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Background. Dual-energy computed tomography (DECT) has been widely used due to improved substances identification from
additional spectral information. *e quality of material-specific image produced by DECT attaches great importance to the
elaborated design of the basis material decomposition method. Objective. *e aim of this work is to develop and validate a data-
driven algorithm for the image-based decomposition problem.Methods. A deep neural net, consisting of a fully convolutional net
(FCN) and a fully connected net, is proposed to solve the material decomposition problem. *e former net extracts the feature
representation of input reconstructed images, and the latter net calculates the decomposed basic material coefficients from the
joint feature vector. *e whole model was trained and tested using a modified clinical dataset. Results. *e proposed FCN delivers
image with about 60% smaller bias and 70% lower standard deviation than the competing algorithms, suggesting its better material
separation capability. Moreover, FCN still yields excellent performance in case of photon noise. Conclusions. Our deep cascaded
network features high decomposition accuracies and noise robust property. *e experimental results have shown the strong
function fitting ability of the deep neural network. Deep learning paradigm could be a promising way to solve the nonlinear
problem in DECT.

1. Introduction

Conventional single-energy X-ray technique provides in-
formation about the examined object which is not sufficient to
characterize it precisely. Dual-energy computed tomography
(DECT) provides additional information by using two dif-
ferent energy spectra to scan the object, which has been
presented as a valid alternative to conventional single-energy
X-ray imaging. In recent years, the adoption of DECT has
gained increased attention in public security [1] and medical
field [2, 3]. *e advantage of DECT is the ability for material
characterization and differentiation [4].*is decomposition of
mixture into two basic materials depends on the principle that
the attenuation coefficient is material and energy dependent.
*us,measurements at two distinct energies should permit the
separation of the attenuation into its basic components.

*e quality of material-specific image produced by
DECTattaches great importance to the elaborated design of

the basis material decomposition method. *e existing
decomposition methods can be divided into two main
categories: projection-based [5–7] and image-based [8–10].
Projection-based methods pass the projection data through
a decomposition function, followed by image reconstruction
such as filtered backprojection (FBP). It commonly provides
better accuracy and reconstructed image with reduced
beam-hardening artifacts in comparison with image-based
methods. However, projection-based methods need
matched projection datasets. *is means that physically the
same lines need to be measured for each spectrum, which is
usually not the case in today’s CT scanners. Image-based
methods use linear combinations of reconstructed images to
get an image that contains material-selective DECT in-
formation. It is an approximative technique, and the
resulting images are less quantitative than with projection-
based methods. But image-based methods can handle
mismatched projection datasets and are applicable to the
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decomposition of three or more constituent materials, which
is more expedient in practice. *us, they have been
employed more frequently in modern DECT
implementations.

*e material decomposition problem in image domain
can be described by the following equation:
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x2
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where μH and μL are the pixels in reconstructed images from
low- and high-energy projections, respectively, and x1 and
x2 are the corresponding points in decomposed basic ma-
terials images. *e subscripts 1 and 2 indicate two specific
materials. μ1L/H and μ2L/H are the average attenuation co-
efficients of the two basic materials under low/high-energy
spectra. *ese attenuation coefficients are usually obtained
bymanually selecting two uniform regions of interest (ROIs)
on the CT images that contain the basic materials [9, 11, 12].
Direct material decomposition via matrix inversion is a way
of calculating the points x1 and x2 in the decomposed image,
which is written as follows:
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Equation (2) can be easily solved as long as the value of
Δ � μ1Hμ2L − μ2Hμ1L is not null. However, values of the two
terms in Δ do not differ significantly from each other.
*erefore, the decomposition result is very sensitive to the
noise in the input reconstructed images. Various methods
have been proposed to solve this noise suppression problem.
Precorrection [13, 14] methods reconstruct two water-
precorrected images, followed by a linear combination, to
yield images that are free from cupping artifacts usually in
water-equivalent materials. *e noise reduction techniques
after image decomposition include Kalender’s correlated
noise reduction (KCNR) [15, 16], noise forcing (NOF) [17],
and noise clipping (NOC) [18], whose most fundamental
strategy is the application of a smoothing filter. Recent
advanced iterative methods [9, 10] consider the statistical
properties of the decomposition process, producing high-
quality edge-preserving images. *ese methods have shown
great success on the decomposition problem. *eir well
performances rely on the well-handcrafted design of the
algorithm.

