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Abstract: It is accepted that the medicinal use of complex mixtures of plant-derived bioactive
compounds is more effective than purified bioactive compounds due to beneficial combination
interactions. However, synergy and antagonism are very difficult to study in a meticulous fashion
since most established methods were designed to reduce the complexity of mixtures and identify
single bioactive compounds. This study represents a critical review of the current scientific literature
on the combined effects of plant-derived extracts/bioactive compounds. A particular emphasis is
provided on the identification of antimicrobial synergistic or antagonistic combinations using recent
metabolomics methods and elucidation of approaches identifying potential mechanisms that underlie
their interactions. Proven examples of synergistic/antagonistic antimicrobial activity of bioactive
compounds are also discussed. The focus is also put on the current challenges, difficulties, and
problems that need to be overcome and future perspectives surrounding combination effects. The
utilization of bioactive compounds from medicinal plant extracts as appropriate antimicrobials is
important and needs to be facilitated by means of new metabolomics technologies to discover the
most effective combinations among them. Understanding the nature of the interactions between
medicinal plant-derived bioactive compounds will result in the development of new combination
antimicrobial therapies.

Keywords: medicinal plants; bioactive compounds; antimicrobial combination effects; synergy;
antagonism; metabolomics; challenges; future perspectives

1. Introduction

Research in medicinal plant-derived mixtures tends either to focus on one or two
bioactive compounds (secondary metabolites) or to ignore the chemical composition alto-
gether, studying the biological effects of complex mixtures for which bioactive compounds
are unknown. Moreover, research design may be complicated by the chemical complexity
and variability of the medicinal plant extracts/bioactive compounds [1–4]. Recent studies
to elucidate the mechanisms of action of traditionally used medicinal plant extracts have
found a complex mixture of bioactive compounds that act at multiple targets [5–8].

Most of the studies presenting antimicrobial properties of medicinal plant extracts
and bioactive compounds make use of unfractionated extracts that usually show weak
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in vitro antimicrobial activity. These studies were infrequently confirmed by means of
in vivo assays. Thus, the precise mechanisms of action of the vast majority of such bioactive
compounds are unknown [9].

The scientific search for medicinal plant extracts is challenging because of their huge
complexity and variability. Since complex plant extracts and no single bioactive molecules
are often used for medicinal purposes, understanding the interactions between the active
compounds could be of great importance [10–12]. It was found that disease resistance is
less likely to occur against a combination of bioactive compounds than against single active
molecules [11–13]. Medicinal plants are targeting microbes through the combined action of
structurally and functionally diverse active compounds. Combined effects can vary based
on the target microbial species [10,14].

Medicinal plant extracts may contain hundreds or even thousands of individual
bioactive compounds in varying abundances and identifying the bioactive compounds
responsible for a given biological activity is a significant challenge [15]. In fact, the overall
activity of medicinal plant extracts is a result of the combined action of multiple compounds
with synergistic, additive, or antagonistic activity [12,16–19]. It is not acceptable to use
bioactive compounds as medicines without understanding intra-extract interactions on
a wider scale. In several instances, medicinal plant extract activity shows a better effect
than an equivalent dose of an isolated compound [20] and cannot be predicted on what
is known about individual compounds. Whether it is synergy, enhanced bioavailability,
cumulative effects, or simply the additive properties requires further research.

Synergistic interactions between the compounds of individuals or mixtures or medici-
nal plant extracts are a vital part of their therapeutic efficacy. Therefore, medicinal plant
extract synergy needs to be evaluated by rigorous analysis methods and validated in clinical
trials. Moreover, the specific bioactive compounds responsible for those effects and the
basic mechanisms by which they interact are still incompletely understood [21].

The main objective of this critical review is to present an update of the published
data that currently exist to understand antimicrobial combination effects, including both
synergy and antagonism, within complex mixtures of plant-derived bioactive compounds.
In particular, existing approaches that have developed significantly in the last years are
highlighted for studying synergistic or antagonistic antimicrobial combinations of bioactive
compounds and elucidating mechanisms and underlying their interactions. It is question-
able whether the practice of isolating, purifying, and concentrating compounds is really
the best way to study and apply medicinal plants or if this will be proved to be worthless
or harmful. Challenges of combination effects, study limitations, and perspectives are also
analyzed. Finally, this review aims to provide practical information to researchers who
are evaluating the bioactive compounds and mechanisms responsible for the antimicrobial
combination effects of complex mixtures.

2. Terminology of Combination Effects

Several articles were published to provide valuable commentary on the definition
of combination effects in complex mixtures [10–12]. Although the evaluation of interac-
tions between multiple bioactive compounds is popular [20,22,23], it remains difficult to
give an accurate definition for the term synergy [7,22–25] since there are present com-
pounds about which we know very little, either chemically, pharmacologically or even
quantitatively [12,26,27]. However, it is generally agreed that interactions between multiple
bioactive compounds can be classified as synergistic, additive, or antagonistic.

Synergy occurs when the combined effect of compounds is greater than the sum of
their individual effects. Synergy may also arise when one compound enhances the thera-
peutic effect of another compound by regulating its absorption, distribution, metabolism,
and excretion or when all compounds involved are inactive on their own but become active
when combined. Additive and non-interactive combinations indicate that the combined
effect of the two compounds is a pure summation effect, while an antagonistic interaction
results in less than the sum of the effects of the individual compounds. However, the
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additive effect is not simply the sum of the effects of compound A plus B, but it is computed
from the individual effects based on a complex mathematical algorithm equation. Antago-
nism is much easier to define, being a reduced effect from that which is expected [28–31]
(Figure 1).
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3. Medicinal Plants as Complex Systems

Complex systems science is an interdisciplinary approach to science offering an un-
derstanding of collective behaviors of whole systems representing complex integrations of
interconnected subsystems or parts linked to their environments [32]. Complex systems
have multiple structures and functions existing in relationship with information networks
and information exchange. The integration in complex systems creates a system that is
greater than any isolated part [33].

Using complex systems science, plants as living organisms may be considered dy-
namic, self-organizing, and environmentally adaptive. Therefore, medicinal plants are
complex adaptive systems. Complex adaptive properties emerge from the chemical com-
pounds of each medicinal plant. It is the chemical matrix that provides a profile of plant
complexity [34]. Chemical analysis is required not only to establish a correlation between
complex mixtures and molecular interaction properties, but also to understand the putative
synergy, complex cellular processes, and biochemical pathways through the metabolite-
to-gene network [35]. Moreover, plant complexity exists to the greatest degree within the
intact state of the plant and this complexity is reduced the further away from the natural
state that the plant moves.

