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Developing machine learning algorithms for dynamic
estimation of progression during active surveillance for
prostate cancer
Changhee Lee 1,8, Alexander Light2,8, Evgeny S. Saveliev 3,8, Mihaela van der Schaar3,4,5,9 and Vincent J. Gnanapragasam 2,6,7,9✉

Active Surveillance (AS) for prostate cancer is a management option that continually monitors early disease and considers
intervention if progression occurs. A robust method to incorporate “live” updates of progression risk during follow-up has hitherto
been lacking. To address this, we developed a deep learning-based individualised longitudinal survival model using Dynamic-
DeepHit-Lite (DDHL) that learns data-driven distribution of time-to-event outcomes. Further refining outputs, we used a
reinforcement learning approach (Actor-Critic) for temporal predictive clustering (AC-TPC) to discover groups with similar time-to-
event outcomes to support clinical utility. We applied these methods to data from 585 men on AS with longitudinal and
comprehensive follow-up (median 4.4 years). Time-dependent C-indices and Brier scores were calculated and compared to Cox
regression and landmarking methods. Both Cox and DDHL models including only baseline variables showed comparable C-indices
but the DDHL model performance improved with additional follow-up data. With 3 years of data collection and 3 years follow-up
the DDHL model had a C-index of 0.79 (±0.11) compared to 0.70 (±0.15) for landmarking Cox and 0.67 (±0.09) for baseline Cox only.
Model calibration was good across all models tested. The AC-TPC method further discovered 4 distinct outcome-related temporal
clusters with distinct progression trajectories. Those in the lowest risk cluster had negligible progression risk while those in the
highest cluster had a 50% risk of progression by 5 years. In summary, we report a novel machine learning approach to inform
personalised follow-up during active surveillance which improves predictive power with increasing data input over time.
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INTRODUCTION
Prostate cancer is the most common male malignancy in the
Western world and its incidence is rising1. The main management
conundrum arises from the sheer diversity of the disease and
different clinical trajectories it can take (https://www.nice.org.uk/
guidance/NG131). Balancing over-treatment and under-treatment
with competing mortality are day-to-day clinical discussions across
the globe, particularly given its apparent low-mortality but high
prevalence (https://www.cancerresearchuk.org/about-cancer/
prostate-cancer). The notion that many prostate cancers do not
need immediate treatment has given rise to active surveillance
(AS) becoming an increasingly mainstream management option
for many men diagnosed with favourable prognosis disease2. It is
estimated that up to 1 in 5 men with newly diagnosed prostate
cancer are now managed at least initially with AS (https://
www.npca.org.uk/content/uploads/2021/01/NPCA-Annual-Report-
2020_-Infographic-140121.pdf/ and 2).
Modern AS has become increasingly sophisticated with the use

of tri-modal monitoring to detect for changes in disease
characteristics during follow-up using a combination of regular
Prostate Specific Antigen (PSA) tests, multi-parametric Magnetic
Resonance Imaging (MRI) as well as repeat prostate biopsies3,4.
Risk stratification models have also allowed more streamlined
scheduling of AS and tailored follow-up5,6. Most models, however,
have been designed using only baseline clinic-pathological
features and few include continuous data collection variables.

To date, a robust method to incorporate dynamic updates of
future risk with continuous data from different monitoring methods
(biochemistry, imaging and biopsy) during follow-up has been
lacking. Machine learning applications allow independent pattern
recognition without pre-programming or specifying variable
interactions. As such it does not rely on traditional statistical
models or constraints. We hypothesised that machine learning
could derive a model incorporating diverse new observations
during AS to continuously modify and update an individual’s risk of
progression while on AS. Here we report the application of novel
machine learning approaches to (i) allow “real-time” risk predictions
that can be dynamically updated and (ii) derive temporal clusters of
patients with similar future time-to-event outcomes based on their
history and new updated observations.