In recent years, deep learning techniques, which use
neural networks having a deep structure with three or more
layers, have attracted widespread attention, mainly by
outperforming alternative machine learning methods in
numerous important applications.*e current most popular
deep model is the convolutional neural network (CNN)
which has emerged as a powerful class of models for image
classification [19, 20] and object detection [21]. In the field of
computed tomography, some of the recent studies have
already attempted to use deep neural networks to solve the
problems such as low-dose image denoising [22] and artifact
reduction [23]. Wang [24] provides an analytical and global
perspective to the combination of tomographic imaging and

deep learning. For the material decomposition problem in
DECT, several neural network-based methods have also
been proposed, but they all decompose the material in the
projection domain [7, 25, 26].

Inspired by the recent learning-based methods [27, 28],
in this paper, we propose an end-to-end image de-
composition algorithm via deep learning techniques. A
modified fully convolutional network is applied to extract
the feature of reconstructed images and suppress the image
noise at the same time. *e last layer of the model is a fully
connected layer to calculate the decomposed images from
the extracted features. We demonstrate the effectiveness of
our algorithm by the experiment on a clinical dataset. Two
conventional algorithms are implemented and compared to
the proposed FCN.

2. Methods

2.1. Fully Convolutional Network. Fully convolutional net-
work (FCN) is one kind of CNN, which is firstly proposed
and used for semantic segmentation [29].*e standard CNN
generally is composed of a pooling layer and a convolutional
layer which are alternately connected. *e convolutional
layers learn the features of the input. *e pooling layers
guarantee that the deeper layers can extract higher scale-
level features through downsampling. In order to map the
feature to the class labels, a fully connected layer will be
added to the last output layer, which has fixed dimensions
and throws away spatial coordinates. Due to this structural
design, the naive CNN requires fixed-sized inputs and
produces no-spatial outputs.

*e main idea of FCN is transforming the last fully
connected layer into a convolution layer with kernels that
cover its entire input region. *is replacement policy brings
about several advantages for FCN. First, the input of the net
can be the images of arbitrary sizes, whichmeans that the net
can be trained on image patches and then tested on the full-
sized images. Second, it can efficiently learn to make dense
predictions for per-pixel tasks such as semantic segmenta-
tion. Lastly, per-pixel tasks for naive CNN generate a huge
amount of redundant convolution computations at adjacent
patches. FCN avoids such problems by computing all
convolutions in the first layer on the entire input image,
leading to significant speedup in the forward-propagation
process.

Because of these advantages, FCN is especially suitable
for solving the image-based material decomposition prob-
lem which can also be regarded as a per-pixel prediction
task. In addition, convolution operation to image is in-
terpretable, since it can be seen as a kind of image filtering.

2.2. Image DecompositionModel. For image decomposition,
we designed an end-to-end decomposition model based on
FCN. *e proposed model takes reconstructed images as
inputs and predicts the basic material coefficients pixel by
pixel in the decomposed image, completing image de-
composition and noise suppression at one time.
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An overview of our model is illustrated in Figure 1. It is
composed of two types of layers: convolutional and fully
connected layers. Since the pooling layer may discard im-
portant structural details in feature maps, we omit it from
the model to avoid losing the quality of result images. But no
downsampling process by the pooling layer will lead to the
same size of the feature maps at different layers. We hope the
model can still catch the multiscale features of the image at
different layers, so the strides of the convolutional layers are
set to 2 to finish the downsampling operation. *e input of
the model is the image patch of 65 × 65 size in reconstructed
images. *ere are two independent fully convolutional nets
corresponding to the reconstructed images from low- and
high-energy projections. *e two nets have the same layer
structure and are called the L-FCN and H-FCN in short in
this study. *ey are composed of four convolutional layers.
*e output of layer n can be formulated as follows:

Cn xn( 􏼁 � ReLU Wn
f ∗ xn + bn

f( 􏼁, n � 1, 2, 3, 4, (3)

where xn is the input feature map or images and Wn
f and bn

f
represent the convolutional kernel weights and bias pa-
rameter, respectively. ∗ is the convolutional operation.
ReLU(x) � max(0, x) is the nonlinear active function of the
neuron. *e outputs of L-FCN or H-FCN (C4(x4)) are
a 512 × 1 vector which represents the feature of the current
input patch. *e two feature vectors from L-FCN and
H-FCN are merged into a joint vector. *en, a fully con-
nected layer is used to calculate the decomposed basic
material coefficients from the joint vector, which follows the
following equation:

X � WcM + bc, (4)

where X � (x1, x2) is the predicted material coefficients
vector,Wc and bc are the unsolved parameter matrixes, and
M represents the merged vector from L-FCN and H-FCN.