3.1. Medicinal Plants and Synergy

Potentiating plant synergy occurs because the interactive effects of the plant chemical
matrix, characterized by plurality and diversity of chemical compounds, are greater than
the additive effects of individual compounds. This synergy modulates the biochemical
pathways and changes the membrane potentials, receptor selectivity, and protein shifts [36].

Attenuating synergy arises when compounds in one plant bind to compounds in an-
other to offer protection from toxicity. Physiological synergy occurs when plant compounds
act together to enhance and facilitate absorption, bioavailability, and metabolism and in
turn, decrease potential adverse effects [37].

3.2. Medicinal Plants and Nonlinear Therapeutic Causality

Therapy with medicinal plants is a nonlinear, indirect process that emerges from
engagement with complex networks within a system. The nonlinear therapeutic causal-
ity is demonstrated when local and small perturbations from medicinal plants result in
widespread non-specific effects, which may be unexpected, disproportionate, and non-
sequential in relation to the cause [38]. Medicinal plant compounds act through interactive
mechanisms of adaptation to stress at different levels and the human organism medi-
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ates patterns of response as a result of network interactions. This may also explain how
medicinal plants act to perturb therapeutic patterns on self-organization [39].

4. Antimicrobial Activity of Medicinal Plant-Derived Compounds

Plants are complex, adaptive, and synergistic systems [40]. The low frequency of infec-
tious diseases found in wild plants, in contrast to crop plants, is due in part to the synergistic
effects of multiple antimicrobial compounds [41]. Plants are also known to have co-evolved
with microorganisms and thus established effective chemical responses [42]. Plants and
bacteria share a “genetic instability” and thus they may respond to environmental stressors
by rearranging their genotype [43].

Chemical complexity and the multi-targeted nature of medicinal plants are considered
therapeutic strengths but make the identification of compounds a difficult target [44]. More-
over, medicinal plant extracts of combinations of compounds show a better antimicrobial
effect than isolated compounds. A combination of non-specific mechanisms of action
might create a more effective antimicrobial than an antibiotic. Additionally, studies have
shown that plant-derived antimicrobials often do not induce resistance. It remains to be
understood if those antimicrobials will be subject to the same antimicrobial resistance as
the existing antibiotics [45–47].

5. Antimicrobial Combination Effects of Medicinal Plant-Derived
Mixture Compounds

The uniqueness of medicinal plants is due to their use in combinations and to the
interactions between bioactive compounds. Synergy, a key factor in medicinal plant
medicine, is an effect seen by a combination of compounds being greater than would
have been expected by adding together their separate contributions [48]. Proving and
defining synergy is difficult since complexity in methodology in identifying interaction
effects exists. To do this, the testing of individual compounds and comparing the activity
with an equivalent dose in the mixture is necessary. Although some studies confirm this
methodology, the term “polyvalent” is used to denote an improved and cooperative effect
without qualifying it [49].

It is generally agreed that the use of a combination of multiple antimicrobial agents
can result in different combined effects depending on the composition and concentration
of the compounds. Specifically, synergy is obtained when two antimicrobial compounds
are combined and produce antibacterial activity greater than the sum of the antibacterial
activity of the individual compound. An additive effect is produced by combining an-
timicrobials producing an antimicrobial activity that is equal to the sum of the individual
compound. An antagonist effect results when the antimicrobial activity of two compounds
in combination is less than the sum of the effects of the individual compounds [50,51].

Testing antimicrobial combinations for their interactive effects helps to attain the
following purposes: (1) synergistic combinations could be discovered and enhance antimi-
crobial effects of the individual compounds; (2) it would exclude antagonistic interactions
which can be harmful; and (3) it would minimize the toxicity and adverse effects of
the compounds since they could be used in lower doses in the combination than when
used individually [52].

6. Reported Examples of Synergistic/Antagonistic Antimicrobial Combination Effects

Whole plant preparations are more effective than isolated compounds due to the
interactions between compounds within them [53]. Considerable evidence exists that
combination effects within medicinal plant extracts can alter the antimicrobial activity of a
mixture. Nevertheless, the vast majority of complex medicinal plant-derived compounds
still await chemical research considering that the combined effect of medicinal plant extracts
may be complicated [54]. Here, we provide some examples in which synergistic and
antagonistic antimicrobial activity with medicinal plant extracts were documented.
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Recent studies on antimicrobial complex mixtures of bioactive compounds of es-
sential oils (EOs) have mainly reported synergistic or antagonistic effects rather than
additive effects. In addition, several studies showed that EOs have an antimicrobial ac-
tivity stronger than their main compounds individually tested [55]. For example, the
combination of eugenol with linalool or menthol exhibited the strongest synergy, sug-
gesting that the combination of monoterpenoid phenol with monoterpenoid alcohol is
effective [56]. Moreover, the antibacterial synergy between eugenol and three other bioac-
tive compounds (cinnamaldehyde, carvacrol and thymol against Escherichia coli) was re-
ported [57]. A synergistic effect was also found between carvacrol and thymol against
Penicillium spp., Aspergillus flavus, and Fusarium species with fractional inhibitory concen-
tration (FIC) index ≤ 0.05. Thyme and oregano EO combined showed synergistic effects
against different fungal species with FIC index < 0.5, except for Aspergillus niger, which
exhibited an additive effect with an FIC index of 0.75 ± 0.16. However, a synergistic effect
was exhibited by combined peppermint and tea tree EO against Aspergillus niger [58–60].

Propolis’s antimicrobial activity has been widely studied and its antibacterial and
antifungal activity was demonstrated [61]. It is known that propolis’s antibacterial ac-
tivity results from flavonoids, phenols, aromatic acids, and sesquiterpenes [62]. The
three main flavonoids found in propolis, namely pinocembrin, chrysin, and galangin,
were shown to possess combination effects. In a study, the interactive efficacy of these
three compounds against nine micro-organisms was investigated (Table 1). From the
27 combinations searched, six combinations (22%) were synergistic and nine combinations
(33%) were additive. The Gram-positive and Gram-negative microbes had four additive
interactions each, but the fungal pathogens showed only one additive interaction.

Table 1. Combination effects of propolis’s flavonoids against nine pathogens. Reprinted with
permission from Ref. [63]. Permission to use the data has been obtained from Elsevier, 2019.

