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Abstract
Background and Objectives
To integrate genome-wide association study data with tissue-specific gene expression in-
formation to identify coexpression networks, biological pathways, and drug repositioning
candidates for Alzheimer disease.

Methods
We integrated genome-wide association summary statistics for Alzheimer disease with tissue-
specific gene coexpression networks from brain tissue samples in the Genotype-Tissue Ex-
pression study. We identified gene coexpression networks enriched with genetic signals for
Alzheimer disease and characterized the associated networks using biological pathway analysis.
The disease-implicated modules were subsequently used as a molecular substrate for a com-
putational drug repositioning analysis, in which we (1) imputed genetically regulated gene
expression within Alzheimer disease implicated modules; (2) integrated the imputed gene
expression levels with drug-gene signatures from the connectivity map to identify compounds
that normalize dysregulated gene expression underlying Alzheimer disease; and (3) prioritized
drug compounds and mechanisms of action based on the extent to which they normalize
dysregulated expression signatures.

Results
Genetic factors for Alzheimer disease are enriched in brain gene coexpression networks in-
volved in the immune response. Computational drug repositioning analyses of expression
changes within the disease-associated networks retrieved known Alzheimer disease drugs (e.g.,
memantine) as well as biologically meaningful drug categories (e.g., glutamate receptor
antagonists).

Discussion
Our results improve the biological interpretation of genetic data for Alzheimer disease and
provide a list of potential antidementia drug repositioning candidates for which the efficacy
should be investigated in functional validation studies.
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Alzheimer disease is a common neurodegenerative disorder,
characterized in its early stages by mild memory loss and
progressing to severe impairment of broad executive and cog-
nitive functions. The most common form of Alzheimer disease
(late-onset Alzheimer disease) typically affects individuals older
than 65 years and has an oligogenic architecture, with 1 major
(APOE) and around 100 smaller genetic risk factors.1 A recent
genome-wide association study (GWAS) meta-analysis of
71,880 Alzheimer cases and proxy cases and 383,378 controls
identified 20 disease-associated loci.2 Detailed functional
studies showed that these loci harbor common (minor allele
frequency >0.01) single nucleotide polymorphisms (SNPs)
that regulate the activity of genes in immune-related peripheral
tissues (whole blood, liver, and spleen), as well as microglial
cells—the primary immune cells of the brain. Biological path-
way analysis of the implicated genes shows enrichment of
dysfunctional lipoprotein clearance,3 highlighting a potential
link between dysfunctional lipid metabolism and immune re-
sponses in the brain.4

The integration of these genetic data with large-scale drug-
response databases provides an avenue to identify existing drugs
that may alleviate the signs and symptoms of Alzheimer disease.
This approach to drug discovery, known as drug repositioning,
often circumvents expensive and time-consuming phase I and
phase II clinical trials and may double the success rate in drug
approval.5We therefore aimed to develop an analytical pipeline to
integrate genetic risk factors with drug-response data to identify
novel compounds for the treatment of Alzheimer disease.

Genetic risk factors for Alzheimer disease may converge on
highly correlated groups of genes that interact with one an-
other to alter the activity of multiple biological pathways and
cellular processes in a disease relevant tissue.6 Gene expres-
sion is an intermediate molecular phenotype that is directly
modified by DNA sequence variation (expression quantitative
trait loci [eQTLs]), epigenetic marks such as DNA methyl-
ation, and the environment, as well as the expression of other
genes.7 Gene expression analyses of postmortem brain tissue
have identified distinct cell types and biological pathways
underlying Alzheimer pathogenesis.8,9 These studies are
largely based on tests of association with individual genes or
groups of curated genes with a common biological function.
An alternative, agnostic approach is to model gene interac-
tions using gene coexpression analysis, which takes the cor-
relation between every gene pair expressed in a particular
(tissue) sample to generate a molecular substrate for associ-
ation testing with a disease state.10 We recently built gene

coexpression networks using expression data from 14 human
tissues (13 from brain) obtained from healthy donors from
the Genotype-Tissue Expression (GTEx) study.11 We used
these data to test for the enrichment of GWAS signals within
gene coexpression modules (or groups of highly correlated
genes), under the biologically relevant assumption that con-
nectivity among genes may be leveraged to identify genes not
directly implicated in disease. The use of gene expression data
from healthy participants, rather than diseased cases, to build
coexpression networks has a number of advantages. First, it
removes the effect of ascertainment bias when collecting case
and control samples, where common factors (such as medi-
cation use) underlie both the exposure of interest and the
disease.12,13 Second, it mitigates the effect of reverse causa-
tion, where the disease process leads to changes in gene ex-
pression rather than the other way around. Third, for many
brain-related diseases, including Alzheimer disease, the dis-
ease process is likely to start early, before the manifestation of
symptoms for case ascertainment. Successful interventions
are required before irreversible neuronal dysfunction and loss
have occurred. Finally, expression data from nondiseased in-
dividuals are easier to collect and uniformly process in the
numbers required to characterize and model complex mo-
lecular interactions. These advantages ensure the construc-
tion of a robust molecular substrate for the subsequent
integration of disease associations from independent samples.

Recent studies exploring the role of gene coexpression net-
works have been performed using postmortem brain tissues of
patients with Alzheimer disease and non-Alzheimer controls
and recapitulate a role of immune and microglial biological
pathways identified in GWASs.14 Groups of highly connected
(i.e., correlated) immune-related genes contain central regu-
lators (or hub genes) that are highly correlated with their
neighboring genes and whose expression changes with cog-
nitive impairment in Alzheimer disease.14 More recent in-
tegrated approaches that incorporate knowledge of network
coexpression with other genomic elements (such as epige-
netic modifications) identified gene targets and drug com-
pounds for a range of immune-related disorders.15 These data
suggest that characterizing the interaction and dynamic re-
lationship between genes within implicated modules within a
gene coexpression network-based paradigm can identify and
prioritize genes that may serve as effective targets for thera-
peutic intervention.

Coexpression networks can also be used to model the effect of
a drug compound on a group of functionally related genes.

