus [41][42],

AAA deformations may be significant. The linear model, however,

may be used together with gated imaging modalities, e.g.,

electrocardiography gated CT scans or MRI scans, which allow

image reconstruction at specific phases of the cardiac cycle. Wall

stresses specific to AAA geometries at different desired phases, e.g.

end-systole and end-diastole, could then be obtained, and wall

stresses can subsequently be related to the extent of deformation

measured between AAA geometries. This information may be

helpful in the assessment of aneurysmal tissue degradation and

thus in assessments of rupture and expansion risks.

Advantages of the Linear Model
The proposed linear model applied to AAA tissues generally

yielded good approximations of wall stresses with relatively small

stress gradients across the wall thickness. The wall stresses

obtained with the linear model were frequently closer to reference

stresses than the stresses obtained using a conventional approach.

Further, the linear model captured the physiologically relevant

situation of small stress gradients across the wall thickness that is a

consequence of residual stresses. Because the linear model

achieved equilibrium of stresses on the patient-specific geometry

directly, boundary conditions (the intraluminal pressure applied to

the inner AAA wall) were exactly satisfied on the deformed

patient-specific geometry. This results in a reduction of artifacts
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due to geometrical distortions of the AAA geometry beyond those

of patient tissue deformations that frequently occur when

conventional approaches are used. Even when approaches that

first compute the unloaded configuration are employed, in which

equilibrium and boundary conditions are also satisfied directly on

the patient-specific geometry, the linear approach yields wall

stresses with a relatively flat stress profile across the wall. Further,

these advantages are achieved in a computationally efficient way,

with a relatively easy and straight-forward implementation.

Incorporation of thickness variability in models of AAA has

been shown to result in significant differences in wall stress

compared to models with a uniform thickness [43]. This is an

important consideration because tissue thickness is typically not

uniform in patients [43]. The use of uniform thickness models,

however, comes from limitations in imaging technologies, from

which determination of wall thickness variations is difficult. With

the improvement of imaging technologies, however, it is easy to

envision that wall-thickness variations would soon be incorporated

into wall segmentation algorithms from images [43][44]. The

linear model could therefore be used for reliably studying the

effects of wall thickness.

Advantages of the linear approach make it a promising tool for

further AAA wall stress investigations and implementation in

clinical practice. The linear model does not require the

computation of an initial configuration; does not artificially distort

the imaged, loaded geometry; and can approximate wall stresses

when wall tissue properties are unknown. Further, the linear

models achieve relatively small wall stress gradients across the wall

thickness, which might be physiologically relevant. The linear

model has the additional advantage over the conventional model

(and even over models that compute the unloaded configuration)

of being much faster and easier to implement, with wall stress

solutions being obtained directly without the need of nonlinear

iterations or time-consuming load steps. The linear approach,

thus, is a robust and computationally efficient tool in computing

wall stresses for patient-specific AAA studies.

Effect of Thrombus in the Calculation of Wall Stresses
Consideration of an intraluminal thrombus (ILT) in the AAA

models could be important since it decreases the magnitude of the

wall stresses [45][46]. The linear model approximated reference

wall stresses very well (,5% difference) when the wall-ILT MPR

were the same for the reference and linear models (see Fig. 9). This

indicates that when the patient-specific wall-ILT property ratios

are known, the linear approach is highly effective at estimating

wall stresses. In a more clinical relevant scenario, determining the

patient-specific wall-ILT MPR is not currently feasible. To

circumvent this problem, we employed a mean MPR, obtained

from mean patient tissue and ILT mechanical property measure-

ments. Other groups that used conventional approaches or

approaches that compute the unloaded configuration also had to

rely on average tissue and ILT material properties (not only MPR).

To assess uncertainties in using average properties, we employed a

mean MPR value of 6.7 for the linear and conventional models,

while allowing the MPR of the reference model to vary. We

observed that wall stress differences between the linear and

reference models vary significantly (from 3.7% to 66%, the latest

for the most extreme case of MPR = 4 in the reference model).