Pathogen
Pinocembrin-Chrysin Pinocembrin-Galangin Chrysin-Galangin

FIC Index * Interaction FIC Index Interaction FIC Index Interaction

Gram (+) bacteria
S. aureus 0.57 Additive 1.10 Non-interactive 0.75 Additive

L. monocytogenes 0.76 Additive 0.19 Synergistic 0.26 Synergistic
E. faecalis 1.00 Non-interactive 1.00 Non-interactive 0.81 Additive

Gram (−) bacteria
E. coli 1.12 Non-interactive 0.63 Additive 0.65 Additive

K. pneumonia 1.00 Non-interactive 1.00 Additive 1.00 Non-interactive
P. aeruginosa 0.82 Addittive 0.52 Non-interactive 0.49 Synergistic

Fungal pathogens
C. albicans 1.23 Non-interactive 0.74 Additive 1.00 Non-interactive

C. neoformans 1.00 Non-interactive 0.40 Synergistic 1.00 Non-interactive
C. tropicalis 1.13 Non-interactive 0.44 Synergistic 0.14 Synergistic

* FIC index: Fractional inhibitory concentration index.

Listeria monocytogenes was the microorganism most sensitive to the compound combi-
nations. The remaining 45% of the combinations were non-interactive, but no antagonism
was found. The interaction between galangin and chrysin exhibited synergy regardless of
the ratio at which they were mixed [63]. Evaluating the activity of polyphenols mixture
against Staphylococcus aureus, it was found that the concentrations of the compounds in
the mixture were lower than the minimum inhibitory concentration (MIC) of the most
active compound used separately. This result supports the hypothesis that propolis’s
antimicrobial activity is attributed to the synergistic action of several compounds rather
than the presence of one compound of high antimicrobial activity [64].

Hydrastis canadensis L. (Ranunculaceae) contains several flavonoids, alkaloids, and
other compounds with diverse structures. It was found that the flavonoids from
Hydrastis canadensis, 6-desmethyl-sideroxylin, 8-desmethyl-syderoxylin and sideroxylin en-
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hance through synergy the antibacterial activity of the alkaloid berberine against
Staphylococcus aureus by acting as bacterial efflux pump inhibitors (EPIs). However, several
alkaloids contained in Hydrastis canadensis do not act as EPIs or exhibit biologically relevant
antibacterial activity [65–67].

Artemisinins, produced by Artemisia annua L. (Asteraceae), are accepted as safe and
potent antimalarial agents [68]. Both in vitro and in vivo studies showed that various
combinations including artemisin and its derivatives could be utilized as antimalarial
therapies. Two compounds with antiplasmodial activity, artemisitene and 9-epi-artemisinin,
were found to antagonize the efficacy of artemisinin against both chloroquine-sensitive
and chloroquine-resistant strains. However, some compounds identified within the extract
did not exhibit the same combination effect at all concentrations evaluated. For example,
3-caffeoylquinic acid showed an additive effect in combination with artemisinin at a ratio
of 1:3 (artemisinin: 3-caffeoylquinic acid) when evaluated against the chloroquine-sensitive
strain, but at higher ratios (1:10–100), synergistic interactions were identified. Moreover,
the flavone casticin exhibited antagonistic activity at a 1:3 ratio but was reported to enhance
the in vitro activity of artemisinin by 3–5-fold in other studies using higher combination
ratios (1:10–1.000) [69–71].

7. Synergistic Interactions between Compounds and Antibiotics

Combining antibiotics with activity-enhancing plant-derived compounds is a signifi-
cant strategy in the rapidly developing antimicrobial therapy options. Certain medicinal
plants can inactivate antibiotic resistance mechanisms. This ability is due to synergy be-
tween medicinal plant compounds and antibiotics whose activity would be low when
compounds are absent. In addition, compounds show relevant activity only when they are
utilized together with an antibiotic. However, identifying which compound in an extract is
responsible for the synergistic interaction is difficult. Additionally, some compounds show
synergistic activity by other mechanisms, in addition to their own antimicrobial activity
due to “polyvalent” effects [48,49].

7.1. Essential Oils

EOs and their bioactive compounds comprise part of the group of secondary metabo-
lites that can interact with antibiotics. A combination of five EOs with seven antibiotics
was studied; the combined effect of peppermint, cinnamon bark, and lavender EO with
piperacillin and meropenem showed significant synergy against different Escherichia coli
strains [72].

The combination of Origanum compactum, Chrysanthemum coronarium, Melissa officinalis,
Thymus willdenowii, Boiss, and Origanum majorana, EOs with gentamycin, tobramycin,
imipenem, and ticarcillin against ten Gram-positive and Gram-negative bacterial strains
showed synergy in some cases, but also an antagonistic effect against different bacte-
rial strains was found [73]. In a recent study, EOs prepared from Laurus nobilis L. and
Prunus armeniaca L. species were tested for potential synergistic antibacterial and antifun-
gal effects with three antibiotics, namely fluconazole, ciprofloxacin, and vancomycin. The
EO from Laurus nobilis had the highest antimicrobial activity, with MICs ranging from
1.39 to 22.2 mg/mL for bacteria and between 2.77 and 5.55 mg/mL for yeasts. Of the
32 interactions evaluated, 23 (71.87%) exhibited total synergy, and nine (28.12%) a partial
synergy. The main EOs from Laurus nobilis (eucalyptol, a-terpinyl acetate, and methyl
eugenol) showed the highest synergistic effect with all the antibiotics tested with FIC index
values in the range of 0.266 to 0.75 for bacteria, and between 0.258 and 0.266 for yeasts [74].

In another study, the investigation of combinations in Eucalyptus camaldulensis EOs
with three conventional antibiotics (gentamycin, ciprofloxacin, and polymyxin B) ex-
hibits synergy even in some re-sensitized multi-drug-resistant Acinetobacter baumannii
strains. The detected MICs for the Eucalyptus camaldulensis EOs were in the range from
0.0005 to 0.002 mg/mL. When two Eucalyptus camaldulensis Eos were combined with
ciprofloxacin, synergy was identified against two out of three tested multi-drug-resistant
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Acinetobacter baumannii strains with an FIC index value <0.5 [75]. Bioactive compounds of
Eos, namely thymol and carvacrol, exhibited synergy with penicillin against Escherichia coli
and Salmonella typhimurium. In addition, carvacrol was found to exhibit synergy in combina-
tion with both ampicillin and nitrofurantoin against Klebsiella oxytoca, with FIC index values
of 0.375 and 0.15, respectively, while thymol was non-active. Carvacrol showed the highest
MIC values of 2.5 mg/mL against Klebsiella oxytoca [76]. It was found that eugenol exhibited
synergy with ampicillin against Streptococcus cricetid and Streptococcus gordonii and with
gentamycin against Streptococcus sanguinis and Porfyromonas gingivalis. The MIC for eugenol
was found to be between 0.1 and 0.8 mg/mL in combination with eugenol and ampicillin
the MIC was reduced >4–8-fold in all tested bacteria producing synergy as defined by the
FIC index ≤0.375–0.5 [77]. The antibacterial and streptomycin-modifying activity of the
Thymus glabrescens EO was also studied. The main compounds of this EO were geraniol,
geranyl acetate, and thymol. The MIC for Thymus glabrescens EO was identified to be
between 2.508 and 5.0168 mg/mL. All the combinations studied between compounds and
streptomycin showed mainly antagonistic interactions. Combinations between geraniol
and thymol produced a dominant additive effect (FIC index 0.76 to 1.09) [78].