*e whole decomposed images can be obtained by
traversing all the patches in the input images. *e specific
information about each layer of the proposed FCN is listed
in Table 1.

2.3.3e Training Detail. *e proposed FCN is implemented
via the TensorFlow [30] framework on a computer platform
containing two Titan X GPUs (a total of 24GB video
memory). *e base learning rate of the model is 5 × 10−3,
which decays by an exponential power of 0.9. *ere are 1200
training samples in one batch. *e mean squared error
(MSE) is utilized as the loss function:

L Wc, bc,Wf , bf( 􏼁 �
1
2
‖X− 􏽢X‖2, (5)

where 􏽢X � (􏽢x1, 􏽢x2) is the true value of the decomposed
image. We used Adam [31] to optimize the loss function in
this study. *e entire model contains about 64k unsolved
parameters and is trained for 40 epochs in 37 hours. *e loss
curve for training is plotted in Figure S1 in the Supple-
mentary Materials.

3. Experimental Design

3.1. Experimental Dataset. *e experimental data are ac-
quired from a real clinical dataset which contains 5987
pleural and cranial cavity 512 × 512 images from 12 patients.
*ese raw data are obtained by one single-energy scan. *e
tissue and bone regions in the images are all manually
sketched out. *e images from 10 patients were selected to
generate training samples, and the images from the rest of
the patients were used for testing. All the images are split up
into two partitions. Each partition includes regions of bone
or tissue only and is used as the ground truth of the
decomposed images. In order to generate dual-energy im-
ages, we processed the original raw data and simulated the
imaging system. *e original image is inconvenient to
process for its small value. So, firstly, we amplified the value
of the raw data to a proper range via a linear transform that
follows the following equation:

xt � λt􏽥xt,

xb � λb􏽥xb,
􏼨 (6)

where 􏽥xt and 􏽥xb are the pixel values of tissue and bone
regions in original images and xt and xb are the corre-
sponding pixel values in transformed images. *e values λt
and λb in the experiment are set to 50 and 15, respectively.
Here, the different setting of λt and λb is for the purpose of
better visual contrast in the transformed images. Secondly,
we applied a BM3D [32] algorithm for attenuation of ad-
ditive white Gaussian noise from the image.*irdly, we used
SpekCalc [33] software to generate 80 kVp and 140 kVp
energy spectra, calculated the projection under the simulated
scan of dual energy, and obtained the reconstructed images
via filtered backprojection (FBP). Lastly, for each patient in
the training set, we selected one slice every 10 images. *en,
for each image, we extracted 65 × 65 patches with the sliding
interval of 5 pixels. *e patch size was set to 65 × 65, the
same as the input layer of the proposed FCN, getting totally
2,454,300 training patches.

3.2. Evaluation Metrics. *e proposed FCN is compared
with two other algorithms, direct decomposition (matrix
inversion) and iterative decomposition [9]. We choose the
bias and standard deviation to evaluate the performance of
these methods. Bias shows the difference between the
measured value and expected value, which can be a measure
of the precision of the result. Standard deviation (SD) re-
flects the degree of dispersion of the result. *ey are cal-
culated as follows:

Bias �
1
N
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,

(7)
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where xi and 􏽢xi are the predicted value and true value at
point i of the image, respectively, μ is the mean value of the
material, and N is the number of points in ROI.

