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Purpose: Dual inhibition of ataxia telangiectasia mutated (ATM) and histone deacetylase 2 (HDAC2) may be a potential strategy to 
improve antitumor efficacy in testicular cancer.
Methods: A combined virtual screening protocol including pharmacophore modeling and molecular docking was used for screening 
potent dual-target ATM/HDAC2 inhibitors. In order to obtain the optimal lead compound, the dual ATM/HDAC2 inhibitory activity of 
the screened compounds was further evaluated using enzyme inhibition methods. The binding stability of the optimal compound to the 
dual targets was verified by molecular dynamics (MD) simulation. MTT assay and in vivo antitumor experiment were performed to 
validate antitumor efficacy of the optimal compound in testicular cancer.
Results: Here, we successfully discovered six potent dual-target ATM/HDAC2 inhibitors (AMHs 1–6), which exhibited good 
inhibitory activity against both ATM and HDAC2. Among them, AMH-4 showed strong inhibitory activity against both ATM 
(IC50 = 1.12 ± 0.03 nM) and HDAC2 (IC50 = 3.04 ± 0.08 nM). MD simulation indicated that AMH-4 binds to ATM and HDAC2 
with satisfactory stability. Importantly, AMH-4 had significant antiproliferative activity on human testicular tumor cells, especially 
NTERA-2 cL.D1 cells, and no inhibitory effect on normal human testicular cells. In vivo experiments exhibited that AMH-4 was more 
effective than lartesertib and vorinostat in inhibiting the growth of NTERA-2 cL.D1 xenograft tumors with low toxicity.
Conclusion: Overall, these results suggest that AMH-4 is an effective and low toxicity candidate for the treatment of testicular germ 
cell tumors.
Keywords: ataxia telangiectasia mutated, histone deacetylase 2, dual-targeting inhibitors, testicular germ cell tumors, structure-based 
virtual screening

Introduction
Testicular germ cell tumors (TGCT) are the most common type of testicular malignancy, emerging most frequently in 
males between the ages of 15 and 40.1,2 During the past 20 years, the incidence of testicular cancer has continued to rise 
in many countries and is expected to increase further in the future.3,4 Currently, surgery and standard-dose chemotherapy 
are the main methods of treating TGCT.5 Approximately 80–90% of metastatic TGCT have a high cure rate after 
standard dose cisplatin chemotherapy.5 However, testicular cancer survivors treated with cisplatin face many toxic side 
effects, including ototoxicity, neuropathy, cardiovascular toxicity, infertility, and secondary malignancies.6 In addition, 
young patients may face a range of long-term psychosocial issues after treatment, including mental health, gender 
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relations and work issues, which can significantly affect their overall quality of life.7 For TGCT-resistant patients who 
have failed multiple chemotherapy regimens, the clinical cure rate is extremely low.6 Therefore, the development of 
novel drugs for testicular cancer is indeed urgent. At present, dual-target therapy is a promising treatment strategy with 
fewer side effects, lower toxicity, and the potential to overcome drug resistance in cancer treatment.8–10

ATM plays a central role in protecting the genome from DNA damage through intact DNA repair pathways.11–13 

There are growing evidences suggest that ATM can coordinate homologous recombination (HR) and non-homologous 
end joining (NHEJ) pathways to repair DNA double-strand breaks (DSBs) and maintain genomic integrity.11,14,15 In 
response to DSBs, ATM kinase undergoes self-phosphorylation and subsequently phosphorylates several downstream 
substrates, including p53, p21, Nbs1, and KAP1, ultimately mediating DNA repair and cell cycle regulation.12,16,17 

Studies have shown that abnormal ATM, characterized by serine 1981 phosphorylation, can be observed in testicular 
germ cell tumors.18 Therefore, the inhibition of ATM represents a potential therapeutic strategy in testicular cancer 
treatment. Despite recent advances in ATM inhibitors, such as lartesertib,19 AZD1390,20 and KU6001921 (Figure 1), 
toxicity and drug resistance cannot be ignored. There are currently no ATM inhibitors specifically for testicular cancer. 
Thus, it is urgent to develop novel ATM inhibitors with good drug properties and few side effects.