Glossary
CMap =ConnectivityMap; eQTL = expression quantitative trait loci;GTEx =Genotype-Tissue Expression;GWAS = genome-
wide association study; LD = linkage disequilibrium;MOA = mechanism of action; NSAID = nonsteroidal anti-inflammatory
drug; RPKM = Reads Per Kilobase of transcript, per Million mapped reads; SNP = single nucleotide polymorphism; UKBB =
UK Biobank; WGCNA = weighted gene coexpression network analysis.
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For example, the ConnectivityMap (CMap)16 contains gene
expression signatures resulting from genetic and pharma-
cologic perturbagens measured across multiple cell types.
Drug-gene signatures—that is, gene expression changes

following a genetic or pharmacologic perturbagen—can be
integrated with disease-associated gene expression changes
to identify existing compounds that might normalize gene
expression. Characterizing the complex interactions

Figure 1 Overview of the Computational Drug Repositioning Pipeline

(A) For each tissue, perform aweighted gene co-expression analysis to identify modules of highly correlated genes. (B) Test for the enrichment of Alzheimer’s
disease association signals within tissue-specific gene co-expression networks. Assess the functional relevance of enriched modules by performing a
biological pathway analysis of themodular genes. (C) Use S-PrediXcan to impute genetically regulated levels of gene expression for modular genes. All genes
within the enriched module are separated into up-regulated and down-regulated gene sets. (D) Integrate the Alzheimer disease gene sets with the CMap
database to identify compounds that are predicated to “normalise” the Alzheimer disease-associated signature. (E) Generate a ranked list of drug reposi-
tioning candidates and mechanism of action categories.
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between genes in a network-based framework may identify
targets for potential treatments through computational drug
repositioning. In the present study, we have developed a
novel computational drug repositioning approach that in-
tegrates tissue-specific gene coexpression networks with
Alzheimer association signals and drug-gene signature data
to identify and prioritize drug compounds that target disease
processes.

Methods
Alzheimer Disease GWAS Summary Statistics
Detailed methods, including a description of population co-
horts, quality control of raw SNP genotype data, and associ-
ation analyses for the Alzheimer disease GWAS, are described
in detail elsewhere.2 The Alzheimer disease GWAS was per-
formed in a three-stage meta-analysis. The first phase con-
sisted of 24,087 Alzheimer cases and 55,058 controls collected
by the Alzheimer disease working group of the Psychiatric
Genomics Consortium, the International Genomics of Alz-
heimer’s Project, and the Alzheimer’s Disease Sequencing
Project. All cases in phase 1 received clinical confirmation of
late-onset Alzheimer disease. The second phase included
47,793 proxy cases and 328,320 proxy controls from the UK
Biobank (UKBB); proxy cases were defined as individuals
with one or both parents diagnosed with Alzheimer disease,
whereas proxy controls were defined as individuals with

parents who do not have Alzheimer disease. Phase 3 involved
the meta-analysis of phase 1 and phase 2 cohorts, the results of
which were tested for replication in an additional independent
case-control sample from deCODE (6,593 Alzheimer cases
and 174,289 controls). Raw genotype data for each cohort
were processed according to a standardized quality control
pipeline.2 Logistic regression association tests were per-
formed on imputed marker dosages and binary phenotypes in
phase 1, and linear regression for variables treated as con-
tinuous outcomes (the number of parents with Alzheimer
disease) in phase 2. For phase 1 phenotypes, the association
tests were adjusted for sex, batch, and the first 4 principal
components, with age also included as a covariation in the
Alzheimer-PGC cohort. For phase 2 (UKBB) data, age, sex,
batch, and assessment center were included as covariates.
Summary statistics for 13,367,301 autosomal SNPs from
phase 3 of the analyses described in reference 2 (N samples =
455,258) were made available by the Complex Trait Genetics
Laboratory at VU University and VU Medical Centre,
Amsterdam, and were used in our study.

Identification of Gene Coexpression Modules
We downloaded preprocessed and normalized gene ex-
pression data for 13 brain tissues collected by the GTEx
project (gtexportal.org) (version 7). The expression data
were filtered to include genes with 10 or more tissue donors
with expression estimates >0.1 Reads Per Kilobase of tran-
script, per Million mapped reads (RPKM) and an aligned

Table 1 Gene-Set Enrichment Analysis and Biological Pathway Analysis of Alzheimer Disease Modules Across 13 Brain
Tissues in GTEx

Tissue

Gene-set enrichment analysis Biological pathway analysis

N genes Beta SE p Value p Adjust Term Term name p Cor

Amygdala 630 0.157 0.0351 3.80E-06 5.60E-05 GO:0002376 Immune system process 2.48E-73

Anterior cingulate cortex BA24 353 0.164 0.047 2.34E-04 4.50E-03 GO:0006955 Immune response 4.54E-78

Caudate basal ganglia 393 0.143 0.0442 6.28E-04 1.01E-02 GO:0002376 Immune system process 7.84E-73

Cerebellar hemisphere 197 0.248 0.0635 4.78E-05 7.00E-04 GO:0006955 Immune response 2.08E-50

Cerebellum 103 0.425 0.0868 4.78E-07 1.58E-05 GO:0002376 Immune system process 1.60E-32

Cortex 233 0.226 0.0567 3.32E-05 3.00E-04 GO:0006955 Immune response 1.64E-67

Frontal cortex BA9 420 0.13 0.0423 1.02E-03 1.90E-02 GO:0006955 Immune response 1.14E-76

Hippocampus 485 0.212 0.0395 3.98E-08 7.60E-07 GO:0002376 Immune system process 1.12E-95

Hypothalamus 768 0.191 0.0315 7.53E-10 6.68E-08 GO:0006955 Immune response 1.83E-96

Nucleus accumbens basal ganglia 463 0.171 0.0411 1.59E-05 4.00E-04 GO:0006955 Immune response 9.69E-81

Putamen basal ganglia 352 0.175 0.0469 9.61E-05 1.40E-03 GO:0006955 Immune response 5.95E-72

Spinal cord cervical c-1 1,205 0.0915 0.0248 1.10E-04 1.70E-03 GO:0002376 Immune system process 5.86E-77

Substantia nigra 888 0.133 0.0291 2.44E-06 3.94E-05 GO:0002376 Immune system process 3.14E-88

Abbreviations: Beta = test statistic from the gene-set enrichment analysis in MAGMA; GO = Gene Ontology; GTEx = Genotype-Tissue Expression; N Genes =
number of genes inmodule; p adjust = p value corrected for gene size, gene density, and gene correlation; p cor = p value corrected for correlated structure of
GO terms and corresponds to an experiment-wide threshold of α = 0.05; SE, standard error of the test statistic.
See eTable 2, links.lww.com/NXG/A452, for a complete list of enriched biological pathways for the immune system–related modules.