In order to further investigate the robustness of the
proposed FCN, before reconstruction via FBP, photon noise
is introduced into the dual-energy projections.*ere are two
major types of noise in X-ray projection images [34]. One
type is due to the electrical and roundoff error, which is
image independent and can be considered as the Gaussian
noise; the other type is due to the statistical fluctuation of the
X-ray photons, which is image dependent and can be
considered as the Poisson noise. *e noise of the first type is
small and is omitted in this study. *e noise of the second
type can be calculated as follows:

􏽥pL � ln IL − ln g ILe−pL( 􏼁( 􏼁,

􏽥pH � ln IH − ln g IHe−pH( 􏼁( 􏼁,
􏼨 (8)

where 􏽥pL and 􏽥pH are the noise-corrupted low- and high-
energy projections, g(x) is a random process according to
Poisson’s distribution with mean x, and IL and IH are the
number of photons of low- and high-energy incident X-rays.
We set IL � 5 × 105 and IH � 1 × 106 in the experiments,
respectively.

4. Results

We test our model on a cranial image and a pleural image
which are excluded from the training dataset. Figure 2 shows
the decomposition results by using three algorithms. *e
first column is the ground truth. Bone and tissue are chosen
as the basis materials. Matrix inversion achieves similar
results in vision as iterative decomposition. Loss of details
and noticeable blocky artifacts are observed for the tissue
and bone images from both algorithms. Figure 3 shows the
zoom-in images whose areas are indicated in Figure 2 with
a dashed rectangle. *e iterative decomposition delivers

smooth image due to its smoothness regularization term in
loss function. It is noticeable that the proposed FCN sup-
presses most artifacts while preserving the structural features
better than the competing algorithms. But there are not
distinct improvements in edge-preserving. We guess this is
mainly caused by the convolution kernel in the model. *e
convolutional operation of image can be seen as a kind of
filtering.

For quantitative evaluation, the bias and SD are calcu-
lated on the images generated by using different algorithms
inside material’s ROI and summarized in Table 2. Generally,
the estimate of bone is more accurate than that of tissue. *e
proposed FCN achieves results closest in values to the
ground truth, with about 60% smaller bias and 70% lower
standard deviation than the competing algorithms, sug-
gesting its better material separation capability.

To evaluate the potential improvement by FCN, we
investigate the effects of photon noise on the material de-
composition algorithms. *e reconstructed image is gen-
erated from noise-corrupted projections as described in
Section 3.2. Figure 4 presents the decomposition results on
same testing images. It can be seen that direct matrix in-
version magnifies the noises both in ROI and background.
Iterative decomposition also suffers from serious artifacts.
*is indicates that both algorithms are more sensitive to the
noise.*e proposed FCN yields the decomposed images that
have not much noticeable change in comparison with the
results in Figure 2.

Fully convolutional layers Fully connected layer

65 × 65 × 1

33 × 33 × 64
17 × 17 × 128

9 × 9 × 256 Feature vector
1 × 512

Joint vector
1 × 1024

Reconstructed images Decomposed images

Figure 1: Overall architecture of the proposed network.

Table 1: Detailed configuration of L-FCN/H-FCN.

Layer name Kernel size Stride Pad Output size
Input — — — 65× 65×1
Conv1 5× 5 2 1 33× 33× 64
Conv2 5× 5 2 1 17×17×128
Conv3 5× 5 2 1 9× 9× 256
Conv4 9× 9 1 0 1× 1× 512
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Ground truth

Cranial (bone)

Cranial (tissue)

Pleural (bone)

Pleural (tissue)

Matrix inversion Iterative decomposition Proposed FCN

Figure 2: *e decomposed images by using three methods.

Ground truth Matrix inversion Iterative decomposition Proposed FCN

Figure 3: Result comparisons in the zoom-in area which is indicated in Figure 2 with a dashed rectangle.

Table 2: A list of bias and SD on the images generated by using different algorithms.

Material Bone (cranial) Tissue (cranial) Bone (pleural) Tissue (pleural)
Matrix inversion 0.410± 0.799 0.790± 0.930 0.823± 1.126 0.191 ± 0.348
Iterative decomposition 0.330± 0.621 0.833± 1.221 0.763± 0.994 0.220± 0.417
Proposed FCN 0.111 ± 0.280 0.283 ± 0.261 0.097 ± 0.208 0.322± 0.171
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Figure 5 illustrates the absolute value of the difference
between images in Figures 2 and 4, providing a visual
comparison of the performance of noise suppression. For
matrix inversion, the noise is statistically independent and
evenly distributed in the images because the value of each
pixel in decomposed images is calculated by using the
corresponding pixel in projections. For iterative de-
composition, the noise demonstrates a regional distribution
characteristic. *e region of tissue and background contain
larger amount of noises than bone. In contrast, there are not
much obvious differences in the result produced by the
proposed FCN. Clearly, it outperforms the other two al-
gorithms, more effectively suppressing image noise while
keeping subtle structures.