Phenols, alcohols, and oxygenated monoterpenes identified in some EOs are ef-
fective in biofilm destruction [79]. Rosato et al. [80] reported the synergistic effect of
Cinnammonum zeylanicum, Mentha piperita, Origanum vulgare, and Thymus vulgaris EOs with
gentamycin (FIC index 0.08 to 0.16), oxacillin (FIC index 0.08 to 0.23) and norfloxacin (FIC
index 0.08 to 0.23) on bacterial biofilm growth of four different strains of Gram-positive
bacteria. The interaction of EOs with norfloxacin was the most effective on biofilm growth
in all the tested combinations.

7.2. Propolis

Propolis is a complex biological mixture. Row propolis usually contains 50–70% plant
resins, 30% waxes, 10% EOs and aromatic oils, 5% pollen, and 5% other organic bioactive
compounds. Bioactive compounds include flavonoids (flavanols, flavones, and flavanones),
aromatic acids, terpenes, esters, aldehydes, coumarin, sterols, and fatty acids [81].

The synergy between propolis and other antibiotics can potentially prevent resis-
tance, increase antibacterial efficacy and provide wider antibacterial activity than antibiotic
monotherapy. Therefore, numerous articles were published to indicate the synergistic
effect of propolis and antibiotics [82–84]. For instance, propolis’s ethanolic extract has a
synergistic effect (FIC index ≤ 0.5) with aminoglycoside antibiotics (gentamycin, amikacin,
and kanamycin), tetracycline, and fusidic acid on the inhibition of Staphylococcus aureus
growth [61]. Staphylococcus aureus MIC values were between 0.128 and 0.512 mg/mL. No
antagonistic interaction (FIC index > 4) was identified in this study.

7.3. Phenolic Compounds/Polyphenols

The synergistic activities of baicalein, a flavonoid isolated from the root of
Saitellaria baicalensis Georgi with ampicillin or gentamycin against Gram-positive and Gram-
negative oral bacteria strains, were studied. Both combinations exhibited synergistic effects
(FIC index < 0.375–0.5). Saitellaria baicalensis Georgi was determined with MIC values rang-
ing from 0.08 to 0.32 mg/mL against oral bacteria [85]. Another study evaluating the effect
between amentoflavone (biflavonoid isolated from Selaginella tamariscina) and ampicillin,
chloramphenicol, and cefotaxime showed that amentoflavone exhibited a synergistic inter-
action with antibiotics against the Gram-positive and Gram-negative bacteria studied (FIC
index 0.375 to 0.5) except for Streptococcus mutants. The results showed that amentoflavone,
with a MIC value of 0.004 to 0.032, had remarkable antibacterial activity [86]. In another
study, the antimicrobial activity of seven phenolic compounds with six antibiotics against
multidrug-resistant bacteria of the ESKAPE group was evaluated. Phenolic compounds on
their own revealed little or no inhibitory effects (MIC 0.0125 to 0.4). However, thirty combi-
nations showed antagonistic effects (FIC index > 2) and twenty-four potential synergistic
effects (FIC index 1.0 to 1.5) [87]. Recent studies report that plant extracts show different
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antimicrobial properties against bacterial strains depending on the antibiotic resistance
profile [88]. For instance, Cistus salviifolius and Punica granatum extracts were tested against
100 Staphylococcus aureus clinical isolates, which resulted in average MIC values ranging
between 0.05 and 0.08 mg/mL. The extract of Cistus salviifolius has exerted greater efficacy
against strains of Staphylococcus aureus resistant to beta-lactam antibiotics and this increased
efficacy may be due to the existence of synergy between different classes of polyphenols.
However, the extract of Punica granatum has shown greater efficacy against strains sensitive
to oxacillin and quinolones [89].

7.4. Alkaloids

The compound 1-4-naphthoquinone is a natural alkaloid shown to have antibacterial
activity against both Gram-positive and Gram-negative bacteria. The MIC values of 1-4-
naphthoquinone range from 0.0078 to 0.125 mg/mL. 1,4-naphthoquinone exerts synergy
(FIC index ≤ 0.5) with imipenem, cefotaxime, and cefuroxime against methicillin-resistant
Staphylococcus aureus (MRSA), while against American-type culture collection (ATCC)-
cultured MRSA, a synergistic effect was found only between 1,4-naphthoguinone and
cefotaxime (FIC index = 0.5). An additive combination with imipenem (FIC index = 1.063)
was produced and antagonistic action was identified between 1,4-naphthoquinone and
cefuroxime (FIC index = 8.5) [90].

8. Mechanisms Underlying the Combination Effects

Synergy in drugs can occur through the following mechanism:

8.1. Mechanisms Underlying Synergistic or Antagonistic Antimicrobial Activity
8.1.1. Pharmacodynamic Synergy

Pharmacodynamic synergy results from the targeting of multiple pathways, which
may include substrates, enzymes, metabolites, ion channels, ribosomes, and signal
cascades [12]. It may also occur through complementary actions, where synergists in
a mixture interact with multiple sites of a given pathway and can result in positive regula-
tion of a target or in negative regulation of competing mechanisms [54].

8.1.2. Pharmacokinetic Synergy

Plant-derived compounds can increase the solubility, absorption, transport, distribu-
tion or stimulate the metabolism of bioactive constituents. In this way, the bioavailability
of compounds is enhanced, resulting in increased efficacy of the extract as compared to
individual compounds in isolation [54]. Compounds that improve the solubility of bioac-
tive constituents are a significant type of synergy that is often underestimated. Modulation
of compound/drug transport enhances their absorption through disruption of transport
barrier, delay of barrier recovery, or reduction of excretion by inhibiting drug effects [91,92].
Modulation of distribution increases the concentration by blocking the compound/drug
uptake and inhibiting the metabolic processes that convert a compound/drug into exc-
retable forms. In addition, metabolic modulation stimulates the metabolism of drugs into
active forms or inhibits the metabolism of compounds/drugs into inactive forms [54].