HDAC2, a member of the HDAC family, has been shown to be closely associated with tumor proliferation.22–24 

Overexpression of HDAC2 can increase deacetylation and cause an imbalance in the expression of certain cell cycle 
regulators, leading to cancer initiation and progression.25–27 HDAC2 regulates the expression of a variety of genes and 
promotes cancer progression by silencing the expression of pro-apoptotic proteins (such as NOXA and APAF1) and 
inactivating the tumor suppressor p53.28,29 In several types of cancer, high levels of HDAC2 expression are closely 
associated with tumor development, and may contribute to the development of resistance to cancer therapies.30 Thus, 
HDAC2 is considered to be a potential target for cancer therapy because of its role in tumorigenesis.31 Currently, some 
HDAC inhibitors are already used in clinical cancer treatment, including vorinostat, romidepsin, and belinostat 
(Figure 1).32–34 However, most of these drugs are pan HDAC inhibitors and have similar dose-limiting toxicity.35,36 

So the development of specific HDAC2 inhibitors is particularly important.

Figure 1 Reported ATM and HDAC inhibitors.
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A recent study has shown that the combination of the ATM inhibitor KU60019 and the HDAC inhibitor romidepsin 
produces more effective cytotoxic effects in lymphoma cell lines than either drug alone.37 Moreover, clinical studies have 
shown that HDAC inhibitors can reduce ATM-mediated activation of DNA damage signaling in a variety of tumor cells.38 

Thus, the combination of HDAC inhibitors and ATM inhibitors may synergistically cause insufficient DDR induction in 
tumor cells to enhance antitumor activity.38 Although the combination of two drugs shows favourable therapeutic effects, the 
different drugs result in non-overlapping resistance mechanisms and different toxicities.39,40 Compared to combination 
therapies, dual-target drugs with a single chemical entity may reduce the risk of drug-drug interactions, decrease toxicity and 
improve patient compliance.39,40 Thus, dual-target ATM/HDAC2 inhibitors are potential therapeutic agents for the treatment 
of testicular cancer. To date, there are no reports of dual-target ATM/HDAC2 inhibitors.

Structure-based virtual screening is a computational approach to discovery lead compounds that is more cost- 
effective than traditional high-throughput screening.41 The combined screening of the pharmacophore models and 
molecular docking can effectively identify potential drug candidates against specific targets.42,43 In previous 
studies, we have successfully discovered some new and potent dual-target inhibitors through a comprehensive 
virtual screening scheme: PLK1/PLK4, NRP1/KRASG12D, tubulin/PARP-1.9,41,44 Here, we identified novel dual- 
target ATM/HDAC2 inhibitors (AMHs 1–6) through a combined virtual screening protocol. Among them, AMH- 
4 had the highest inhibitory activity on both ATM and HDAC2. Meanwhile, AMH-4 showed significant in vitro 
antiproliferative and in vivo antitumor activity in testicular cancer with low toxicity. In conclusion, the dual- 
targeted ATM/HDAC2 inhibitor AMH-4 is a promising therapeutic candidate for the treatment of testicular cancer.

Materials and Methods
Cell Culture and Materials
The human testicular germ cell tumors (TGCT) cell lines (NTERA-2 cL.D1, Cates-1B, Tera-1) and human normal 
testicular cell line (Hs 1.Tes) were purchased from the American Type Culture Collection (ATCC, Manassas, VA, 
USA). The cells were cultured with Dulbecco’s modified Eagle medium (DMEM, Gibco BRL, Grand Island, NY, 
USA) supplemented with 10% (v/v) fetal bovine serum, 100 units/mL of penicillin, and 100 µg/mL of streptomycin. 
The cell culture system was maintained at 37°C in a humidified atmosphere containing 5% CO2. Hit compounds 
(AMHs 1–6) were purchased from WuXi AppTec (Shanghai, China), the vendor name and ID of AMHs 1–6 are 
listed in Table S1. Recombinant human ATM and HDAC2 proteins were purchased from Abcam (Cambridge, 
MA, USA).

Virtual Screening
The crystal structures of ATM (PDB ID: 7NI4) and HDAC2 (PDB ID: 4LXZ) proteins were obtained from the 
Protein Data Bank (PDB). The two crystal structures were imported into the Molecular Operating Environment 
(MOE, Chemical Computing Group Inc, Montreal, Quebec, Canada). The QuickPrep tool of MOE was used for 
structural preparation, including the deletion of distant solvent and the addition of hydrogen atoms. Then, the 
energy was minimized through Amber14: EHT force field. Based on combinatorial chemistry methods, we have 
established a database of 43,000 compounds. The Ligand interactions tool in MOE was used to construct 
pharmacophore models based on the ATM crystal structure, including hydrogen bond donor, hydrogen bond 
acceptor, aromatic center and hydrophobic centroid. The established pharmacophore model was then used for 
virtual screening to determine the screening results in terms of root mean square deviation (RMSD) values.