This is, however, an intrinsic difficulty that all models face

(conventional approaches yielded differences in wall stresses with

respect to reference stresses that ranged from 6.3% to 111.2%)

since patient-specific material properties are unknown. Thus, care

will need to be exercised in the computation of wall stresses from

models with thrombi to make sure that wall estimations and

associated risk calculations are conservative.

Effect of Boundary Conditions in the Calculation of Wall
Stresses

Typically, continuum mechanics equations (Eqs. 1 and 2)

establish equilibrium of forces in the deformed configuration. This

implies that boundary conditions are applied to the final,

deformed configuration. As presented before, this choice also

implies that, in a cylindrical model, equilibrium in the reference

and linear models will yield the same value for the integral of shh

over the wall thickness (see Eq. 34), ensuring that linear estimates

of wall stresses are similar to reference wall stresses. The

conventional nonlinear models, however, yield a different equi-

librium integral because application of internal pressure produces

a deformation beyond that of the imaged equilibrium configura-

tion. Application of internal pressure boundary conditions with

respect to the undeformed configuration, rather than the deformed

configuration, in the conventional approach could yield stresses

that are closer to those obtained using the reference model. In fact,

when applying internal pressures to the undeformed configuration,

the magnitude of Cauchy stresses shh and srr were closer to

reference stresses, than those obtained when the internal pressure

was applied to the deformed configuration (see Figs. S4 and S5).

Conventional and linear models then yielded similar estimations of

wall stress. The linear model, however, not only provides and

alternative way of computing AAA wall stresses, but also has the

advantages of easy implementation, solution efficiency, and

independence of tissue mechanical properties.

Potential Clinical Applications
While wall stress could provide better estimation of AAA

rupture risk and expansion than the maximal aneurysm diameter

[5][9][10], current difficulties in the computation of patient-

specific wall stresses, rupture risk, and AAA size progression still

remain. These difficulties include uncertainties in the tissue

material properties and tissue strength; computation of the

unloaded configuration (including residual stresses); unknown

boundary conditions (including the effect of external organs and

the ILT); and the nonlinearity of the models, which increase the

complexity of the computations involved. While patient-specific

AAA loaded geometries can be imaged and segmented for use in

FEA computation of wall stresses, these models do not account for

the patient-specific tissue mechanical properties, which are

unknown and challenging to obtain without tissue dissection. To

circumvent these problems, researchers have been using average

values of AAA tissue material properties and average tissue

strengths obtained from cadaver studies or tissues obtained from

patients undergoing elective repair. Thus, while stresses are

calculated on patient-specific geometries and perhaps patient

specific blood pressures, the remaining assumptions in the model

are not patient-specific. The use of hyperelastic tissue material

properties in the AAA models, in addition, makes the FEA solution

difficult to achieve and time-consuming. Therefore, while several

promising studies relating AAA wall stresses, AAA size progres-

sion, and rupture risk have been conducted in the research arena,

these models have not been widely translated into clinical practice.

Improving the accuracy and efficiency of wall stress computa-

tions is a key step for assessing an AAA patient’s risk of rupture

and for improving our understanding of how wall stresses relate to

AAA progression. We have shown that the use of different tissue

material properties and tissue opening angles can lead to drastic

changes in computed wall stresses and wall stress gradients across

the wall thickness (Figs. 10 and 11). Further, wall stresses depend
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on the mechanical properties of the intraluminal thrombus and

interaction with external organs, which are also typically

unknown. The collective uncertainties introduced by unknown

patient-specific tissue material properties, degree of residual

stresses, and degree of tissue degradation and strength indicate

that computation of truly patient-specific AAA wall stresses might

be elusive. The proposed linear model provides a relatively simple

methodology to estimate wall stresses, which is not only

computationally efficient, but that also ensures satisfaction of wall

stress equilibrium directly in the patient-specific AAA geometry.

Further, the linear model does not require knowledge of tissue

mechanical properties, and yields a physiologically relevant wall

stress profile across the wall thickness.