4 Neurology: Genetics | Volume 7, Number 5 | October 2021 Neurology.org/NG

http://www.gtexportal.org/
http://links.lww.com/NXG/A452
http://neurology.org/ng


read count of a least 6 within each tissue. The distribution of
RPKMs in each tissue sample was quantile transformed us-
ing the average empirical distribution observed across all
samples. Finally, the gene expression values for each gene in
each tissue were transformed to the quantiles of the standard
normal distribution.

The construction of gene coexpression modules followed a
protocol previously described by our laboratory.11We used the
weighted gene coexpression network analysis (WGCNA)

package in R v3.5.110 to build gene coexpression networks for
13 GTEx brain tissues. First, we computed an unsigned pair-
wise correlation matrix from the GTEx gene expression values
using Pearson product-moment correlation coefficient. For
each correlation matrix, we selected an appropriate soft-
thresholding value in WGCNA by plotting the strength of
correlation against a range (2–20) of soft threshold powers.We
calculated network adjacency for each correlation matrix using
the appropriate soft-threshold power and normalized each
adjacency to generate a topological overlap matrix. Hierarchical

Figure 2 Gene Overlap (A) and Coexpression Preservation (B) Between Modules Enriched With Alzheimer Disease Asso-
ciation Signals

(A) The number of overlapping genes across tissue-
specific modules is represented by the legend color
scale. Blue represents the lowest gene overlap, and
red represents the highest gene overlap. (B) The
preservation of modular connectivity across tissues
is represented by the legend color scale. A Z score
greater than 10 (light blue-green) suggests that there
is strong evidence that a module is preserved be-
tween the reference and test network modules,
whereas a value between 2 and 10 indicates weak to
moderate preservation, and a value less than 2 indi-
cates no preservation (dark blue). All preservation Z
scores were above 10 (minimum Z = 13.96 [between
spinal cord cervical c-1 and anterior cingulate cor-
tex]), indicating strong preservation of modular con-
nectivity across brain tissues/regions.
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clustering was performed on each topological overlap matrix
using average linkage, with one minus the topological overlap
matrix as the distancemeasure. The hierarchical cluster tree was
cut into gene modules using the dynamic tree cut algorithm,17

with a minimummodule size of 50 genes. For each module, we
calculated the first principal component the gene expression
values (known as an eigengene) and merged modules if the
correlation between their eigengenes was greater or equal
to 0.8.

To assess the comparability of our module assignments to
postmortemAlzheimer disease brain samples, we cross-tabulated
our module assignments with those generated by Morabito
et al.18 Morabito and colleagues used WGCNA to cluster 1,268
postmortem Alzheimer disease brain tissue gene expression data
from 3 different studies—theMayoClinic Brain Bank (temporal
cortex); Religious Orders Study andMemory and Aging Project
(prefrontal cortex); and the Mount Sinai School of Medicine
study (parahippocampal gyrus, inferior frontal gyrus, superior
temporal gyrus, and frontal pole).

Gene-Set Analysis of Gene
Coexpression Modules
The gene-set enrichment analysis of gene coexpression
modules followed a protocol previously described by our
laboratory.11 First, we used MAGMA v1.0719 to (1) identify
Alzheimer disease risk genes and (2) identify coexpression
modules enriched with Alzheimer risk genes using gene-set
analysis. The gene-based test of MAGMA assigns SNPs to
genes within a predefined genomic window (35 kb upstream
or 10 kb downstream of a gene body) and calculates a gene-
based statistic based on the sum of the assigned SNP –log(10)
p values while accounting for linkage disequilibrium (LD). To
identify coexpression modules enriched with Alzheimer dis-
ease risk genes, we performed a competitive gene-set analysis
in MAGMA. The gene-set analysis tests whether the genes

in a gene coexpression module have a greater number of
Alzheimer risk genes compared with other modules than
expected by chance while accounting for gene size and gene
density. We used an adaptive permutation procedure (N =
10,000 permutations) to correct for multiple testing (false
discovery rate < 0.05). The 1000 Genomes European refer-
ence panel (phase 3) was used to account for LD between
SNPs.

Biological Characterization of Alzheimer-
Associated Gene Expression Modules
We performed functional enrichment analysis for each mod-
ule using g:Profiler (biit.cs.ut.ee/gprofiler/).20 Gene symbols
within tissue-specific modules were used as input, and the
gene universe was restricted to annotated genes. We tested for
the overrepresentation of modular genes in Gene Ontology
biological processes and Reactome biological pathways. The
g:Profiler algorithm uses a Fisher 1-tailed test for gene path-
way enrichment, which tests the probability a given gene is
both a member of a coexpression module and particular bi-
ological pathway or process. Multiple testing correction was
performed using g:SCS to account for the correlated structure
of biological annotation terms, corresponding to an
experiment-wide threshold of α = 0.05.