RESULTS
Cohort characteristics
The final cohort included 585 men with a mean age of 65.7 years,
the cohort were predominantly Caucasian reflecting our patient
demographics. Table 1A shows the baseline characteristics of the
cohort. The majority were classified at diagnosis as CPG1 (low-risk,
68.0%). Overall median follow-up were 1601 days (4.4 years). At 3-, 5-
and 10-years follow-up data was available for 65.1%, 44.1% and
10.3% of the cohort, respectively. Table 1B shows the data acquired
during follow-up. PSA was the most frequent data-point available
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followed by serial MRI and re-biopsy (Table 1B). 17 men died of
other causes during AS with no prostate cancer deaths or men
progressing to metastatic disease in this series. 48 men (8.2%) went
on to treatment before they reached the CPG3+ endpoint. Overall
101 (17.2%) progressed to the CPG3+ endpoint. Mean and median
time to CPG3+where this occurred was 1553 and 1150 days (4.3
and 3.2 years) respectively. Figure 1 shows the Kaplan Meier curve of
events over time. Of the 101 who reached CPG3+, 21 progressed to
radiological T3a, 39 had a re-biopsy upgrade to ≥Grade Group 3 and
41 had progressive PSA rises. Pathological progression (radiologi-
cal+ /− biopsy) therefore occurred in 50 men (8.5%) during the

study period. Overall, 71.6% of men were still on AS at the end of
our follow-up period.

Dynamic-DeepHit-Lite (DDHL) model development and
validation
Figure 2 illustrates the schematic of the DDHL prediction modelling,
with both baseline and follow-up covariate data collections. We first
developed the DDHL model on a training set for time-to-event
analysis and then applied it on the testing set (Table 2). Both Cox
and DDHL models showed comparable performance with only
baseline variables considered but improvement in performance of
the DDHL model with the addition of incremental follow-up data.
With 3 years of data collection and 3 years follow-up the DDHL
model had a C-index of 0.79 (±0.11) compared to 0.70 (±0.15) for
landmarking Cox and 0.67 (±0.09) for baseline Cox only. At 5 years
follow-up the C-indices were 0.82 (±0.08), 0.75 (±0.08) and 0.73
(±0.09) respectively. Stated in terms of better predictions, the
number of patients where the DDHL model predictions correctly
discriminate the observed risks compared to landmarking Cox: with
3 years of data collection was 58 and 61, respectively for 3 years and
5 years follow-up (Supplementary Table 1). Model calibration was
good across all models tested particularly at the 3-year follow-up
horizon but not unexpectedly poorer at follow-up at 5 years
(Supplementary Table 2).

Identification of outcome-related temporal clusters
To further interpret the potential of the DDHL model, the AC-TPC
method was used to discover clusters with similar time-to-event
predictions. This identified that men on AS could be assigned to 4
distinct temporal clusters with different trajectories to
CPG3+ progression (Fig. 3A). Those in the lowest risk cluster
had small risks of progression (5% or less) even up to 8 years from
starting AS (Fig. 3A). In contrast those in the highest cluster had
a > 50% risk of progression by 5 years. Men can transit from one
cluster to another based on new observations acquired during AS
(illustrated for two examples from the cohort in Fig. 3B). Both the
temporal outcome-oriented clustering, as well as the risk
predictions aspects of the DDHL model are schematically
illustrated in more detail in Fig. 3C. Supplementary Fig. 4 illustrates
the state transition probability for a given new reading either back
into the same cluster or to a cluster higher or lower. In
Supplementary Fig. 5, an example is shown whereby for a given
set of PSA and PSAd a patient may be at a lower or higher cluster
based on the underlying Grade Group and Stage. If the PSA and
PSAd progressively increases, then the patient may move to the
next highest risk cluster. Alternatively, if an MRI or re-biopsy shows
an upgrade in histology or upstage in disease staging, then this
may also result in a cluster change for a given PSA and PSAd. The
order of most contributing variable on the status of temporal

Table 1. Summary of cohort and data variables collected.

Feature (static) Percentage (%)
and/or range

A

Age at entry 65.7 years (±7.4)

Ethnicity White 95.2%

Others 4.8%

Family History Yes 13.5%

No 86.5%

Risk assignment at
entry into Active
Surveillance

Grade Group Group 1: 79.9%
Group 2: 20.1%

Cambridge
Prognostic Group

CPG1: 68.0%
CPG2: 31%

MRI Stage at entry Stage T1: 26.8 % T2: 72.9
%

LIKERT Scoreat entry* 1 43.4%

2 6.2%

3 15.7%

4 19.8%

5 14.9%

Feature (time-varying) Percentage (%) and/
or range

B

Serial PSA
(ng/ml)

Mean number of observations 13.0 (±8.0)

Mean interval between
observations (days)

150.5 (range 84–182)

Mean difference from baseline 6.44 (range ± 3.97)

Serial MRI Mean number of observations 2.7 (±1.5)