8.1.3. Targeting Disease Resistance Mechanisms

The bacterial resistance to beta-lactam antibiotics can be overcome by the combi-
nation of beta-lactamase inhibitors with beta-lactam antibiotics. It was reported that a
dichloromethane extract of Vitellaria paradoxa C.F. Gaertn leaves the activity of ampicillin,
oxacillin, and nafcillin synergized against MRSA by targeting PBP2a+/−beta-lactamase
enzymes. Oleanolic acid and ursolic acid were found to be the compounds that exerted
this synergy [93,94].
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8.1.4. Elimination of Adversely Acting Compounds

The elimination or neutralization of adverse effects of a toxic, but bioactive compound
by inactive mixture compounds comprises an additional type of synergy. This mechanism
does not improve the efficacy of bioactive compounds but rather acts to minimize the
adverse effects that an active compound may cause [12].

Although mechanisms by which synergy can occur in drugs are relatively well known,
the mechanisms by which medicinal plant-derived compounds exhibit synergetic effects
have not yet been fully clarified. Bioactive compounds act in a synergistic or antagonistic
manner, and it appears that in most compounds multi-target effects predominate [95].
For example, the following mechanisms of antimicrobial interactions can produce synergy
between EOs bioactive compounds: (1) inhibition of several steps in a biochemical pathway;
(2) inhibition of enzymes that degrade antimicrobials; (3) interaction of antimicrobials with
the cell wall; or (4) interaction with the cell wall resulting in increased uptake of other
antimicrobials [96]. Moreover, antagonism is supposed to occur when (1) a combination of
bacteriostatic and bactericidal antimicrobials exists; (2) antimicrobials act on the same site;
or (3) antimicrobials act with each other [97].

8.2. Approaches Identifying Mechanisms of Combination Effects

Determination of the bioactive compounds related to the biological effects of complex
mixtures and recognition of the interactions in which they are involved is very impor-
tant. However, it is also important to identify molecular mechanisms responsible for the
combined effects of complex mixtures. This can occur through the following approaches,
including targeted biological assays to identify molecules that affect specific molecular
targets and evaluation of changes in protein, gene, and metabolic profiles in an untargeted
way [98].

8.2.1. Targeted Assays

A common method to evaluate EPI involves the use of an efflux pump substrate that
fluoresces when it is contacted with cellular DNA. EPI increases the fluorescence of the
substrate because of the increased cellular accumulation. This method was successfully
used to discover EPIs from medicinal plant mixtures [99].

8.2.2. Untargeted Approaches

Multi-target effects, whether they are related to a single compound or multiple com-
pounds, can be identified with indirect approaches. A search of medicinal plant compounds
using molecular interaction profiles may detect the synergistic mechanisms of action. In
addition, the efficacy of medicinal plant mixtures and their effect on molecular targets can
be influenced by differences in genes, timing and dosage of therapy, and environment [54].

A visualization approach (“Synergy Maps”) can provide information on the mecha-
nisms of actions by identifying relationships between individual compound characteristics
and their combination effects [100]. The use of DNA and RNA microassays is another
approach for searching for combination effects within complex mixtures. This approach
enables the identification of genes that are regulated by synergistic or antagonistic interac-
tions between the plant species [101]. In silico approaches predicting the mechanisms of
action were developed to overcome the time- and material-consuming nature of biological
testing. Experimental activity data can be utilized to discover ligand–target relationships
and find the biological activities of different molecules [102]. The Functional Signature
Ontology (FUSION) maps are used to link natural products to their mechanism of action.
Data from measuring gene expression of a representative subset of genes can be combined
into FUSION maps to link bioactive molecules to the proteins that they target in cells [103].
Another approach, the network pharmacology approach can predict the interactions be-
tween molecules and proteins in a biological system and evaluate the pharmacological
effects of natural product mixtures [102].
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9. Determination of Combination Effects
9.1. Collecting Biological Data

The most successful way to collect proper data for understanding combination effects
in complex systems is to choose a suitable biological assay for combination testing. Indeed,
the establishment of high-quality in vitro testing promises for identifying multi-target
compounds in mixtures [103]. Except for carefully collecting the biological assay to study
the combined effects, data relevant to the comparison between a compound combination
and compounds in isolation should be gathered [11].

Potential combination effects including synergy and antagonism can occur over a
wide range of concentrations. Therefore, different ratios of the samples must be tested [11].
Simple assays employing concentration-based methods cannot claim synergy without
further in-depth studies because they lack the range of concentration combinations required
to evaluate combination effects [104]. Time-based approaches were also applied to identify
antimicrobial synergy. These methods involve sampling cultures at regular time intervals
and defining synergistic, additive, and antagonistic effects by using a resulting dose–
response curve [105].

9.2. Assessing Combination Effects

Different reference models that are used to identify the outcome or a given combi-
nation may cause confusion concerning the classification of synergistic or antagonistic
interactions [28,106]. Several reference models as well as their biological properties are
summarized below.

The combination index (CI) is a practical model used for the quantitative identification
of the synergy of multi-compound combination agents acting on the same target/receptor
in a fixed ratio. Synergy occurs when the CI value is <1, while additive effect occurs when
the CI value is 1 and antagonism exists when the CI value is >1 [107].

The two main reference models are the Bliss independence model [108] and the Loewe
additivity model [109]. The Bliss model suggests that each sample has an independent
effect, while the Loewe model considers the expected effect as a sample combined with
itself. If both models confirm an interaction as synergistic, that interaction should be
considered strong synergy. However, if the combination is identified as synergistic by one
model only, it should be considered weak synergy [27].

The isobole equation, based on the Loewe additivity principle, is widely accepted as
one of the most practical models to study combination effects [110]. An isobole or isobolo-
gram is the graphical representation of the combined effects of two samples [11,29,111].
The isobologram model is designed to assess the synergistic/antagonistic interactions be-
tween two compounds acting on the same target and is less adequate to assess the complex
interactions among multiple potential bioactive compounds that may act on a network
target [112] (Figure 2).

Another more recently developed model based on both Loewe and Bliss models, the
zero-interaction potency model, is related to the assumption that two non-interacting sam-
ples cause minimal changes to the dose–response curves. This model potentially identifies
the variety of combination effects that occur in different concentration ranges [113].