Implementation of the linear model will tremendously facilitate

automation of the computational process to obtain patient-specific

AAA wall stresses. This can translate into the computation of

patient-specific wall stresses in a much shorter time. Improving the

accuracy and speed for wall stress computations are indispensable

for identifying patients who are at higher risk for AAA rupture or

expansion to the renal arteries or iliac bifurcation and require

emergent repair. Previous studies have shown that wall stress

better discriminates rupture and expansion risks than maximal

AAA diameter. Studies are undergoing to determine the extent to

which wall stresses determined from the linear model can indeed

be used in predicting patient-specific outcomes. The proposed

linear model has shown so far to be a promising clinical tool for

possibly predicting AAA rupture and expansion risk. With the

computation of wall stress enormously simplified by using the

linear approach, studies of rupture and expansion risk can be more

easily performed and extended and prediction of patient outcomes

more readily obtained.

Supporting Information

Figure S1 Relative differences in effective wall stress
distributions for the case of a tubular arterial model.
Similar to Fig. 5, differences of effective wall stress distributions

obtained from the conventional and linear models, with respect to

the stress distributions from the reference model are shown, but

the applied internal pressure was increased to 0.027N/mm2

(200 mmHg). Material constants aref and bref reported correspond-

ed to those of the reference model. RV material properties

(a = 0.174 N/mm2, b = 1.881 N/mm2) were used in the conven-

tional model, and constant elasticity (E = 8.46109 N/mm2) was

used in the linear model. The figure shows results obtained when

the initial geometry was varied in the reference model. The dashed

lines indicate the physiological range of the material property

values for aref.

(TIF)

Figure S2 Relative differences in maximum effective
wall stress distributions for a tubular arterial model.
Models simulated are the same as for Fig. S1, with an applied

internal pressure p = 0.027 N/mm2 (200 mmHg), but the differ-

ences in maximal wall stresses (with respect to reference wall

stresses) are reported instead. Material constants aref and bref

reported correspond to those of the reference model. RV material

properties (a = 0.174 N/mm2, b = 1.881 N/mm2) were used in the

conventional model, and constant elasticity (E = 8.46109 N/mm2)

was used in the linear model. The figure shows results obtained

when the initial geometry was varied in the reference model. The

dashed lines indicate the physiological range of the material

property values for aref.

(TIF)

Figure S3 Relative differences in effective stress on the
lumen surface of a patient-specific AAA model. Differences

in effective wall stress for the linear and conventional models are

with respect to the stresses in the reference model. RV material

properties were employed in reference and conventional models. A

systolic pressure of 0.016 N/mm2 (120 mmHg) was applied to the

lumen of the deformed configurations of the linear and

conventional models.

(TIF)

Figure S4 Stresses in a tubular model when pressure is
imposed on the conventional model’s undeformed
configuration. For comparative purposes, wall stresses in the

thick-wall tube are shown as obtained in the reference,

conventional and linear models. Imposed internal pressure was

0.016 N/mm2 (120 mmHg), and was applied to the initial,

undeformed configuration in the conventional model. (A)

Circumferential stress; (B) effective stress; and (C) radial stress

distributions are plotted across the normalized wall thickness. For

the reference model, the inner and outer radii of the deformed

configuration were 14.8 mm and 16.1 mm, respectively; for the

conventional model, the inner and outer radii of the deformed

configuration were 16.18 mm and 17.45 mm, respectively; RV

material properties were used for both the reference and

conventional models; E = 8.46109 N/mm2 for the linear model.

Conventional models more closely approximated reference wall

stresses than in the case in which pressure was applied to the

deformed configuration of the conventional model.

(TIF)

Figure S5 Patient-specific stress comparisons when
internal pressure is imposed on the conventional
model’s undeformed configuration. Imposed intraluminal

pressure was 0.016 N/mm2 (120 mmHg). Effective wall stresses

(in units of N/mm2) are shown as computed using reference,

conventional and linear models (left). Differences in the effective

wall stress with respect to reference wall stresses for the linear and

conventional approaches are also shown (right).

(TIF)
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