Mean interval between
observations (days)

650.7 (range 378–662)

MRI serial prostate volume
measurements

56.88 (range ± 29.9)

PSAd serial measurements 0.14 (range ± 0.08)

PRECISE Scoring 1: 0.6% 2: 8.3% 3:
79.8% 4: 11.3%

Re-biopsy Mean number of observations 1.8 (±0.8)

Mean interval between
observations (days)

766.2 (range
157–1085)

Core Total 18.17 (±7.13)

Core Positive 2.61 (±2.80)

A: Diagnostic static baseline covariates at Active Surveillance entry used in
model development (n= 585 men). *Includes 69 missing values, mode
imputed to 1. B: Temporal follow-up covariate data points acquired during
active surveillance follow-up in model development (n= 585). All re-
biopsies used image guided sampling of any targets on MRI as well as
systematic biopsies.

Numbers at risk                          585    539   454    381   316   258    209   161   111    78     60     48      30     20       9 
Accumulated CPG3 events         0       15      36      48      63     71      75      81    84      89     90    92      95     98    101

Fig. 1 Kaplan Meier plot and confidence intervals of the cohort.
The number and time to event to Cambridge Prognostic Group 3,
censored or still on Active Surveillance over the period of follow-up
and since the date of diagnosis.

C. Lee et al.

2

npj Digital Medicine (2022)   110 Published in partnership with Seoul National University Bundang Hospital

1
2
3
4
5
6
7
8
9
0
()
:,;



cluster was Grade followed by PSA and Stage (Supplementary
information Section F).

Comparison with other AS prediction models
To benchmark performance, we compared our model and clusters
to a recently reported risk stratification model based on a dynamic
risk prediction model from the Canary PASS group (Supplementary
Table 3)7. This model was developed using landmarking Cox with
time to progression to ≥Grade Group 2 as the endpoint and with
outputs given as percentiles of risk. For a fair head-to-head
comparison, we re-constructed the Canary PASS model using our
cohort and input features used to build the DDHL model and with
CPG 3+ outcome as the endpoint. Our 4-cluster model provided
higher discriminative power over two versions of risk stratification
using the Canary PASS model (3-risk groups; lowest and highest
10th percentiles and an intermediate group; 4-risk group using 25th,
50th and 75th percentiles). This was especially apparent over longer-
time horizons (Supplementary Table 3). With 3 years of data
collection and 3 years follow-up the discovered clusters had a time
dependent C-index of 0.92 compared to 0.62 and 0.79 with the

Canary PASS 3 and 4 tier-risk models respectively; at 5 years follow-
up the C-indices were 0.86 versus 0.63 and 0.78, respectively.

Clinical utility of the demonstrator
To demonstrate practical application of the algorithm, we
developed a webtool https://demo-dynamic-tte.herokuapp.com
to illustrate its potential utility in the clinic (Fig. 4). Two cases with
complete histories are used for illustration. Case A represents a
man with favourable features at AS entry for whom an event
(CPG3+ ) did not occur (Fig. 4). The longer he remains stable
throughout AS (Historic risk tab) his cluster assignment drops by a
tier (Supplementary Fig. 6). The Cluster space tab illustrates this
stable trajectory over time and down-ward movement through
the clusters (Supplementary Fig. 7). Any new observations during
follow-up will consider this long stable history as well as new
readings to predict the risk of future progression which in this case
would remain low (New observation tab, Supplementary Fig. 8).
Based on this stability, this individual’s follow-up intervals could be
reduced and less intensive. We can also model how this trajectory
might have been different without this long stable history
(Supplementary Fig. 9). As an example, if a new MRI had shown
a change in the tumour (PRECISE 4) and a repeat biopsy showed
an upgrade to Grade Group 2, his predicted risk of progression to
CPG3+ increases to 6% by 3 years and 20% by 10 years
(Supplementary Fig. 9). The effect of such changes during AS on
outcome is further illustrated in a case where an event has
occurred. Case B is an individual with higher risk features at the
start of AS (CPG2 at entry and high PSA density). He progressed to
CPG3+ on day 3092 (Supplementary Fig. 10). The Historic risk tab
shows how at each clinic visit his risk was estimated and as repeat
observations did not reduce his risk, he remained in cluster 4
throughout and eventually progressed to an event (Supplemen-
tary Fig. 11). In the Cluster space tab, it can be seen that he never
moved away from the highest risk cluster throughout his AS. In
contrast to the previous case, this individual warrant closer follow-
up to ensure the progression was detected promptly.