The systematic analysis/system-to-system (S2S) model was developed to address the
multi-target synergistic actions of mixed chemical compounds, with a system of targeted
protein/receptors. The S2S studies the multi-target mechanisms of the action of complex
compound mixtures and identifies bioactive compounds, which may bind to most of the
corresponding targets [114]. It is popular as a valuable tool to assess the synergy of complex
medicinal plant formulations [115].
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9.3. Scoring Biological Data

Most synergy analyses focus on the variations of isobologram and FIC index, which
have found many applications [11]. Using measurements of the MIC, the FIC index is
calculated according to the formula: FICA = MICA+B/MICA, FICB = MICB+A/MICB, FIC
index = FICA + FICB. The MICA+B value is the MIC of compound A in the presence of
compound B, and vice versa [116]. This definition was replaced by a general, widely
accepted definition where synergistic interactions are considered to be any values ≤0.5,
additive interactions range from 0.5–1.0, non-interactive effects: range from 1.0–4.0, and
antagonistic interactions are considered to be any values >4.0 [11,117].

Another score, the delta-score, is visualized using an interaction landscape over all
tested dosage combinations to discover any changes in combination effects along with
multiple dosages and response levels [113].

The above-described approaches have not yet been applied widely to identify synergy
in complex natural products. However, the FIC index is frequently used in natural product
research [11].

10. Determination of Bioactive Compounds Responsible for Combination Effects

To identify bioactive compounds and to improve the efficacy of medicinal plant extract
mixtures, bioactive compounds responsible for the biological identity, whether synergistic,
additive, or antagonistic, should be isolated and characterized and their concentrations
should be determined. The data that needs to be integrated for the efficient identification
of bioactive compound combinations include chemical bioactivity data, gene expression
data, targets, and pathway annotations, and gene–protein interaction networks [118].
Metabolomics (the comprehensive analytical approach for the identification and quantifica-
tion of secondary metabolites in a biological system) is a significant tool for standardization
and quality control in medicinal plants [119]. Metabolomics combines sophisticated an-
alytical technologies (mass spectrometry (MS) coupled with various chromatographic
separation techniques) with the application of statistical and multi-variant methods for
data interpretation. Because of the large number of bioactive compounds and the large
variations in abundance, there is no single method available to analyze the whole number
of the chemical compounds [120].
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10.1. Methods to Identify Bioactive Molecules

The most commonly used method to identify bioactive compounds is bioassay-guided
fractionation. In this method, extracts are separated using different chromatographic
techniques, the fractions are evaluated for biological activity and the process is repeated
until bioactive compounds are identified and characterized. To avoid the isolation of known
bioactive compounds, structural evaluation steps to discard samples containing known
bioactive compounds should be taken through high-resolution MS, UV spectroscopy, NMR,
and tandem mass spectrometry (MS/MS) molecular networking [121].

10.2. Methods to Identify Synergy

The synergy-directed fractionation, a modification of bioassay-guided fractionation,
combines chromatographic separation and synergy testing in order to identify synergistic
interactions between the bioactive compounds present in a mixture. Through a combi-
nation of fractions with a known bioactive compound found in the original extract and
testing for combination effects, synergists that did not exhibit activity on their own could
be identified [16]. This method uses MS for guided isolation of bioactive compounds,
with potential synergistic interactions among extracts that could not have possessed any
biological activity through conventional guided fractionation [122].

10.3. Metabolomics Methods to Identify Bioactive Compounds

Fractionation approaches focus mainly on the most easily isolated compounds in a
mixture rather than those that are active [123]. Therefore, many efforts were made to iden-
tify and isolate bioactive compounds by combining the chemical and biological properties
of samples under analysis. To achieve this, bioactive compounds were identified based on
MS and gas chromatography (GC) and biological data. The combination of MS and GC
can be an important analytical tool that separates compounds and identifies their chemical
structures [124]. Nuclear magnetic resonance (NMR) spectroscopy is one of the three (the
other two being GC–MS and LC–MS) principal analytical methods in metabolomics for
profiling and identifying the metabolite in complex mixtures such as plant extracts [125].
NMR-based metabolomics was successfully applied for the identification of antibacterial
mechanisms of action of various compounds [126] and also for the characterization of plant
secondary metabolites [127]. In particular, the NMR approach coupled with multivari-
ate data analysis identified compounds of medicinal plants contributing to the antiviral
activity [128], suggesting actinobacteria and their compounds as a potential control against
phytopathogenic bacteria [129] and showing the antimicrobial mechanism of organic acids
on Salmonella enterica strains [130].

Multivariate statistical methods were applied to integrate biological assay data with
measurements of chemical compounds, a process that is termed “biochemometrics”. Us-
ing more than one statistical model appears to overcome the problems of each model
independently [131,132].

The S-plot method is used to plot the correlation and covariance of variables with a
given biological activity. In a recent study, this method confirmed differences in metabolite
profiles of Garcinia oblongifolia (Clusiacae) and correlated those differences to differences in
biological activity [133]. Another visualization method, the selectivity ratio, showed that
bioactive mixture compounds were identified early in the fractionation process, so that
isolation attempts by LC coupled to MS/MS concern compounds that were more likely to
exert bioactivity [123,134]. Bioactive molecular networking is a process to identify potential
bioactive compounds in which nodes connected in a molecular network represent related
compounds based on MS/MS fragmentation data, and the size of the nodes corresponds to
the predicted bioactivity score [135].

10.4. Metabolomics Methods to Identify Synergy

To establish a metabolomic profile, spectroscopic and spectrometric methods are
used, such as NMR and MS, and separation methods coupled to mass spectrometric
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detection, such as high-performance liquid chromatography (HPLC), ultra-HPLC, GC and
supercritical fluid chromatography. The selection method is influenced by the matrix and
the amount of sample, and the concentration and properties of the metabolites [136]. For
example, using LC–MS-based metabolomics, the synergistic activity of a colistin–sulbactam
combination was found effective against multidrug-resistant Acinetobacter baumannii [137].

Flaxomics, a new metabolomics application measures the actual reaction rates (fluxes)
of metabolic pathways indirectly by the shifts in metabolic levels. Therefore, the flaxone
(total set fluxes) is observing the interactions between all the “-omes”, thus granting a
synergistic insight [138]. In a study, the metabolomic profile of Vibrio alginolyticus and the
role of its metabolism in multi-drug resistance was examined. This was carried out by
detecting the metabolic differences of acetyl-CoA fluxes into and through the P-cycle and
fatty acid biosynthesis [139].