Overlap and Preservation of Gene
Coexpression Networks Across Tissues
We assessed the module overlap and preservation of coex-
pression patterns across tissue-specific coexpression modules.
Module overlap was calculated as the number and proportion
of genes present in each pairwise tissue comparison (N = 78).
Module preservation was calculated using the mod-
ulePreservation function implemented in WGCNA.21 The
module preservation function assesses the similarity of coex-
pression patterns across tissue-specific modules. We used the
Zsummary statistic to represent preservation; a Zsummary

Table 2 Number (Proportion) of Drug Compounds With Significant (≤-90) Connectivity Scores Across 13 Brain Tissues

Tissue

Gene input (N) Number (proportion) of significant connectivity scores by cell type

Total Up Dn A375 A549 HA1E HCC515 HEPG2 HT29 MCF7 PC3 VCAP

Amygdala 34 18 16 93 (0.03) 53 (0.02) 62 (0.02) 100 (0.04) 43 (0.02) 108 (0.04) 37 (0.01) 74 (0.03) 55 (0.02)

Caudate 31 18 13 51 (0.02) 22 (0.01) 77 (0.03) 94 (0.04) 46 (0.02) 58 (0.02) 20 (0.01) 31 (0.01) 28 (0.01)

Frontal cortex 27 18 9 93 (0.03) 51 (0.02) 59 (0.02) 71 (0.03) 60 (0.03) 55 (0.02) 36 (0.01) 48 (0.02) 28 (0.01)

Hippocampus 32 19 13 58 (0.02) 38 (0.01) 44 (0.02) 51 (0.02) 55 (0.03) 64 (0.02) 20 (0.01) 40 (0.01) 22 (0.01)

Hypothalamus 49 25 24 82 (0.03) 26 (0.01) 52 (0.02) 43 (0.02) 43 (0.02) 63 (0.02) 35 (0.01) 34 (0.01) 18 (0.01)

Nucleus accumbens 26 11 15 64 (0.02) 43 (0.02) 47 (0.02) 52 (0.02) 47 (0.02) 53 (0.02) 24 (0.01) 31 (0.01) 19 (0.01)

Spinal cord cervical 81 41 40 41 (0.01) 38 (0.01) 28 (0.01) 67 (0.03) 35 (0.02) 53 (0.02) 25 (0.01) 19 (0.01) 51 (0.02)

Substantia nigra 36 18 18 89 (0.03) 33 (0.01) 76 (0.03) 74 (0.03) 52 (0.03) 52 (0.02) 15 (0.01) 29 (0.01) 27 (0.01)

Abbreviations: CMap = Connectivity Map; Dn = number of downregulated genes; N = total number of genes uploaded to CMap; Up = number of upregulated
genes.
Only genes with reliably imputed genetically regulated gene expression were included in the CMap analysis.
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statistic greater than 10 indicates strong modular preservation
across tissues, whereas a statistic between 2 and 10 indicates
weak to moderate modular preservation, and a statistic less
than 2 suggests no preservation.

Computational Drug Repositioning
Our computational drug repositioning analysis tests the pre-
dicted effect of a drug compound on dysregulated gene ex-
pression modules underlying Alzheimer disease. First, we
used S-PrediXcan (version 0.6.10) to estimate the magnitude
and direction of gene expression changes associated with
Alzheimer disease. This approach integrates eQTL in-
formation with GWAS summary statistics to estimate the
effect of genetic variation underlying a disease or trait on gene
expression.12 We used eQTL information (expression
weights) from 13 tissues generated by the GTEx project (v7)
12 and LD information from the 1000 Genomes Project Phase
3.22 These data were processed with beta values and standard
errors from the GWAS of Alzheimer disease to estimate the
expression-GWAS association statistic. For each GTEx tissue,
we extracted the S-PrediXcan Z scores for genes within
modules enriched with Alzheimer disease association signals
and created 2 lists containing genes with either upregulated or
downregulated expression. Second, the gene lists were used as
the basis of drug repositioning using drug gene signatures
downloaded from the CMap.16 For each gene list and unique
compound in CMap, we calculated a connectivity score based
on a modified Kolmogorov-Smirnov score, which summa-
rizes the transcriptional relationship to the Alzheimer dis-
ease module genes. The connectivity score is a standardized
statistic ranging from −100 to 100, where a highly nega-
tive score indicates predicted expression effect from
S-PrediXcan, and the drug-gene signatures are opposing
(i.e., genes that are upregulated in disease cases are down-
regulated by the compound and vice versa). Third, we se-
lected compounds with connectivity scores of −90 and
lower (indicating a significant effect of a compound on the
Alzheimer disease expression signature). The selected

Table 3 Number and Distribution of Connectivity Scores
by Mechanism of Action

MOA
Drugs
(N)

Genes
(N)

Score quantile

25th 50th 75th

Acetylcholine receptor
antagonist

35 46 −51.50 −15.27 28.48

Adrenergic receptor
agonist

41 49 −44.59 −4.77 35.22

Adrenergic receptor
antagonist

52 117 −44.84 −7.18 33.42

ATPase inhibitor 13 56 −54.54 −19.65 20.70

Bacterial wall
synthesis inhibitor

22 40 −45.14 −0.31 41.56

Calcium channel
blocker

24 131 −46.51 −12.90 28.33

Cyclooxygenase
inhibitor

51 152 −36.42 −3.84 30.63

Dopamine receptor
agonist

23 53 −45.96 −10.81 31.12

Dopamine receptor
antagonist

59 163 −33.93 −2.57 29.98

EGFR inhibitor 22 71 −43.57 3.65 42.91

Estrogen receptor
agonist

18 87 −51.11 −23.08 26.89

Estrogen receptor
antagonist

9 102 −62.86 −30.98 15.64

FLT3 inhibitor 13 98 −66.99 −20.26 43.39

GABA receptor
antagonist

10 33 −52.37 −14.13 32.92

GABA receptor
modulator

8 40 −49.25 6.70 41.38

Glucocorticoid
receptor agonist

31 160 −50.86 −16.13 32.40

Glutamate receptor
antagonist

31 103 −49.73 −10.92 38.69

HDAC inhibitor 19 41 −28.95 19.62 51.30

Histamine receptor
antagonist

39 96 −40.75 −7.57 30.32

JAK inhibitor 11 26 −46.71 −9.44 42.31

MEK inhibitor 12 38 −38.30 −7.79 30.77

Phosphodiesterase
inhibitor

31 104 −38.48 −4.79 29.22

PPAR receptor agonist 19 85 −48.77 6.40 46.45

Progesterone receptor
agonist

13 81 −53.21 −22.36 35.57

Protein synthesis
inhibitor

11 47 −65.55 −27.79 35.74

Retinoid receptor
agonist

10 107 −48.62 −12.89 26.72

Serotonin receptor
agonist

29 67 −36.08 1.07 37.78

Table 3 Number andDistribution of Connectivity Scores by
Mechanism of Action (continued)