DISCUSSION
To date, methods for predicting future progression in active
surveillance have largely been estimated using baseline character-
istics over a fixed time horizon. Here, we show that continuously
collected longitudinal follow-up data can be used to inform and
modify predicted trajectories of disease behaviour. In the area of AS
for early prostate cancer, being able to use new real-time data as it is
collected may allow tailoring of follow-up intervals, highlight a
possible more aggressive trajectory, or conversely reassure about
disease stability. This is particularly important in a disease which can
be unpredictable and that often co-exists with other competing
mortality risks in an ageing male demographic8.

Fig. 2 Illustration of the Dynamic-DeepHit-Lite (DDHL) survival analysis data collection method and its use in prediction modelling. CPG
3 (Cambridge Prognostic Group 3) event as the endpoint.

Table 2. Model discrimination performance for prediction of
progression to Cambridge Prognostic Group 3 (CPG3) event.

Method Prediction Time Evaluation Time

3 years 5 years

Cox (Standard) From baseline 0.796 ± 0.03 0.786 ± 0.04

+1 yr F/up data 0.760 ± 0.04 0.704 ± 0.06

+2 yr F/up data 0.728 ± 0.10 0.701 ± 0.07

+3 yr F/up data 0.673 ± 0.09 0.728 ± 0.09

Landmarking Cox From baseline 0.796 ± 0.03 0.786 ± 0.04

+1 yr F/up data 0.765 ± 0.03 0.717 ± 0.05

+2 yr F/up data 0.764 ± 0.04 0.745 ± 0.05

+3 yr F/up data 0.701 ± 0.15 0.745 ± 0.08

Dynamic-DeepHit-Lite From baseline 0.778 ± 0.05 0.789 ± 0.06

+1 yr F/up data 0.795 ± 0.05 0.740 ± 0.07

+2 yr F/up data 0.780 ± 0.08 0.754 ± 0.09

+3 yr F/up data 0.794 ± 0.11 0.816 ± 0.08

Time-dependent concordance indices are used and compared to standard
Cox model using baseline variables only, landmarking and the Dynamic-
DeepHit-Lite (DDHL) method. Prediction time refers to the period over
which data was collected: at baseline and +1 to 3 years after starting active
surveillance. Evaluation time is the follow-up period over which events
were predicted. The results shown are averaged over 5 random training/
testing splits.
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There is a growing number of studies on machine learning
methods to inform progression risks in cancer and other disease9–11.
There are however relatively fewer studies which have looked at
machine learning in predicting future cancer or progression in a
surveillance scenario12,13. A key limitation is usually a lack of
standardisation in how and what data is collected and which
endpoints are relevant. Prostate cancer represents a unique
oncological disease in that it is well established that non-
intervention is a safe option for many early cancers and its trajectory
can be monitored. This has driven the growth of structured AS
programmes (incorporating serial and multi-dimensional measure-
ment) as an important mainline management14–17. Thus, modern AS
offers a unique opportunity to track the natural history of untreated
cancer through continuously updated data collection.
AS progression calculators which include follow-up data have

been developed based on standard statistical modelling5,6. These
have mainly been used to predict an eventual histological biopsy
upgrading but so far with only moderate performance and have
only been developed in men with very low risk disease at diagnosis
(i.e., Grade Group 1). In this study, we have observed C-indexes
which surpassed these models and improved with more data
collection. A novel aspect of our model is the use of a composite
clinical endpoint (based on the UK National Institute of Health and
Care Excellence (NICE) Cambridge Prognostic Group model). Ours
is also the first model to include baseline and follow-up MRI using
the relatively new PRECISE scoring system for which data and
cohorts are accumulating15,16. Crucially using ML approaches also
means we can include future new variables into the algorithms