In a recent study, a large discrepancy between the expected and observed activities
of an extract containing the bioactive compounds of berberine and magnolol was noted.
The evaluation of this discrepancy indicated the presence of antagonists within the mixture.
Using chromatographic separation, the antagonists were separated from bioactive com-
pounds, and the activity of the extract was reinstated [134]. Therefore, predictive methods
which can identify bioactive compounds alone may not be capable of determining the
complexity of the extract mixture and other methods, which can identify the presence of
synergists or antagonists, are required.

The combination of synergy-directed fractionation with biochemometric analysis
could identify synergists and additives in complex medicinal plant-derived extracts. In
a study, MS was combined with a biological assay to produce selectivity ratio plots
predicting potential synergistic or additive mechanisms between bioactive compounds
from Hydrastis canadensis, which enhanced the antimicrobial activity of berberine against
Staphylococcus aureus [22]. Using this method, bioactive compounds not previously iden-
tified with synergy-directed fractionation approaches alone were found as synergists
or additives [16].

11. Challenges of Combination Effects
11.1. Biomedical Research and Traditional Uses of Medicinal Plants

Biomedical research of medicinal plants has focused on the bioactivity of processed
medicinal plant products, including mechanisms of medicinal plant parts, isolated fractions,
and purified interactive compounds. On the contrary, traditional knowledge-based medici-
nal plant medicine uses the entire medicinal plant portions. However, there is a tendency
to generalize findings from biomedical research on the chemical parts of a medicinal plant
to the whole portion of the plant. A challenge is whether biomedical research on processed
and possibly enhanced medicinal plant parts or bioactive compounds is applicable to
the traditional uses of medicinal plants. If the bioactive compound is extracted from the
chemical complex of the medicinal plant, it may not have the same function. Bioactive
compounds rarely have the same degree of activity as the unrefined plant-derived extracts
at comparable concentrations or doses of the bioactive compounds. This is attributed to the
absence of interacting compounds present in the extract [140]. Therefore, reductionist meth-
ods of research might have limited applicability to traditional medicinal plant medicine
where complex intact plants are used [141].

11.2. Models for the Study of Combination Effects

Except for a lack of consensus among the models which are used to define combination
effects, there are concerns about how to apply and interpret existing models to analyze
combinations [113]. Comparing combination activity to individual activity at the same
effect level or dosage is a usual error in studies analyzing synergy. Synergy was reported
when the ED50 (median effective dose) value of a combination was significantly lower than
that of each individual compound. However, this suggestion cannot distinguish between a
synergistic effect and an additive effect as it still compares the effect of the combination
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with that of individual compounds, which would result in a wrong conclusion. Moreover,
these studies were conducted to evaluate the interactions of pharmaceutical drugs and do
not take into consideration the complex compound mixtures, effects, and interactions of
whole medicinal plant preparations [142].

Considering that the expected outcome of different models, such as the Bliss inde-
pendence model and the Loewe additivity model, is often dissimilar, it is challenging to
conclude from the resulting data. In some instances, combination effects were determined
as synergistic by one model but antagonists by another [143]. In addition, each of the mod-
els that determine the interactions of bioactive compounds has strengths and limitations,
and therefore care needs to be taken when designing a synergistic study of medicinal plant
compounds. For example, CI and isobologram models are simple and ideal for studying
the interactions of a small number of bioactive compounds with well-defined chemical
properties. These models are also designed for single-target treatment and they are of
limited use in identifying synergistic effects in combined treatments, especially those in
medicinal plant medicine.

In vivo model systems allow the most comprehensive evaluation of the effects on
a living organism [103]. Nonetheless, it is a great challenge to manage the complexity
of in vivo systems such as the sacrifice of animal models, the unsuccessful translation
from one animal model to another, and the fact that patient-to-patient variability in drug
responses is common [26]. To overcome some of these challenges, researchers work with
relevant cellular systems to identify combination effects in vitro [144] and challenges of
relating in vitro findings to in vivo and clinical practice are raised by some authors [145].
However, the biological assay sample may be subjected to a chemical change due to the
environment, making interpretation of the results a real concern [146]. Moreover, the
chemical complexity and variability of medicinal plant compounds and the conflicting
information on their mechanisms of action further increase the challenges for the design
conduct and interpretation of natural product clinical trials [147].

11.3. Determination of Bioactive Compounds and Synergy

Identifying multiple bioactive molecules that may contribute in a synergistic, additive,
or antagonistic manner to biological activity represents a critical challenge in the study of
medicinal plant extracts. Another challenge with extracts is that their greater complexity is
more likely to be associated with all types of interaction [148].

An added challenge is the need to determine the bioactive compounds responsible for
the antimicrobial activity in complex mixtures and their possible interactions. In fact, it is
difficult to apply bioassay-guided fractionation when the activity of the mixture is due to
hundreds or thousands of bioactive compounds which are often unknown and may have
low potency [15]. Despite these challenges, studying only one or two bioactive compounds
in an extract is not reasonable. Almost complete identification of main compounds can
sometimes be possible for some medicinal plants. However, in other cases, there is the possi-
bility that certain bioactive compounds may not be isolated [15]. Several explanations were
proposed for this which may be summarized as follows: (1) the quality of ethnopharma-
cological studies is poor; (2) preclinical laboratory methodologies are often different from
local practices; (3) a whole mixture is necessary for the therapeutic effect if synergy exists
or suspected; (4) whole plant material containing some specific bioactive compounds may
protect other compounds from decomposition; (5) bioactive compounds may not have been
completely identified, although some of the chemistry is known, due to inadequate plant
material processing or fractionation approach; (6) degradation of bioactive compounds
during fractionation may happen; and (7) poor biological models to demonstrate activities
may be chosen.

When addressing the challenge of conducting bioassay-guided fractionation to decide
which mixture compounds to target for isolation, it is important to focus on the most
bioactive fraction from a crude extract [149,150]. However, the concentration of bioactive
compounds may be low following fractionation [110] or the biological activity of the
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extract may be progressively lost through the fractionation but the reason for that is hard
to explain [151]. Additionally, using the chromatographic profile of active and inactive
fractions, one may be biased by the tallest peaks of those most clearly separated from other
peaks, although these may correspond neither to the most abundant nor to the most active
compounds. The extraction of proper information and its adequate interpretation from the
vast amount of data is challenging in metabolomics. The application of advanced statistical
and multi-variant analysis tools has shown that changes are needed to deal with large
data sets [152].