Next, the selected compounds were further subjected to molecular docking based on the above crystal structures of 
ATM and HDAC2. The ligand atoms were used to define active sites within the 5 Å region, and the docking was 
determined using the Triangle Matcher method and London dG scoring algorithm. Typically, lower docking scores reflect 
higher binding affinity.
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In vitro ATM Inhibition Assay
The inhibition assay was conducted according to previously reported methods.45 First, ATM enzyme was mixed with 
Hepes buffer (50 mm Hepes pH 7.4, 150 mm NaCl, 10 mm MnCl2, 1 mm DTT, 5% v/v Glycerol, 0.05% v/v Tween 20). 
The mixture was incubated with DMSO-dissolved compounds for 0.5 h. After the addition of a substrate solution of p53 
(5 µM) and ATP (50 nM) for 2 h, the reaction was terminated by the addition of detection reagent (33 mm Hepes pH 7.4, 
20 mm EDTA, 0.1 M KF, 0.1 mg/mL BSA, 13 nM D2 Anti-GST antibody (Cisbio) and 0.5 nM Eu3+ Anti- 
p53phosphoS15 antibody). Finally, the values were obtained on the PHERAstar instrument (BMG Labtech, Cary, NC) 
with the standard Homogeneous Time-Resolved Fluorescence (HTRF) filter block method. IC50 values were determined 
using the data analysis software Genedatascreener®.

In vitro HDAC2 Inhibition Assay
The method was performed as described previously.46 In brief, a mixture of 10 μL HDAC2 enzyme solutions and 50 μL mixed 
with various concentrations of inhibitor compounds was added to a 96-well plate and incubated for 5 min at 37 ° C. Next, the 
fluorescent substrate Boc-Lys (acetyl) -AMC (40 μL) was injected into each well and incubated for 0.5 h. The mixture was 
maintained for 20 min with 100 μL of developer containing trypsin and TSA. Finally, the fluorescence intensity at wavelengths 
of 390 and 460 nm was measured by a microplate reader (BioTek Cytation 5; Agilent Technologies, Inc., Santa Clara, 
CA, USA).

MD Simulation
The structures of ATM (PDB ID: 7NI4) and HDAC2 (PDB ID: 4LXZ) were downloaded from the PDB. MD simulation 
was performed using GROMACS (version 2021.5) with the AMBER99SB ILDN force field. AMH-4 was imported into 
the Acpype Server (www.bio2byte.be) to obtain topology parameter files under the GAFF force field. Firstly, the system 
was dissolved in a 1.0 nm cubic box using SPC/E water models. Then, the sodium ions (Na+) and chloride ions (Cl−) 
were added to the system to maintain a neutral charge state. Subsequently, a 5000 step steepest descent algorithm was 
used for energy minimization. A V-type thermostat was used for 100 ps NVT balance to maintain system temperature at 
300 K, and a 100 ps NPT simulation was performed by Parrinello Rahman barometer for further to maintain system 
pressure at 1 bar. Finally, a 50 ns MD simulation was conducted on the system and trajectory data was recorded at 
intervals of 10 ps. These data were processed using GraphPad Prism 6.0 software.

MTT Experiment
The MTT assay was performed as previously described.9 In this experiment, four types of cells were measured (NTERA-2 
cL.D1, Cats-1B, Tera-1, and Hs1.Tes). The cells were seeded in 96-well plates at a density of 5×104 cells/well and cultured 
overnight, respectively. Then AMH-4 at the various concentrations was added to each well and incubated at 37 ° C for 
72 hours. Subsequently, the culture medium was removed and MTT solution (5mg/mL) was added to each well and 
incubated for another 4 hours. Then the supernatant was discarded and insoluble crystals were dissolved in dimethyl 
sulfoxide (DMSO). Finally, a microplate reader was used to detect absorbance at 570 nm. The dose-response curve was 
drawn using GraphPad Prism 6.0 software (GraphPad Software Inc., San Diego, CA) to determine the value of the half 
maximal inhibitory concentration (IC50).