rapidly as they emerge from research findings. Beyond our own
study area, the methods illustrated here may also improve other
prediction models in diverse disease settings, e.g., cancer
development in primary care populations, post-treatment follow-
up or even in appropriate timing of treatment escalation. While
landmarking models and joint models are widely used for dynamic
survival analysis, both models have practical limitations: Land-
marking models are “partially conditional” as the model is trained
and make predictions only based on the latest observations
available at the landmarking times rather than incorporating the
entire history. Joint models may suffer from the model misspeci-
fication (e.g., the assumption on the underlying longitudinal
process and time-to-event process) and the optimisation of joint
models produces several computational challenges. Deep learning
models can fully utilize the entire longitudinal trajectories using
RNN specifically designed for classification or regression. However,
to the best of our knowledge, there are no other deep learning
methods suitable for dynamic survival analysis that can provide
valid risk functions which must be a non-decreasing function of
time given the longitudinal observations. Another aspect of our
model is that we derived clusters in addition to individual level
predictions which in our view is more clinically usable to guide
management. By doing so, we considered that clinicians can more
easily leverage temporal clustering as an actionable tool to (i)
recognize similar past patients (for whom a pathway with an
endpoint was already collected) for forecasting future events
which may cause a patient to transit between clusters, and (ii) to
better design follow-up strategies that are tailored to specific

Fig. 3 Description of the risk prediction and temporal clustering outputs and trajectories generated. A Kaplan Meier plot of the survival
distributions and confidence intervals for the 4 temporal phenotypic clusters identified from the DDHL model showing the different rates of
progression to Cambridge Prognostic Group 3 (CPG3) event over time. B Same temporal clusters represented in the space of the two principal
components (PCA) of the latent embeddings (each point corresponds to a sampled patient). Trajectories of two illustrative example patients A
and B also shown: A deteriorates as more observations are collected, moving from Cluster 3 to 4, while B improves, moving from Cluster 2 to 1.
C A schematic illustrating the risk prediction and temporal clustering aspects of the DDHL model. (Right-hand side) Hypothetical Clusters 3
and 4 are illustrated to show the sets of past patients assigned to them in training. Cluster 4 is presented to contain higher risk patients; hence
the histogram indicates an overall earlier time-to-event among these patients. Cluster 3 is presented to contain relatively lower risk patients,
hence the histogram peaks at a later time-to-event. (Left-hand side) A hypothetical patient’s progression: at time t1 the patient has a
comparatively steep risk prediction curve (red slope), and the model assigns him to Cluster 4; as more observations are made at time t2, the
risk profile is lowered, patient is now in Cluster 3.
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clusters. We recognise that using clusters as opposed to individual
predictions may result in a loss in performance but we found only a
small impact when comparing clusters to overall model perfor-
mance (Supplementary Table 3).
Our study does have limitations. It is based on a relatively small

and single centre cohort. Our median follow-up is less than 5 years
though this is a clinically useful time-frame in AS terms4,17. We
note that some variables, for example serial MRI did have a
significant amount of missing data and its value in the model and
whether omitting it would have made a difference is unclear.
Comparison with other models was also challenging as there are
none which include MRI imaging, and few which utilise dynamic
information collected. Others also include variables which we do
not use. For instance, the Canary PASS model incorporates body
mass index, prior medication and a bespoke PSA kinetic value
which is not routinely collected in AS protocols7. Very few have
reported using ML methods and so far, have only consider
baseline variables18. Our AS practice may also not reflect practice
in other units. For example, we are more permissive in allowing
more men with intermediate-risk (CPG2) disease at diagnosis into
AS (38% of our cohort). However, this is becoming increasingly
accepted and thus reflects more contemporary practice17,19. It is
also acknowledged that model performance improves when
predictions are across a wider risk range20. We also acknowledge
that our AS endpoint, CPG3+ , is not a widely accepted one with
most groups using any biopsy upgrading as the key metric to
define progression5–7. However, this endpoint, unlike others, has a

clear guideline recommendation based rational in terms of a
benefit to switching from treatment versus continuing a
conservative management approach (https://www.nice.org.uk/
guidance/NG131). Progression to treatment as an endpoint for
example is known to vary significantly between centres both
within healthcare systems and globally as it is not standardised
and subject to clinical and patient’s selection bias21,22. Our
resultant algorithm based on the CPG3+ endpoint does therefore
need robust external validation including large enough cohorts for
robust statistical comparisons with other prevailing methods
before any future clinical implementation or adoption. Inclusion of
lifestyle factors and comorbidity (e.g., obesity, smoking) that may
hasten progression could also be incorporated into the model in
future work and in this regard machine learning approaches lend
itself well to iterative inclusion of new variables. The results should
therefore be considered hypothesis generating and an exemplar
of the potential utility of machine learning algorithms and
approaches to refine real-time risk prediction. Our model does,
however, already appear to outperform other existing AS
prediction models although this will need formal head-to-head
comparison and more exploration of the most appropriate
number of stratification tiers/clusters.
In summary, we present here a report of the first machine

learning application of real-time temporal clustering of continuous
data to inform prostate cancer active surveillance follow-up based
on longitudinal observations. We demonstrate that the algorithm
outperforms standard statistical tools and improves its predictive