MOA
Drugs
(N)

Genes
(N)

Score quantile

25th 50th 75th

Serotonin receptor
antagonist

60 157 −42.09 −4.89 34.09

Sodium channel
blocker

23 98 −38.84 −6.34 24.14

Tyrosine kinase
inhibitor

14 87 −44.91 −10.65 46.80

VEGFR inhibitor 18 91 −54.58 6.62 41.19

Abbreviations: Drugs (N) = number of drugs within each MOA category;
Genes (N) = number of target genes from drug bank and the drug-gene
interaction database within each MOA; MOA = mechanism of action
Score quantile shows the 25th, 50th, and 75th quantiles for connectivity
scores within each MOA.
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compounds were mapped to their target genes using drug-
target information curated from DrugBank23 and the Drug-
Gene Interaction database24 and assign to mechanism of
action (MOA) categories to identify chemogenomic trends.
To assess the disease specificity of the CMap enrichments,
we performed our pipeline using GWAS summary statistics
for schizophrenia,25 a brain-related neuropsychiatric disor-
der with an immune component. Top-ranked compounds
from schizophrenia and Alzheimer disease were placed in a
contingency table and assessed for significant overlap
(i.e., significant in both schizophrenia and Alzheimer dis-
ease) using the hypergeometric test.

To assess how drugs that have undergone a clinical trial for
Alzheimer disease or its associated symptoms were prioritized
by our repositioning pipeline, we downloaded all available
clinical trial data for Alzheimer disease from ClinicalTrials.
gov, resulting in 2,565 records. We subset these data to drug
compound interventions, leaving 1,707 records. Finally, we
intersected the clinical trial drug list with repositioning in-
formation from our study and summarized the connectivity
scores for each drug.

To test the significance of the Alzheimer disease perturba-
tional enrichments (i.e., ensuring that significant results are

Figure 3 Proportion of Drug Target Genes With Significant p Values for Alzheimer Disease by MOA Category

A single asterisk indicates nominal
(Fisher exact test, p < 0.05) enrichment
of smaller than expected (p < 0.05) p
values within a drug category. A double
asterisk indicates significant enrich-
ment of smaller than expected p values
within a drug category after multiple
testing correction for the number of
MOA categories (p < 0.0016). MOA =
mechanism of action.
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not due to random chance), we grouped the observed coex-
pression values for pairs of genes from a single tissue
(amygdala) into 100 bins. We randomly sampled genes across
bins, selecting the same number of gene coexpression values
from each bin as the observed data. This stratified method of
sampling was performed to ensure that the observed and
permuted data were matched on connectivity. The permuted
coexpression modules were uploaded to CMap using the clue
API client, and connectivity scores for each compound were
extracted from the output files. We calculated empirical p
values for observed compounds with connectivity scores
smaller than −90 by counting the number of times the same
compound from the permuted data had a connectivity score
smaller than −90. A compound with an empirical p value
<0.05 is unlikely to be prioritized by random chance.

Standard Protocol Approvals, Registrations,
and Patient Consents
The GTEx v7 data were downloaded from the publicly
available GTEx data portal (gtexportal.org/home/datasets).
Data access followed the guidelines in the Data Use Certifi-
cation Agreement. All study protocols regarding human
subjects have been approved by their local institutional review
board and were compliant with Health Insurance Portability
and Accountability Act (HIPAA) regulations. Informed
written consent was given by family decision makers of de-
ceased donors.26

Data Availability
All data generated during this study are included in this
published article and its supplementary information files.
Original raw data can be made available on request.

Results
Figure 1 provides an overview of our analytical pipeline. Step
1: For 13 brain tissues in GTEx, we performed a weighted
gene coexpression analysis to identify modules of highly
correlated genes. Step 2: We test for the enrichment of Alz-
heimer disease association signals within tissue-specific gene
coexpression networks and assess the functional relevance of
enriched modules by performing a biological pathway analysis
of the modular genes. Step 3: We use S-PrediXcan to impute
genetically regulated levels of gene expression for modular
genes, which provides a direction of effect of dysregulated
gene expression in Alzheimer disease (Alzheimer disease
signature). All genes within the enriched module are sepa-
rated into upregulated and downregulated gene sets. Step 4:
We interrogate the CMap database for drug compounds with
negative connectivity scores that are predicated to normalize
the Alzheimer disease–associated signature. Step 5: We gen-
erate a ranked list of drug repositioning candidates and MOA
categories that show enrichment of nominally significant (p <
0.05) gene-based associations (MAGMA and S-PrediXcan)
across compounds within each category.

Alzheimer Disease Risk Genes Are Enriched in
Gene Coexpression Modules Associated With
the Immune System
Our MAGMA gene-based analysis of existing GWAS data
revealed 74 genes significantly associated with Alzheimer
disease after multiple testing correction (p < 2.78 × 10−6)
(eTable 1, links.lww.com/NXG/A451, and eFigure 1, links.
lww.com/NXG/A463). We tested for the enrichment of gene-
based association in gene coexpression modules built from 13

Figure 4 Top 3 Drugs Within MOA Categories Enriched With Gene-Based Association Signals for Alzheimer Disease

Thedensity plots andhistograms show the distribution of connectivity scores across cell types and tissues for each top-ranked compound. MOA=mechanism
of action.
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GTEx brain tissues.11 In each of the 13 tissues, a single gene
module was enriched with Alzheimer disease risk genes
(henceforth referred to as Alzheimer disease modules)
(Table 1) (eTable 2, links.lww.com/NXG/A452). There
was substantial sharing of genes across the tissue-specific
Alzheimer disease modules. The modules comprised 103
(cerebellum) to 1,205 (spinal cord) genes; 87 genes were
common across all modules and the proportion of shared
genes in pairwise tissue comparisons ranged from 16%
(amygdala and cerebellum) to 100% (cerebellum and hy-
pothalamus) (Figure 2A; eTable 3, links.lww.com/NXG/
A453). Gene pathway analyses found the enrichment of
immune system pathways (e.g., immune system process in
the brain amygdala, p = 2.48 × 10−73, and immune response
in the brain substantia nigra; p = 2.48 × 10−88) within all
Alzheimer modules (Table 1) (see eTable 4, links.lww.com/
NXG/A454, for a full list of biological pathway enrichments in
the Alzheimer disease modules). We assessed the preservation
(i.e., reproducibility) of the connectivity structure across brain

tissues using the WGCNA modulePreservation algorithm.
Strong modular preservation (Z score ≥ 10) was observed
across all brain tissues (Figure 2B), suggesting that the con-
nectivity structure (i.e., correlation) of genes is similar across
brain tissues.