In vivo Antitumor Assay
Male nu/nu mice (4–6 weeks old) were purchased from Changzhou Cavens Experimental Animal Limited Company 
(Changzhou, China). Mice were injected subcutaneously with NTERA-2 cL.D1 human testicular tumor cells suspended 
in PBS (200 µL, 1×107 cells). The tumors of 90–120mm3 were generated in the bodies of the mice. The mice were 
randomly divided into four groups and daily intraperitoneal injection with vehicle, lartesertib, vorinostat and AMH-4, all 
at a concentration of 10 mg/kg. Tumor volume and body weight were measured every 3 days for 15 days. The tumor 
volume was measured directly using vernier calipers and calculated according to the formula: (c × c × d)/2 (c, minimum 
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diameter; d, maximum diameter). All animal experiments used in this experiment have been approved by the Animal 
Ethics Committee of China Pharmaceutical University (permit number: 2023–03-018).

Results and Discussion
Pharmacophore Construction
The pharmacophore models were constructed based on the crystal structure of ATM (PDB ID: 7NI4) to identify novel 
dual-target ATM/HDAC2 inhibitors. The Pharmacophore Query Editor of MOE was used to generate the most 
representative pharmacophore models. As shown in Figure 2A, the generated pharmacophore models were composed 
of two Acc features (F1 and F2: hydrogen-bond acceptors) and two Aro features (F3 and F4: aromatics center). All of 
these features represented interaction points for ligand binding to ATM: (i) the F1 and F2 features formed hydrogen-bond 
interactions with the key amino acid residues Lys2717 and Cys2770; (ii) the F3 and F4 features formed hydrophobic 
interactions with hydrophobic residues, including Pro2699, Leu2715, Leu2722, Tyr2755, Leu2767, Trp2769, Ile2888. 
Therefore, the constructed pharmacophore models can be considered as key chemical features to discover new ATM/ 
HDAC2 inhibitors.

Figure 2 (A) The pharmacophore models based on the ATM structure. (B) The workflow of multi-step virtual screening of dual ATM/HDAC2 inhibitors.
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Virtual Screening
In this study, a multi-step virtual screening process was used to identify potential dual-targeted ATM/HDAC2 inhibitors 
from an in-house database. The multi-step virtual screening workflow is shown in Figure 2B. Firstly, a two-dimensional 
(2D) database of 43,000 compounds was converted to a 3D structure. The constructed ATM pharmacophore models were 
used to screen the 3D database, resulting in the identification of 147 hit compounds with RMSD values less than 0.05 Å. 
Subsequently, these 147 screened hits were further docked to the active sites of ATM and HDAC2 to predict the binding 
affinities. The previously reported ATM inhibitor lartesertib and HDAC2 inhibitor vorinostat with a docking score of −12 
kcal/mol were used as positive controls for the cutoff value. As shown in Figure 3, the docking values of six hits (AMHs 
1–6) were less than −12 kcal/mol. Notably, AMH-4 had the lowest docking score of the six selected compounds, 
suggesting that it docked best with the active site of ATM/HDAC2. Based on the results of the above virtual screen, we 
further analyzed the interaction of six hit compounds with ATM/HDAC2. The chemical structures of the AMHs 1–6 are 
shown in Figure 4.

Interaction Analysis
The possible binding modes of the six selected hits (AMHs 1–6) at ATM and HDAC2 active sites were analyzed 
(Figures 5 and 6). Figure 5 shows the interaction analysis between AMHs 1–6 and ATM, respectively. We found that the 
pyridine and quinoxaline groups in the AMHs 1–6 formed hydrogen bonding interactions with key amino acid residues 
Lys2717 and Cys2770, while the benzene ring and alkyl group had hydrophobic interactions with Pro2699, Leu2715, 
Leu2722, Tyr2755, Leu2767, Trp2769, and Ile2888 in the hydrophobic cavity. Figure 6 shows the interaction analysis 
between AMHs 1–6 and HDAC2, respectively. The terminal N-hydroxyformamide group of AMHs 1–6 created an ionic 
bond with zinc ions in HDAC2 active sites. It is reported that the interaction between ligands and Zn2+ is crucial for 
enhancing the inhibitory activity of ligands against HDAC.47 In particular, the N-hydroxyformamide group in each 
compound had three hydrogen bonds with His145, His146 and Tyr308, the urea group created hydrogen bonds with 
Lys205, while amino acid residues Tyr209 and Leu276 formed intermolecular hydrogen bonds. Meanwhile, the benzene 
ring and alkyl group had hydrophobic interactions with Phe155 and Phe210. Based on the above interaction analysis, we 
further investigated the biological activities of AMHs 1–6.

