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Abstract

Despite advances in DNA-sequencing technology, assembly of complex genomes remains a major 

challenge, particularly for genomes sequenced using short reads, which yield highly fragmented 

assemblies. Here we show that genome-wide in vivo chromatin interaction frequency data, which 

are measurable with chromosome conformation capture–based experiments, can be used as 

genomic distance proxies to accurately position individual contigs without requiring any sequence 

overlap. We also use these data to construct approximate genome scaffolds de novo. Applying our 

approach to incomplete regions of the human genome, we predict the positions of 65 previously 

unplaced contigs, in agreement with alternative methods in 26/31 cases attempted in common. Our 

approach can theoretically bridge any gap size and should be applicable to any species for which 

global chromatin interaction data can be generated.

Massive amounts of short DNA sequencing reads can be assembled into sets of small 

contigs but joining these contigs into scaffolds, a process known as scaffolding, is often 

difficult owing to the presence of repetitive sequences4,5. Improving the degree of 

completion of genome sequences typically relies on low-throughput methods such as 

FISH6–9 or BAC-based sequencing10. Although the advancement of sequencing technology 

is producing longer reads and thus increasing the size of contigs, recent assessments of 

genome assemblers11,12 show that complex genome assemblies which rely only on 

sequencing data, are still highly ambiguous and fragmented, owing to gap sizes beyond that 

of long-insert molecules. In fact, even in the human genome, despite the massive effort 

invested in its completion, approximately 30 Mb of euchromatic DNA remains 

unassembled9. Thus, high throughput sequencing and genome assembly technology have 

reached a point in which an increase in the number of short reads does not substantially 

improve assembly quality.
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Hi-C is an experimental technique that measures the in vivo spatial interaction frequency 

between chromatin segments over the whole genome, by cross-linking loci that are in close 

physical proximity and quantifying them with high-throughput paired-end sequencing13. 

Every uniquely mapped paired-end read indicates an interaction between two genomic loci, 

so that the number of read pairs that map to distant DNA fragments can be treated as a 

measure of the frequency that the fragments interact. Notably, all Hi-C experiments in 

eukaryotes to date have shown, in addition to species-specific and cell-type specific 

chromatin interactions, two canonical interaction patterns. One pattern, distance-dependent 

decay (DDD), is a general trend of approximately exponential decay in interaction frequency 

as a function of genomic distance. The second pattern, cis-trans ratio (CTR), is a 

significantly higher interaction frequency between loci located on the same chromosome, 

even when separated by tens of megabases of sequence, versus loci on different 

chromosomes13–18. These patterns may reflect general polymer dynamics, where proximal 

loci have a higher probability of randomly interacting19, as well as specific nuclear 

organization features such as the formation of chromosome territories, the phenomenon of 

interphase chromosomes tending to occupy distinct volumes in the nucleus with limited 

interchromosomal mixing20. Although the exact details of these two patterns may vary 

between species, cell-types and cellular conditions, they are ubiquitous and prominent. In 

fact, these patterns are so strong and consistent that they are used to assess experiment 

quality and are usually normalized out of the data in order to reveal detailed 

interactions14,15,21.

Here we propose that genome assembly technology can take advantage of the three-

dimensional structure of genomes. We show that the features which make the canonical Hi-

C interaction patterns a hindrance for the analysis of specific looping interactions, namely 

their ubiquity, strength and consistency, make them a powerful tool for estimating the 

genomic position of contigs or short scaffolds, similar to those obtained by standard 

massively parallel sequencing and assembly methods.

We first use the CTR pattern to tackle the problem of scaffold augmentation, in which most 

of the genome is assumed to be correctly assembled and the challenge is to predict both the 

chromosome and locus of an unplaced contig, based on its pattern of interaction with the 

placed contigs. This is the situation for the majority of published ‘finished’ complex 

genomes, including human and mouse. Because most of the genome is assembled, it is 

possible to observe, quantify and computationally model the DDD and CTR interaction 

patterns, even if they are genome-specific or condition-specific. This model can then be used 

to estimate the positions of new contigs. Prior knowledge of the canonical patterns for a 

particular species is not needed.