We also found nonenriched modules that harbored significant
(p < 2.78 × 10−6) Alzheimer disease risk genes. For example,
module M1 in the amygdala contained 2 Alzheimer disease
risk genes, PICALM and BIN1, and was enriched for bi-
ological pathways related to myelination and neurogenesis.
Furthermore, module M2 in the amygdala contained 8 risk
genes (including APOC1) and was enriched with pathways
related to synaptic signaling (eTable 5, links.lww.com/NXG/
A455). However, these modules were not statistically
enriched with Alzheimer disease risk genes on a global level
and did not replicate well across GTEx brain tissues. We
therefore focused on the immune system-related modules for
the computational repositioning analysis.

Table 4 Top-Ranked Glutamate and Dopamine Receptor Antagonists for Repositioning in Alzheimer Disease

Compound MOA

Connectivity score

Mean Min Max N ≤ 290

Methylergometrine Dopamine receptor antagonist −50.65 −97.62 −10.86 1

L-689560 Glutamate receptor antagonist −47.96 −95.76 38.17 6

Memantinea Glutamate receptor antagonist −43.88 −94.74 65.57 2

Ziprasidone Dopamine receptor antagonist −39.64 −98.86 45.44 1

Thiothixene Dopamine receptor antagonist −38.43 −92.71 23.85 1

Fluphenazine Dopamine receptor antagonist −30.93 −95.07 62.63 1

Dextromethorphan Glutamate receptor antagonist −30.92 −99.36 48.45 2

YM-298198 Glutamate receptor antagonist −21.14 −94.32 83.77 1

N20C Glutamate receptor antagonist −20.32 −94.04 76.00 2

Ifenprodil Glutamate receptor antagonist −16.50 −92.86 68.01 2

Flupirtine Glutamate receptor antagonist −16.46 −88.88 92.51 0

Felbamate Glutamate receptor antagonist −16.13 −93.40 69.99 1

SCH-23390 Dopamine receptor antagonist −14.05 −90.08 77.37 1

Clozapine Dopamine receptor antagonist −12.22 −96.72 87.41 2

Droperidol Dopamine receptor antagonist −10.60 −99.77 86.29 5

GR-103691 Dopamine receptor antagonist −10.45 −96.67 87.93 3

SIB-1893 Glutamate receptor antagonist −9.39 −97.26 84.33 3

NBQX Glutamate receptor antagonist −9.38 −99.64 93.74 3

Iloperidone Dopamine receptor antagonist −9.06 −97.64 84.81 1

Triflupromazine Dopamine receptor antagonist −8.49 −99.29 64.73 1

Abbreviations: CMap = Connectivity Map; MOA = mechanism of action.
N ≤ −90 shows the number of times a given drug compound had a connectivity score ≤ −90 across tissues/CMap cell types.
a Memantine is currently used for the treatment of moderate-to-severe Alzheimer disease.
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We compared our gene coexpression modules, which were
derived from brain tissue samples from healthy donors, with
modules reported by Morabito et al., who derived their
modules from postmortem Alzheimer disease brain tissue
samples. We found an average of 54% of genes overlapping
between our modules and a single postmortem module from
Morabito et al., with nonoverlapping genes falling within an
unassigned (gray) module (eTable 6, links.lww.com/NXG/
A456, and eTable 7, links.lww.com/NXG/A457). Impor-
tantly, the overlapping postmortem module was enriched
with Alzheimer disease GWAS association signals as well as
microglial cell markers and immune-related biological path-
ways. These data suggest that gene expression from non-
diseased brain tissues coupled with imputation of genetically
regulated gene expression may capture gene coexpression
networks underlying Alzheimer disease.

A Computational Drug Repurposing Analysis
Identifies Drug Compounds for
Further Analysis
Our tissue-specific gene coexpression modules provide a
useful substrate for the identification and prioritization of
drugs that may normalize altered gene coexpression in Alz-
heimer disease. We used S-PrediXcan to identify genes whose
genetically regulated expression is associated with genetic
variation underlying Alzheimer disease (eTable 8, links.lww.
com/NXG/A471). The use of genetically regulated gene
expression removed unwanted environmental effects on gene
expression (e.g., medication use) and thereby mitigates re-
verse causation. We assigned the S-PrediXcan Z score for the
direction and magnitude of effect to all genes within Alz-
heimer disease risk modules and generated lists of upregulated
and downregulated genes. The gene lists were used as input to
the CMap, which computes a connectivity score based on the
transcriptional relationship between the gene lists and ob-
served drug-gene signatures across multiple cell types. Table 2
provides a summary of the number of upregulated and
downregulated genes uploaded to CMap and the number and
proportion of drug compounds with significant connectivity
scores by brain tissue (a full list of compounds with significant
connectivity scores [score ≤ -90] is provided in eTable 9,
links.lww.com/NXG/A458).