In vitro ATM and HDAC2 Inhibitory Activity
To evaluate the inhibitory effects of AMHs 1–6 on both ATM and HDAC2, the enzyme inhibition experiments were 
conducted. The ATM inhibitor lartesertib and HDAC2 inhibitor vorinostat served as positive controls. As shown in 

Figure 3 The binding free energy (kcal/mol) of six selected hit compounds (AMHs 1–6).

https://doi.org/10.2147/DDDT.S479113                                                                                                                                                                                                                               

DovePress                                                                                                                                     

Drug Design, Development and Therapy 2024:18 5288

Ruan et al                                                                                                                                                             Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 1, we found that lartesertib had inhibitory activity on ATM (IC50 = 17.22 ± 3.39 nM), and no inhibitory effect on 
HDAC2. In contrast, vorinostat had inhibitory activity on HDAC2 (IC50 = 10.16 ± 2.75 nM), but did not affect ATM. 
AMHs 1–6 showed dual inhibition of both ATM and HDAC2, and the IC50 values of the six compounds were all lower 
than the positive controls. This indicated that AMH 1–6 had significant inhibitory activity against ATM and HDAC2. The 
IC50 values for inhibition of ATM by AMH 1–6 ranged from 1.12 nM to 9.68 nM, and those for inhibition of HDAC2 
ranged from 3.04 nM to 9.27 nM. Notably, AMH-4 had the most potent inhibitory activity against both ATM (IC50 = 1.12 
± 0.03 nM) and HDAC2 (IC50 = 3.04 ± 0.08 nM), which was approximately 15-fold better than that of lartesertib (IC50 = 
17.22 ± 3.39 nM), and about 3-fold better than that of vorinostat (IC50 = 10.16 ± 2.75 nM). The IC50 determination 
curves showed that AMH-4 significantly inhibited the activities of ATM and HDAC2 (Figure S1). In addition, AMH-4 
exhibited the highest inhibitory activity, which was consistent with the docking score results. Therefore, AMH-4 is the 
most potent inhibitor for further in vitro cell viability evaluation.

MD Simulation
To assess the binding stability of AMH-4 at the ATM and HDAC2 active sites, we further analyzed the stability of the ATM- 
AMH-4 complex and HDAC2-AMH-4 complex systems within the 50 ns MD simulation using GROMACS (version 
2021.5). The value of RMSD was calculated for the complex structure relative to the initial optimized structure. In 
Figure 7A and B, The RMSD of the ATM-AMH-4 complex initially increased and remained stable at around 0.35 nm 
after 30 ns; the RMSD of the HDAC2-AMH-4 complex remained steady at around 0.2 nm after 10 ns, indicating that AMH- 
4 can bind stably to ATM and HDAC2. In addition, to assess the flexibility of the amino acid residues in the complex, the 
root mean square fluctuation (RMSF) values were also calculated (Figure 7C and D). As shown in Figure 7C, the RMSF 
values of the key residues Pro2699, Leu2715, Lys2717, Leu2722, Tyr2755, Leu2767, Trp2769, Cys2770, and Ile2888 in the 
ATM active sites were all less than 0.2 nm throughout the simulation process, indicating that these key residues were stable 
in binding to AMH-4. In Figure 7D, the RMSF values of key residues His145, His146, Phe155, Lys205, Tyr209, Phe210, 

Figure 4 The chemical structures of six selected hit compounds (AMHs 1–6).
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Figure 5 The binding modes of AMHs 1–6 (correspond to A-F respectively) in the active site of ATM. Residues in the active site are shown as white. AMHs 1–6 are 
coloured in yellow. The hydrogen bonds are represented in black dashed lines.
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Figure 6 The binding modes of AMHs 1–6 (correspond to A-F respectively) in the active site of HDAC2. Residues in the active site are shown as white. AMHs 1–6 are 
coloured in green. The hydrogen bonds are represented in black dashed lines.
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Leu276, and Tyr308 in the HDAC2 active site show small fluctuations in intensity less than 0.1 nm, reflecting a strong 
interaction with AMH-4. Finally, the stability of the system was evaluated by analysing the changes in the secondary 
structure of the protein during the 50 ns MD simulation process. As shown in Figure 7E and F, no significant changes were 
observed in the secondary structure of the protein, indicating the structural stability of ATM and HDAC2 in the complex. In 
conclusion, AMH-4 can stably bind to the active sites of ATM and HDAC2.