As an initial test, we performed simulations on human genome hg19 assembly22 and a 

previously published Hi-C dataset23 obtained from H1 ES cells. To demonstrate the 

robustness of our approaches when using a relatively low number of reads, we chose to use 

only a third of the Hi-C reads available for this cell-type in the dataset. We first quantified 

the CTR pattern by partitioning the human genome into 100kb bins, each representing a 

large virtual contig, and calculated for each placed contig its average interaction frequency 

with each chromosome. To simulate a more difficult scenario and evaluate localization over 
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long ranges, we omitted from this statistic the interaction data of the contig with its flanking 

1mb on each side, where the strongest Hi-C interaction signals are present. Then, we asked 

how well this statistic separates interchromosomal interactions from intrachromosomal 

interactions (Fig. 1a). We find that the average interaction frequency strongly separates 

inter- from intra- chromosomal interactions, with an average AUC of 0.9998, suggesting this 

statistic is highly predictive of which chromosome a contig belongs to.

Because we know the positions and interaction frequencies of all placed contigs, it is 

possible to use supervised machine learning algorithms to fit functions that predict a contig’s 

chromosome and locus, given its interaction frequencies with other contigs and their known 

locations. We trained a simple multiclass model, a Naïve Bayes classifier, to predict the 

chromosome of each contig (Online Methods). To test the classifier, for each contig in the 

genome, we removed the interaction data for the contig and a flanking region of 0, 0.5, 1, 2, 

5 or 10 Mb on each side, and used the classifier to predict the position of the contig solely 

from Hi-C data (Fig. 1b,c), achieving an accuracy of 0.998 when leaving out 1 Mb on each 

side. By thresholding the probabilities for each prediction output by the classifier to identify 

high-confidence predictions, we find that at a threshold of the classifier can achieve a near-

constant error rate of less than 0.005 even when leaving 10 Mb gaps on each side of the 

contig (100 times the size of the contig). We conclude that the CTR interaction pattern can 

be used to accurately predict to which chromosome an unplaced contig belongs, even if it is 

flanked by large gaps.

Next we sought to predict the genomic locus along a chromosome of an unplaced contig, 

given its chromosome and interaction pattern with placed contigs on the chromosome. We 

use the assembled portion of the genome to fit a probabilistic single-parameter exponential 

decay model describing the relationship between Hi-C interaction frequency and genomic 

distance (the DDD pattern). Next, we removed in turn each contig from the chromosome, 

along with a flanking region of 1 Mb on each side, for the reasons mentioned above, and 

estimated its position by finding the location in which the interaction profile best fits the 

decay model (Fig. 1d). We quantified the prediction error as the absolute value of the 

distance between the predicted position and the actual position. Our results show a cross-

validated genome-wide median error of 1.1 Mb. Additionally, 89.5% of the contigs are 

placed within 2 Mb of their actual position and 24.0% are within 0.5 Mb of their actual 

position (Fig. 1d, inset). We conclude that the DDD interaction pattern can be used to 

accurately predict the position of an unlocalized contig.

To show the utility of our approach for improving finished genomes, we collected two sets 

of contigs from hg1922 and HuRef7, totaling 65 contigs (13.6 mb in total) that had sufficient 

Hi-C interaction data for further analysis and predicted their locations (Fig. 2a,b and 

Supplementary Table 1). As validation, we compared our predictions to a recent study9 that 

used a more compliacated strategy to predict the location of some of these contigs using 

extensive population SNP data to perform admixture mapping. Our predictions agree with 

the previous results for 26/31 (84%) of the contigs placed by both methods (Online Methods 

and Supplementary Table 1). In addition, 24/30 (80%) of our predictions were consistent 

with FISH localization measurements compiled in the same study. We conclude that our 

method can be used to increase the level of completion of complex genome assemblies by 
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placing contigs that have proven difficult to assemble despite years of efforts, as in the case 

of the human genome.