To identify drug categories associated with Alzheimer disease,
we first assigned each drug compound to a MOA category
(Table 3; eTable 10, links.lww.com/NXG/A459). We then
tested for the enrichment of nominally significant (p < 0.05)
gene-based associations (MAGMA and S-PrediXcan) across
compounds within each category. Two categories—
glutamate receptor antagonists and dopamine receptor
antagonists—harbored a larger proportion of nominally sig-
nificant p values for Alzheimer disease than expected by
chance (Figure 3). We extracted top-ranked compounds (by
mean connectivity score across all tissues and cell types)
within significant MOAs and plotted the distribution of their
connectivity scores (Figure 4). The top 3 glutamate receptor
antagonists included memantine, commonly used to treat the

symptoms of moderate-to-severe Alzheimer disease, and
dextromethorphan, a compound with clinical efficacy for the
treatment of agitation associated with Alzheimer disease,
highlighting the utility of our approach. Top dopamine re-
ceptor antagonists included a number of antipsychotics (e.g.,
ziprasidone) that are used to treat aggression and behavioral
issues in Alzheimer disease (Table 4).27 We also examined
how drugs that have undergone a clinical trial for Alzheimer
disease and/or its associated symptoms performed in the
repositioning pipeline. Although their respective MOA cate-
gories were not enriched with Alzheimer disease association
signals, top-ranked drug compounds that have undergone a
clinical trial included naproxen (cyclooxygenase inhibitor),
mirtazapine (serotonin receptor antagonist), and caffeine
(phosphodiesterase inhibitor) (eTable 11, links.lww.com/
NXG/A460).

To assess the significance of drug-gene level results, we ap-
plied a permutation procedure (methods) using expression
data from the amygdala—the tissue with the largest number
of drug-gene associations. The results show that top-ranked
compounds are unlikely to be due to correlated expression
(eTable 12, links.lww.com/NXG/A461). We also ran our
network-based pipeline with GWAS summary statistics for
schizophrenia, a brain-related disorder with an immune
component that is not genetically correlated with Alzheimer
disease, as a negative control, and found no significant overlap
(hypergeometric test) with our observed results for Alzheimer
disease across cell types (eTable 13, links.lww.com/NXG/
A462). These observations strengthen the candidacy of po-
tential Alzheimer therapeutics and illustrate the potential of
CMap within a gene coexpression network framework to
generate novel, unbiased hypotheses on the pharmacologic
modulation of disease states.

Discussion
We developed a novel computational drug repositioning ap-
proach based on the integration of SNP genotype, tissue-
specific gene coexpression patterns, and drug perturbation
data. Computational drug repositioning provides a bi-
ologically valid approach to evaluate the predicted effect of
drug compounds on cellular activity. We applied a tissue-
specific network-based gene coexpression method to identify
groups of highly correlated, functionally related genes asso-
ciated with Alzheimer disease. Gene-based analyses of GWAS
summary statistics were enriched in a single gene module in
13 brain tissues, each of which contained genes involved in the
immune system and immune response. A computational drug
repositioning analysis of genes within these tissue-specific
Alzheimer modules identified drugs and broader mechanisms
of action categories. Some of the identified compounds have
been approved to treat Alzheimer disease and its associated
symptoms (e.g., memantine). We also provide a list of plau-
sible novel drug candidates for functional validation studies.
Our results demonstrate that a tissue-specific approach to
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gene discovery in Alzheimer disease may not only identify
candidate causal genes, tissues, and biological pathways but
also targets for therapeutic intervention.

Neuroinflammation has an important role in the onset and
progression of the pathologic changes underlying Alzheimer
disease. Independent studies have identified immune-related
proteins and cells in the proximity of β-amyloid plaques,28 for
example, and epidemiologic reports suggested that anti-
inflammatory agents used to treat immune disorders, such as
rheumatoid arthritis, decrease the risk of Alzheimer disease.29

It was not until the publication of a large-scale GWAS on
Alzheimer that the first robust evidence for a causal associa-
tion between neuroinflammation and disease onset was
established.2 We performed a secondary analysis of the
GWAS results, and the study of tissue-specific gene coex-
pression patterns allowed us to investigate a larger set of genes
that might be implicated in disease based on network con-
nectivity. We identified immune system–related tissue-
specific modules (i.e., groups) of coexpressed genes that are
both enriched with Alzheimer disease association signals and
strongly preserved (i.e., replicated) across tissues.

Our gene coexpression networks, built frombrain gene expression
data from healthy individuals, showed good overlap with post-
mortemAlzheimer disease samples, whichwere also enrichedwith
GWAS signals and immune system–related biological pathways.
This suggests that coexpression patterns from nondiseased brain
tissue followed by the integration of disease-associated genetically
regulated gene expressionmay be used to identify groups of genes
whose activity drives Alzheimer disease onset and progression.
Furthermore, the diversity of sampled brain regions between
GTEx and the data sets used byMorabito, which included samples
from the temporal cortex,30 prefrontal cortex,31 parahippocampal
gyrus, inferior frontal gyrus, superior temporal gyrus, and frontal
pole,32 suggests that genetically regulated changes underlying
Alzheimer disease may converge on neuroimmune networks
operating across brain regions. Therefore, meaningful biological
insights for Alzheimer diseasemay be derived from the integration
of disease-associated genetic data with large numbers of non-
diseased and non–tissue-specific brain samples, which are rela-
tively easy to collect for a sufficiently powered study.

We further demonstrated the versatility of coexpression
network-based methods with the application of a novel com-
putational drug repositioning approach, where the imputed ef-
fect direction in Alzheimer disease for all genes within disease-
implicated modules was used as input to CMap. This approach
was taken under the biologically valid assumption that a drug
compound not only alters the activity of a single target gene but
the activity of multiple related genes through coregulation.33

Furthermore, by imputing gene expression effects from GWAS
summary statistics, we focused only on genetically regulated
gene expression effects, thereby removing unwanted variation on
gene expression from environmental effects (e.g., medication
use) as well as controlling for reverse causation.12 This approach
identified drug compounds within disease relevant mechanisms

of action that are predicted to normalize the expression of can-
didate causal genes in Alzheimer disease.

We identified 2 drugMOA categories enriched with smaller than
expected Alzheimer disease association signals: glutamate re-
ceptor antagonists and dopamine receptor antagonists. Gluta-
mate is present in higher levels in patients with Alzheimer
disease.34 Increased glutamate in the brain is widely thought to
promote neurotoxicity and neurodegeneration andmay also may
also trigger neuroinflammation in (genetically) susceptible indi-
viduals.35 Genetic studies strongly support a role of the immune
system in Alzheimer disease pathophysiology,36 and risk genes
are highly expressed in microglia—the primary immune cells of
the brain.37,38 Therefore, glutamate may be an important link
between the nervous and immune systems in Alzheimer disease
onset and progression, with a central role for microglial cells,
however, a functional mechanism has yet to be established. Do-
pamine receptor modulators are also used to treat some of the
symptoms of Alzheimer disease, such as agitation and psycho-
sis39; however, a clear role of dopamine in Alzheimer patho-
physiology has yet to be established. Nonetheless, dopamine is an
important regulator of immune function and response in the
brain,40 and microglial cells express functional dopamine recep-
tors. Therefore, dopamine may also play a role in the crosstalk
between immune and nervous systems in Alzheimer disease.