In vitro Antiproliferative Activity
To evaluate in vitro antiproliferative activity of AMH-4, we performed cytotoxicity studies on three human testicular 
tumor cell lines (NTERA-2 cL.D1, Cates-1B, Tera-1) and one human normal testicular cell line (Hs 1.Tes). The 
inhibitory effects of AMH-4 on above cells were detected using the MTT assay and IC50 values were calculated. As 
shown in Table 2, AMH-4 had significant antiproliferative activity on human testicular tumor cells, including NTERA-2 
cL.D1, Cates-1 B and Tera-1. Notably, AMH-4 showed significant antiproliferative activity on NTERA-2 cL.D1 (IC50 = 
0.12 μM) cells compared to Cates-1B (IC50 = 0.34 μM) and Tera-1 (IC50 = 0.25 μM) cells. Furthermore, AMH-4 had 
almost no inhibitory effect on the growth of normal human testicular cells Hs 1.Tes (IC50 > 10 μM), suggesting that 
AMH-4 has less toxic side effects. In addition, we evaluated the inhibition rate of AMH-4 on the four cell lines 
mentioned above. As shown in Figure S2, AMH-4 suppressed the proliferation of three types of testicular tumor cells in 
a dose-dependent manner, with the strongest inhibitory effect on NTERA-2 cL.D1 cells. Meanwhile, AMH-4 had no 
apparent inhibitory effect on the normal testicular cell line. In conclusion, AMH-4 potently inhibited the proliferation of 
testicular cancer cells, particularly NTERA-2 cL.D1 cells, with low toxicity to normal testicular cells. Therefore, we 
chose NTERA-2 cL.D1 as xenograft cells for in vivo antitumor study of AMH-4.

In vivo Antitumor Activity
Based on AMH-4 excellent antiproliferative activity in vitro, we evaluated the antitumor activity of AMH-4 in vivo in 
NTERA-2 cL.D1 xenograft models. Nude mice bearing tumor were randomly divided into four groups: vehicle, 
lartesertib, vorinostat and AMH-4, all at a concentration of 10 mg/kg. As shown in Figure 8A, all treatment groups 
inhibited tumour growth compared to the vehicle throughout the treatment period. Obviously, AMH-4 showed the most 
significant antitumor effect compared to the positive drugs vorinostat and lartesertib. In addition, the group of mice 
treated with AMH-4 showed a slight increase in body weight, while a slight decrease was observed in the groups treated 
with vorinostat (Figure 8B). Thus, these results suggest that AMH-4 has excellent antitumor activity against testicular 
cancer with low toxicity, suggesting its potential for the treatment of testicular cancer.

Table 1 The Inhibitory Effects of AMHs 1–6 and the 
Positive Controls on ATM and HDAC2

Compounds ATM (IC50, nM) HDAC2 (IC50, nM)

AMH-1 2.94 ± 0.26 9.27 ± 1.18

AMH-2 8.31 ± 1.05 5.11 ± 0.32

AMH-3 4.25 ± 0.71 8.52 ± 1.21

AMH-4 1.12 ± 0.03 3.04 ± 0.08

AMH-5 5.73 ± 0.92 7.61 ± 0.46

AMH-6 9.68 ± 2.84 6.09 ± 0.14

Lartesertib 17.22 ± 3.39 no inhibition

Vorinostat no inhibition 10.16 ± 2.75
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Discussion
Despite significant advances in the treatment of testicular cancer, the range of physical and psychological health problems 
caused by current cancer treatments cannot be overlooked.6,7 Therefore, the development of drugs with low toxicity and 
minimal side effects for the treatment of testicular cancer is essential. In testicular cancer, activation of ATM may 