11.4. Biochemometrics to Target Bioactive Compounds

With the emergence of new methods, such as metabolomics, proteomics and tran-
scriptomics, several strategies are currently used to highlight bioactive compounds from
medicinal plant complex mixtures at a very early stage [153]. Such methods would over-
come some bioassay-guided fractionation limitations, and specifically study bioactive
compounds responsible for the activity. However, most of these methods use only one
statistical model for interpretation which is not well adapted to elucidate chemical profile
and bioactivity relationships. Therefore, a combination of statistical models may increase
the performance of biochemometrics. The authors of a study proposed a comprehensive
workflow that combined explorative-solid phase extraction and biochemometrics analysis
with the integration of four statistical models [154].

Using biochemometrics methods, chemical and biological data can be interpreted
when multivariate statistics and potential bioactive compounds identified early in the
fractionation process are used [124,134]. These methods, however, do not provide basic
information about potential unknown bioactive compounds, preventing the ability to opti-
mize isolation efforts. To overcome this challenge, a combination of selectivity ratio analysis
and molecular networking workflow within the Global Natural Product Search was used
to identify putative bioactive compounds not previously known to exhibit antimicrobial
activity [143]. Moreover, by considering both MS/MS fragmentation data and area data,
molecular networking provides the re-isolation, compound annotation, and identification
of potentially active compounds in one step [135,155].

12. Study Limitation

As was mentioned before, identifying which bioactive compounds in complex mix-
tures exhibit biological effects can be challenging. To overcome this limitation, pulsed
ultrafiltration MS was used for the screening of mixtures such as medicinal plant extracts.
Moreover, these extracts may not be completely safe due to the diversity of bioactive com-
pounds in them, when used as antimicrobial agents and, therefore, a need to analyze the
bioactive compounds more clearly and identify the formation of residues is required [156].

A limitation of bioassay-guided fractionation is that fractions throughout the isolation
process may be at very low concentration to present biological effects and therefore be
overlooked. It is also considered a time-consuming, risky, and costly method [157,158].
Synergy-directed fractionation would facilitate the identification of many bioactive com-
pounds including synergists. A limitation of synergy-directed fractionation is that this
method is biased toward the bioactive compounds that are easily isolated. Although this
method focuses on the most bioactive fractions, it is impossible to identify all the bioactive
compounds that they contain due to the complexity of fractions. Therefore, the identified
bioactive compounds may represent only a part of these responsible for the activity of the
complex mixture [65].

Another important limitation is that in vitro assay data to assess bioactive compound
activity may not necessarily translate to in vivo activity, partially due to the complexity of
biological systems and the effects of biological agents that are not identified in vitro models.
It is significant to know that the extent of the utility of any bioassay-guided fractionation
method is limited by the availability of a translatable biological assay [158]. Moreover,
synergistic effects demonstrated in many studies do not necessarily reflect clinical thera-
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peutic superiority. The clinical benefits of complex active compound combinations must be
confirmed in meticulous clinical trials.

Reference and linear regression models are subject to limitations [159]. For example, a
limitation of the FIC index is the focus on a single parameter. Despite this limitation, the
FIC index and isobologram analysis have found the widest application in medicinal plant
research [11]. Similarly, the linear regression models used to predict bioactive compounds
are limited because true linear relationships do not often exist, particularly when evaluating
mixtures with multiple unknown combination effects [26].

13. Future Directions

The development of current and new technologies will result in the identification
of plant-derived antimicrobials and their synergy with antibiotics [160–163], as well as
the clarification of their complex mechanisms of interactions [164]. Therefore, the use of
modern methods, antimicrobial testing with standardized protocols, and quality controls of
plant materials are necessary. For example, studying mechanisms using molecular biology
methods for the identified plant-derived bioactive compounds individually in combination
may possibly facilitate the development of more efficient new antimicrobial agents [165].
Further studies on the complete analysis of the molecular interaction profiles of the bioactive
compounds are needed to provide a more detailed picture of their antimicrobial activity.

Research of plant-derived bioactive compound synergy can be further facilitated
by new knowledge of their synergistic interactions. Studies on untargeted methods to
identify molecular targets of synergy and unknown synergistic or antagonistic mechanisms
of action will be of great importance. Integrated methods completing tasks such as the
identification of bioactive mixture compounds [165], the determination of the nature of their
interactions, and the classification of their mechanisms of action simultaneously should
be developed. Moreover, biomarkers derived from bioactive compounds that regulate
synergistic interactions may be essential for defining treatment strategies.

More research should be focused on the structural clarification of medicinal plant
extracts to identify and isolate new natural antimicrobials and elucidate the mechanisms
of action of their combinational effects [166]. Additionally, new insights are needed in
the research of models investigating systematic connections and whole system responses
over time which should prevail over models that reduce medicinal plant medicine to
parts [155]. New workflows based on the combination of both extraction protocols and
biochemometrics could be a perspective in the context of potentially bioactive compound
discovery screening programs.

14. Conclusions

Unquestionable definitions of synergy and antagonism remain deceptive and a wider
consensus on the terminology used for interaction evaluation is required to standardize
future research actions. Moreover, there is no definitive consensus about which reference
models are best for defining combination effects. Despite this, isobologram analysis and
the FIC index have found the widest use in natural product research.

Approaches for medicinal plant-based antimicrobial synergy research are developing
but in vitro research is not progressing into clinical studies. Indeed, the process of selecting
complex medicinal plant bioactive compounds for in vitro, in vivo, and clinical studies is
challenging. Therefore, the design of meticulous and reproducible studies is obligatory to
prevent unnecessary effort for studies where natural product selection was not carried out
with strict criteria.

The use of biochemometrics to combine bioassay data with chromatographic or spec-
trometric metabolite profiles can lead the isolation process toward bioactive compounds
that may exhibit relevant biological activity.

Synergy in medicinal plant compounds is significant in the context of antimicrobial
resistance, not just because of synergists and antimicrobials, but because it adds to the
systemic ways of knowing about its diversity, adaptability, and complexities. Progress in
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synergy research will rationalize the therapeutic effects of the complex mixtures of plant
bioactive compounds and enhance the possibility of using new antimicrobials.

Classifying combination effects within complex mixtures remains a challenge, par-
ticularly when the majority of established methods are used to reduce the complexity of
mixtures. It is time to examine bioactive compound interactions and not to use the reduc-
tionist method to identify a single bioactive compound in medicinal plant research. The
development of new combination therapies will facilitate the study of bioactive compound
mixtures that naturally exist in medicinal plants.

Only through understanding the nature of interactions between medicinal plant-
derived bioactive compounds will we be able to create safe and efficient preparations for
the treatment of infectious diseases. However, many challenges and unknown factors,
especially when evaluating the process, analysis and function of bioactive compounds,
must be overcome and solved.
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