*e quantitative results are listed in Table 3. In the case
of photon noise, the bias and SD of the competing algo-
rithms have increased in varying degrees. FCN still dem-
onstrates good agreement to the true value, indicating its
advantages on the antinoise capability.

5. Discussion

We have designed a cascaded neural network for the ma-
terial decomposition problem.*e reconstructed images are
pixel wisely mapped to decomposed images via several
convolutional layers and a fully connected layer. *e size of
the input layer is 65 × 65, based on the hypothesis that the
value of the material coefficient depends largely on the local
region in reconstructed images. *e proposed FCN pro-
cesses data in an end-to-end way, without any needs of
precorrected images or other prior knowledge. *e exper-
imental results show its strong performance in capturing the
localized structural information and suppressing image
noise. *e decomposed images generated by matrix in-
version and iterative decomposition contain relatively
a large amount of artifacts. In the robustness-testing ex-
periment, the noise-corrupted inputs will have a negative
impact on the performance of the other competing algo-
rithms, but not much on the FCN. *e proposed FCN still

Ground truth

Cranial (bone)

Pleural (bone)

Pleural (tissue)

Cranial (tissue)

Matrix inversion Iterative decomposition Proposed FCN

Figure 4: *e decomposition results on data with photon noise.

6 Computational and Mathematical Methods in Medicine



achieves excellent results which have low bias and standard
deviation. Data augmentation was used in the training
process. It brought no boost in performance but costs more
training time. We guess the main reason for this issue is that
the material decomposition is a regression problem. *e
value of the label is in a continuous space. Data augmen-
tation assumes that the examples in vicinity share the same
class. *is hypothesis is usually plausible to the classification
problem in which the label is a discrete variable, but un-
necessary for the regression problem. *e main drawback of
our algorithm is the requirement of the specific type of
material. Tissue and bone are selected as the basic material in
the experiment. *e whole model needs to be retrained if
one of the materials was changed. So, we hope the proposed
algorithm can be used in some applications such as medical
diagnosis where the selection of the material is relatively
fixed.*e amount of training samples is another main factor
contributing to the effectiveness of our model. Normally,
more data bring better performance of the model. But it may
be difficult to collect enough data in some conditions.

6. Conclusions and Further Work

In this study, we present a deep learning approach for the
image decomposition problem in DECT. According to the
preliminary decomposition results, we successfully prove the
feasibility of the proposed algorithm which delivers image

with 70% smaller bias and 60% lower standard deviation
than the competing algorithms. A deep learning paradigm
promises to improve the ability of solving the nonlinear
problem in DECT.

We think there are two directions of work that are worth
further researching. One is to extend our model to make it
applicable to the three-materials decomposition problem. *e
other is the attempt of using the deconvolutional network
which will output the whole decomposed images in a forward-
propagation calculation rather than pixel wisely prediction.

Data Availability

*e code and data used in the research can be obtained from
https://github.com/XYF-GitHub/ImageDecomposition-DECT.
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Matrix inversion

Cranial (tissue)

Pleural (tissue)

Iterative decomposition Proposed FCN

Figure 5: *e absolute value of the difference between images in Figures 2 and 4.

Table 3: A list of bias and SD on the images in case of photon noise.

Material Bone (cranial) Tissue (cranial) Bone (pleural) Tissue (pleural)
Matrix inversion 0.425± 0.807 0.804± 0.983 0.840± 1.162 0.241 ± 0.390
Iterative decomposition 0.322± 0.608 0.823± 1.180 0.773± 1.012 0.242± 0.423
Proposed FCN 0.108 ± 0.284 0.283 ± 0.260 0.097 ± 0.208 0.290± 0.169
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Supplementary Materials

Figure S1: the proposed model contains about 64k unsolved
parameters and is trained for 40 epochs in 37 hours. *e
training batch size is 1200 reconstructed images from the
noise-corrupted low- and high-energy projections. Figures
S2 and S3: more testing results to show the superiority of the
proposed method. All the testing images are reconstructed
from the noise-corrupted low- and high-energy projections.
(Supplementary Materials)
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