We also explored whether Hi-C data could be used for de novo genome scaffolding. The 

challenge is to determine the karyotype (i.e. the number of chromosomes and the 

chromosomal assignment) and position of all contigs simultaneously based on their mutual 

interaction frequencies. De novo scaffolding is markedly more difficult than scaffold 

augmentation for two main reasons. First, as we have no knowledge of any contig positions, 

we cannot observe or fit the CTR and DDD functions. Instead, we must make assumptions 

regarding how interaction frequencies relate to genomic distance and hope that these crude 

approximations produce useful results. Second, instead of resolving only the distances of a 

single unplaced contig from an array of placed contigs, all distances between all contigs 

must be resolved jointly. Under most problem formulations, calculation of a global optimal 

solution cannot be guaranteed.

To examine scaffolding over long genomic ranges, we simulated a large gap scenario where 

we retained every 10th contig in the human genome so that we were left with an array of 

100kb virtual contigs separated by 900kb gaps, thus omitting the bulk of the Hi-C signal. 

First, we asked whether it is possible to group all the contigs into their respective 

chromosomes de novo (de novo karyotyping). Assuming the DDD is approximately 

exponential, we transformed the matrix of interaction frequencies into approximate unscaled 

genomic distances (Online Methods). These distances are very crude approximations, 

because at far distances the Hi-C interaction frequency, given as a discrete read number, will 

approach zero and thus will not be able to distinguish between vastly different far distances. 

We applied standard average-linkage hierarchical clustering to the approximate distance 

matrix, There was a high correspondence between the clusters and chromosomes; 99.5% of 

all contigs were placed on the correct chromosome (Fig. 3b).

Finally, we asked whether we could use interaction frequencies between unlocalized contigs 

to estimate their positions along a chromosome. This task can be addressed by 

multidimensional scaling and manifold learning techniques. We used a probabilistic model 

that assumes the DDD is approximately exponential, and attempted to find a set of likely 

contig positions for our simulated 100 kb virtual contigs (Online Methods). We arbitrarily 

scaled the predicted contig positions to range from 0 to 1. We then compared our predicted 

positions with the actual positions. The predicted positions were highly consistent with their 

actual positions along most of the chromosomes (Fig. 4a and Supplementary Fig. 2a,c). We 

estimate a median error rate of ~2 Mb and an error less than 10 Mb in ~93% of the 

predictions (Supplementary Table 2). As an alternative measure of evaluation, we compared 

the ranks of the (contig order) predicted and actual positions (Fig. 4b). The ranked 

predictions seem slightly more accurate than the predicted positions, with an estimated 

median rank error of 1 (Supplementary Table 2), possibly suggesting that the distances 

between neighboring contigs may be distorted because of local variations in the DDD 

function. This is expected owing to the presence of locus-specific structures such as 

chromatin loops and structural domains16,19,24. Notably, our approach is able to lay out an 

entire contiguous scaffold for each chromosome, rather than the highly fragmented scaffolds 

resulting from long-insert scaffolding. Most chromosomes contain no significant 
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translocation or inversion errors, with a minority of chromosomes containing 1–2 major 

inversion errors.

We next applied de-novo scaffolding to a previously published set of contigs for human 

chromosome 14 produced by the ALLPATHS-LG assembler25 from actual sequencing 

libraries as part of the GAGE assembly12 evaluation. We mapped Hi-C data to the 

assembled set of contigs, and estimated their chromosomal positions using our approach for 

de novo chromosome scaffolding (Online Methods). We then compared the predicted 

positions to the actual positions of the contigs when aligned to hg19 (Fig. 4c,d). The contigs 

were assembled into one large segment, containing one major inversion. Within each 

segment, the predicted positions were consistent with the actual positions. We estimate a 

median error of 976 kb with less than 10 Mb error in 3.6% of the predictions, and a median 

rank error of 6 (Supplementary Table 3). We conclude that the DDD pattern can be used to 

achieve accurate de novo chromosome scaffolding in various assembly scenarios. Again, 

precise knowledge of the decay function may not be mandatory for this task.