Top-ranked glutamate receptor antagonists included mem-
antine, which is approved to treat the symptoms of moderate-
to-severe Alzheimer disease,41 and dextromethorphan, which is
used to treat agitation associated with Alzheimer disease.39

Other highly ranked selective antagonists of glutamate recep-
tors with potential neuroprotective effects included ifenprodil,
shown to ameliorate amyloid-β induced inhibition of synaptic
transmission and hippocampal dysfunction,42 and flupirtine, a
well-tolerated nonopioid analgesic drug with potential neuro-
protective effects.43 Highly ranked dopamine receptor antag-
onists included methylergometrine, which has been shown to
inhibit inflammasome degranulation under proinflammatory
conditions44 with potential therapeutic benefits for diseases
with an inflammatory component, such as Alzheimer disease.
While these drugs alleviate the symptoms of Alzheimer disease,
it is not known if they target a causal gene or biological
mechanism. Our results suggest that these drugs may indeed
target a causal mechanism, given that the drug-gene signatures
were derived from genetic data from Alzheimer disease cases
and controls. The use of drug perturbation data may therefore
refine our understanding of gene mechanisms underlying
Alzheimer disease, in addition to potential therapeutic targets.

Genetic associations for Alzheimer disease are enriched in
genomic regions that encode druggable gene targets.45

Computational repositioning is therefore a promising avenue
for the translation of genetic associations to drug targets. So
et al.46 used GWAS-imputed transcriptome profiles and the
CMap algorithm to identify candidates for drug repositioning
in neuropsychiatric disorders and identified several non-
steroidal anti-inflammatory drugs (NSAIDs), also known as
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cyclooxygenase inhibitors, with possible benefits in Alzheimer
disease. We identified several NSAIDs with promising con-
nectivity score distributions across cell types and tissues, in-
cluding (for example) naproxen, which has shown mixed
results for their protective effect from Alzheimer disease.47,48

However, we did not find enrichment of significant gene-
based association signals for Alzheimer disease within known
gene targets of NSAIDs. We extend the analysis of So et al.
with the use of a larger, more highly powered GWAS and
network-based methods to implicate additional genes with
potential relevance in Alzheimer disease pathology. A recently
published study used genetic information and network-based
methods to develop a priority index for drug target validation
in immune-mediated traits.15 The priority index incorporated
functional genomic information with protein-protein network
connectivity information and was shown to successfully
identify current therapeutics and prioritize alternative com-
pounds for early-stage testing. Their network annotations,
however, do not directly integrate genetic coexpression, but
instead rely on disparate sources of protein interaction data to
characterize gene connectivity. Our gene coexpression-based
approach, on the other hand, directly anchors changes in
genetically regulated gene expression to observed levels of
coexpression between genes and arguably more closely rep-
resents underlying biological relationships.

The results of this study should be interpreted in view of the
following limitations. First, we used GWAS summary statistics
that included Alzheimer disease–by-proxy cases. Although proxy
cases, based on parental diagnoses, show a high genetic corre-
lationwith clinically diagnosed cases, follow-up studies should be
conducted using GWAS summary statistics from diagnosed
Alzheimer disease studies.36 Second, we used gene expression
data from bulk human brain tissue as single-cell expression data
are not available in GTEx. Bulk brain tissue is not homogeneous
with respect to individual cell types. As a result, true Alzheimer
disease association signals may be diluted by nonspecific ex-
pression, or expression differences may simply reflect mosaic
effects of different cell types. This is especially problematic for
Alzheimer disease, where many of the risk genes are highly
expressed inmicroglia cells which only account for around 3% of
the total brain cell population.49-51 RNA sequencing of in-
dividualized cells (known as single-cell RNA sequencing) may
partition genetic signals to causal cell types and improve power
to identify functional genes and mechanisms underlying Alz-
heimer disease and, in turn, improve the accuracy of drug po-
sitioning.9 Third, the CMap database does not contain drug-
gene signatures for every approved and experimental drug. Im-
portantly, 3 FDA acetylcholinesterase inhibitors used to treat the
symptoms of Alzheimer disease (galantamine, rivastigmine, and
donepezil) were missing from CMap. The absence of these
compounds may explain why we did not observe significant
enrichment of Alzheimer disease association signals within the
acetylcholinesterase inhibitors MOA category. Fourth, our ob-
served drug compound associations are derived from the com-
bined effect of gene expression patterns within Alzheimer disease
modules. Therefore, our analytical pipeline cannot identify

individual drug-gene pairs that drive the observed drug com-
pound enrichments in coexpression networks. Finally, CMap
only contains drug-gene signatures from cultured human cancer
cell lines. A comparison of drug compounds profiled in neuronal
progenitor cells and differentiated neurons with 9 cancer cell
lines profiled inCMap suggested that neuronal cell lines produce
different connectivity patterns in a subset of compounds.52 Our
pipeline would therefore benefit from the inclusion of drug-gene
signatures derived from neuronal and glial (astrocytes, microglia,
and oligodendrocytes) cell lines, as they become available.

In summary, we developed a novel drug repositioning approach
that first identifies gene networks associated with Alzheimer
disease before using the implicated networks as a molecular
substrate for a drug repositioning analysis. Our approach
identified drug mechanisms of action categories containing
drug compounds with both proven and potential therapeutic
benefit in Alzheimer disease. We identified the drug mem-
antine, which is 1 of only 4 FDA-approved drugs for Alzheimer
disease, supporting the validity of our approach. Follow-up
molecular studies will seek to validate prioritized drug candi-
dates in relevant human cell models, such as monocyte-induced
microglia. Our approach will help researchers leverage genetic
data for drug discovery and development in Alzheimer disease.
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