Figure 7 MD simulation of AMH-4 in complex with ATM and HDAC2. (A) The backbone RMSD of the complex of ATM and AMH-4. (B) The backbone RMSD of the 
complex of HDAC2 and AMH-4. (C) The RMSF of ATM Cα atoms in the complex of ATM and AMH-4. (D) The RMSF of HDAC2 Cα atoms in the complex of HDAC2 and 
AMH-4. (E and F) The secondary structures analysis of ATM and HDAC2, respectively.
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promote the survival and proliferation of tumor cells, while HDAC2 may influence tumor development by regulating 
gene expression.18,30 In recent years, the development of dual-targeted inhibitors has been widely reported as a promising 
approach to improve drug efficacy or overcome resistance, and has become a popular area of research in cancer 
treatment.48,49 Thus, inhibiting ATM and HDAC2 simultaneously may be an effective interventional strategy for 
testicular cancer treatment. However, due to the difference in the shape of the ATM and HDAC2 pockets, it is difficult 
to design inhibitors that target both ATM and HDAC2. In this study, we developed a series of ATM/HDAC2 dual-target 
inhibitor (AMHs 1–6) through a virtual screening approach based on pharmacophore screening and molecular docking. 
We have constructed pharmacophore models based on the structure of ATM (PDB ID: 7NI4) by identifying the key 
chemical features of active compounds, which are then used to screen large databases for compounds with similar 
features. Molecular docking was used to model the interactions between the compounds and the active binding site of 
ATM, from which potentially active compounds were screened. The combination of these two approaches can quickly, 
effectively and accurately screen out leads with greater potential. Subsequent biological evaluation showed that these 
compounds exhibited nanomolar inhibitory activity against ATM and HDAC2. In particular, AMH-4 with the lowest 
docking score identified by molecular docking showed excellent antitumor activity against testicular cancer both in vitro 
and in vivo. These results suggest that structure-based virtual screening is capable of identifying leads with biological 
activity and is a promising strategy in drug discovery and design. This provides a concrete foundation for future dual- 
target drug design.

Despite recent advances in ATM and HDAC inhibitors, achieving a balance between toxicity and efficacy remains 
a challenge. Lartesertib is a potent, orally bioavailable ATM inhibitor in Phase I clinical trials.16 In clinical practice, the 
HDAC inhibitor vorinostat has shown dose-limited toxicity and tolerability.50 In this study, AMH-4 showed greater 
efficacy and lower toxicity compared to the positive controls lartesertib and vorinostat in the treatment of testicular 
cancer. In a xenograft mouse model of testicular cancer, AMH-4 exhibited more potent antitumor effects and less toxicity 
than the positive controls. These results suggest that AMH-4 is a potential therapeutic candidate for testicular cancer. In 
the future, it is expected that AMH-4 will be modified to further increase its inhibitory potency in testicular cancer. In 

Table 2 The in vitro Cytotoxicity of AMH-4 on Human 
Testicular Tumor Cell Lines and Normal Human Testicular Cells

Name IC50 (μM)a

NTERA-2 cL.D1 Cates-1B Tera-1 Hs 1.Tes

AMH-4 0.12 0.34 0.25 >10

Note: aIC50 (μM) is the concentration of compound needed to reduce cell 
growth by 50% following 48 h cell treatment with AMH-4.

Figure 8 The antitumor activity of AMH-4 in NTERA-2 cL.D1 cell-derived xenografts. (A) Changes in tumor volume. (B) Body weight of mice. Data are presented as the 
mean ± SD, n = 6. ***P < 0.001 means a significant difference versus the vehicle group.
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addition, dual-targeted drugs are often challenged by membrane permeability and safety issues, which is a direction for 
further optimization in the future.

Conclusions
Targeting both ATM and HDAC2 may offer new hope for the treatment of testicular cancer. In this study, a series of dual- 
targeting ATM/HDAC2 inhibitors (AMHs 1–6) were identified through a combined virtual screening protocol. The 
enzyme inhibition experiment showed that AMHs 1–6 had nanomolar inhibitory activities on both ATM and HDAC2. In 
particular, AMH-4 exhibited the most potent inhibitory effects. Meanwhile, MD simulation confirmed the stability of 
AMH-4 binding to ATM and HDAC2. Notably, AMH-4 had significant antiproliferative activity on human testicular 
tumor cells, and no inhibitory effect on normal human testicular cells. Furthermore, AMH-4 showed potent antitumor 
activity in a xenograft mouse model of testicular cancer. In conclusion, we have successfully discovered a novel and 
promising antitumor agent targeting ATM/HDAC2 for the treatment of testicular cancer.
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