Fig. 4 Representative image from a demonstration interface of how the DDHL and AC-TPC algorithms would work in practice. (available
at https://demo-dynamic-tte.herokuapp.com). Yellow box - data display on the patient’s baseline demographics. Green box - history of
sequential readings, in this display PSA readings over time since starting AS. Red box - when a new data point is entered, it generates a
predicted risk (red slope, in this case this is flat) from that point onwards of developing a CPG3 event until altered by a new reading.
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power over time. We further illustrate how it can be developed
into a clinical tool that can be used in consultations and planning
management in real time. Future work will explore this method
and approach in more detail as a potential strategy to aid
management of men on active surveillance for prostate cancer.

METHODS
Cohort structure
The study used deidentified data from men enroled into a structured AS
programme and prospectively maintained database14,15. The method and
protocol for AS management in our centre has been previously reported in
detail14,15. In brief, all men were diagnosed with Cambridge Prognostic
Group (CPG) 1 or 2 disease (equating to low risk and favourable-
intermediate risk, respectively) based on the UK National Institute for
Health and Care Excellence (NICE) prognostic grouping system (https://
www.nice.org.uk/guidance/NG131) (shown in Supplementary Fig. 1A). Men
were diagnosed by image (MRI) guided biopsy systematic and targeted
biopsy at diagnosis or, if MRI performed after diagnosis, a repeat targeted
biopsy was performed within 3 months14. Patients underwent multi-
parametric prostate MRI on a 3-T Discovery MR750 HDx or a 1.5-T
MR450 scanner (GE Healthcare). Dynamic contrast-enhanced imaging was
performed at baseline, but not in follow-up imaging. Prostate volume was
calculated by MRI estimated volumetric measurements using the ellipsoid
formula. All men on AS had 3-monthly PSA testing and annual repeat MRI
with reporting done at initial diagnosis (using the 5-point Likert scoring
system) and then subsequently monitored using the Prostate Cancer
Radiological Estimation of Change in Sequential Evaluation (PRECISE)
criteria15. Protocol re-biopsies were recommended at 1 and 3 years unless
otherwise indicated by a change in PSA (3 consecutive rises) and/or MRI
change14. We excluded data if there was insufficient baseline information
or with less than 1-year follow-up. Supplementary Fig. S1B shows our data
selection process. The study is registered with Institutional Review Board
approval (Cambridge University Hospitals NHS Foundation Trust, Cam-
bridge, UK; registration number: 3592 and 3059/PRN 9059).

Variables and endpoints for model development
We considered the following variables for model development (i) At diagnosis:
Family history, Prostate Specific Antigen (PSA), prostate volume and PSA
density (PSAd) i.e., PSA divided by volume, histological Grade Group (GG), MRI
stage and Likert score, biopsy core positivity (positive biopsy cores/total cores
taken). PSA, PSAd, prostate volume and core positivity were modelled as
continuous variables. MRI stage, Likert score, GG, and family history as
categorical factors. Missing data were considered missing at random and
imputed using mode (categorical variables) and mean (continuous variables)
standard imputation methods (Table S4). (ii) In follow-up: PSA, PSAd, MRI
PRECISE score, repeat biopsy information (GG and biopsy core positivity).
Missing data were imputed based on the last observation carried forward
method. Any measurements still missing were handled similar to baseline
data. The pre-specified endpoint for this study was progression to ≥CPG3
disease which we have previously reported as a clinically meaningful exit
criterion and consistent with NICE recommendations10. Progression to
CPG3+ is possible through a rise in PSA, change in histological Grade Group
(e.g., an increase from Grade Group 2 to Grade Group 3) or change in stage of
tumour (e.g., T2 to T3) as shown in Supplementary Fig. S1A. Meeting this
endpoint was, therefore, possible through 4 scenarios: (i) upgrading to any
≥GG3 disease on repeat biopsy; (ii) upgrade to GG2 disease if the PSA≥ 10 ng/
mL; (iii) progression to ≥T3 disease; (iv) or a PSA increase to≥ 20 ng/mL. Men
who did not progress were censored at the date of treatment, death, or latest
investigation whichever occurred first. Time-to-event or censoring was
derived from the date of diagnosis or the date of reaching to last contact:
either reaching ≥CPG3 (denoted as CPG3+ ) or last follow-up.

Model description
Dynamic-DeepHit-Lite is a deep learning-based individualised longitudinal
time-to-event model was derived using Dynamic-DeepHit (https://
github.com/chl8856/Dynamic-DeepHit). DDH learns, utilizing a recurrent
neural network (RNN), the distribution of time-to-event outcomes to assess
the risk of disease progression using longitudinally-linked clinical features
that are systematically collected23. In this study, we considered clinical data
collection to be (i) at diagnosis (static observations) and ii) in follow-up
(longitudinal observations) concatenated into an ordered sequence

according to their associated timestamps and linked to the event of
reaching CPG3+ (Supplementary information Section A). Thus, the time-
to-event outcome indicates the time at which a CPG3+ event occurs, or
the time at which a patient is censored (Supplementary Fig. S2 and
Supplementary Information Section B). To apply Dynamic-DeepHit to our
relatively small dataset, the network was regularized by assuming that the
underlying time-to-event process followed the Weibull distribution24. We
modified the output layer such that the conditional intensity functions of
the time-to-event process were estimated as non-linear functions of
clinical pathways, which lead to a significant reduction of the number of
trainable parameters. This modified approach was termed Dynamic-
DeepHit-Lite (DDHL) whose network architecture is illustrated in Supple-
mentary Fig. 2. During testing, we took the clinical pathway of a new
patient as an input into DDHL, then utilized the output to compute the risk
of having an event occurring at or before a given time elapsed since the
last observation (described in Supplementary Information Section C
Equation 4). For model evaluation, we report all the results averaged over
5 random 80/20 splits (80% of the study population (n= 468) for training
the model and hold-out 20% (n= 117) for testing the model). Time-
dependent C-indices and time-dependent Brier scores were adapted to the
longitudinal observations as previously described and calculated for
assessing discrimination performance and calibration performance,
respectively25. Further details on the DDHL method are given in the
Supplementary Methods. Model predictions were compared with standard
baseline Cox and landmarking Cox methods in time-to-event analysis. To
further analyse what DDHL learned, we utilized a temporal outcome-
orientated clustering method; Actor-Critic approach for temporal pre-
dictive clustering (AC-TPC)26. AC-TPC discovers outcome-oriented clusters
by grouping clinical pathways that share similar time-to-event outcomes
despite seemingly heterogeneous progression patterns. The number of
clusters is determined in a data-driven way without pre-specification. In
this study, we modified AC-TPC such that it treated the trained DDHL
algorithm as a black-box function and utilized the inputs and outputs (i.e.,
time-to-event predictions) to partition patients’ clinical pathways into
temporal clusters (Supplementary Fig. 3). This transformed the raw
information into interpretable clusters that could anticipate future
behaviour using recognized similar past patient patterns either, to transit
between clusters or to remain within a cluster Further details on the AC-
TPC method are given in Supplementary Information Section D and E. To
determine the order of contributing variable on the status of temporal
cluster, we used a partial dependence plot [R1] by changing the value of
each variable while fixing the values of other variables to see how the
assigned temporal cluster changes with further details in Supplementary
Methods Section F. To assess the performance of our model we compared
it to a recently reported model from the Canary Prostate Active
Surveillance Study (PASS) group which derived a percentile risk calculator7.
The details of this comparison is provided in Supplementary Information
Section G.

Model application clinical demonstrator
The demonstrator web app was built using Plotly Dash (available at:
https://github.com/plotly/dash), as it provides a flexible API for visualisa-
tion of data-focused Python projects. The app interfaces with the
underlying model directly by loading it from a checkpoint and by loading
cached historic predictions as needed. The design goal of the interface was
to show the user an overview of a patient, as well as the various aspects of
our model. The app covers: (i) risk predictions and cluster assignments
spanning the patient’s history, (ii) a visualisation of a patient’s trajectory
through the clusters plotted in the space of first two principal components
of the latent embeddings, and (iii) provides an interactive inference tool
where predictions can be made using new observations entered by the
user. The demonstrator can be accessed here: https://demo-dynamic-
tte.herokuapp.com.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Access to de-identified data can be requested through application to the
corresponding author and is subject to approval from the institutional regulatory
body and approval of data sharing agreements.
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