In conclusion, we show how each of the computational problems that we present can be 

mapped to a well-studied problem in the field of machine learning. Scaffold augmentation 

generally fits problems in the supervised learning framework, and de novo scaffolding 

generally fits problems in the unsupervised learning framework. Each of these known 

problems is supported by an extensive theoretical background, several algorithms for 

solution, and strategies for evaluating results, providing opportunities for further 

improvement. However, these are by no means the only possible strategies (Supplementary 

Discussion). The power of our method may be attributed not to the sophistication of the 

computational tools, which are purposefully simple, but rather to two canonical interaction 

patterns. The fact that these patterns are strong, consistent across the genome, and 

ubiquitous in all species, cell types and conditions observed to date, suggests that this 

method is widely applicable. Finally, we have addressed only two out of several possible 

applications of Hi-C data, which include targeted assembly (e.g. by using 4C27,28 or 5C29), 

detection of assembly errors, resolution of non-unique genomic sequences and detection of 

chromosomal aberrations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Interaction frequency accurately predicts chromosome and locus for scaffold augmentation. 

(a) Average interaction frequency strongly separates interchromosomal from 

intrachromosomal interactions. For each 100kb contig in chromosome 1, we calculate its 

average interaction frequency with each chromosome. We exclude interaction data from the 

contig’s 1 Mb regions on each side, where the strongest interaction frequencies are typically 

found. The box plot shows the distribution of average interaction frequencies of all contigs 

over all chromosomes and demonstrates that the distribution of interchromosomal 
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interaction frequencies is separated from intrachromsomal interaction frequencies. Whiskers 

represent minimal and maximal points within 1.5 of the interquartile range. (b) Naïve Bayes 

predictive performance at various gap sizes. We trained a Naïve Bayes classifier and 

predicted the chromosome of each contig, leaving out a 1/2/5/10 Mb flanking region on each 

side of the contig. The accuracy of all cross-validated predictions and of the confident 

predictions is shown by the left y-axis and the blue and red lines, respectively. The fraction 

of total predictions that are confident is shown by the right y-axis and the black line. (c) 
Genome-wide view of Naïve Bayes predictive performance. The prediction for each contig 

is marked by a short vertical line, colored according to its true chromosome. Predictions 

showed were performed leaving out a 1 Mb flanking region on each side of the contig. 

Predictions that did not pass the confidence threshold are marked as “NC”. (d) Interaction 

frequencies accurately predict chromosomal locus. For every contig, we exclude interaction 

data from the contig’s 1Mb flanking regions on each side and then predict its location in 

cross-validation. The inset shows the cumulative distribution of the absolute prediction 

error. All statistics are genome-wide.
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Figure 2. 
Scaffold augmentation of the human genome. (a) Interaction frequency data of an unplaced 

contig with its predicted chromosome. Green bar marks the predicted contig position. (b) 
Predicted positions of unplaced contigs. Vertical lines indicate contigs. Green and red colors 

indicate agreement and disagreement with previous predictions9. Black: newly placed 

contigs with no previous predictions.

Kaplan and Dekker Page 10

Nat Biotechnol. Author manuscript; available in PMC 2014 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
De novo karyotyping (chromosome assignment). We retained every tenth 100 kb contig in 

the genome, leaving 0.9 Mb gaps between contigs. We then transformed the interaction 

frequencies into approximate distances and applied standard average linkage hierarchical 

clustering to the approximate distance matrix, without using any prior knowledge regarding 

the positions of the contigs. The cluster assignment for each contig is marked by a short 

vertical line, colored according to its true chromosome.
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Figure 4. 
Accurate de novo chromosome scaffolding with interaction frequencies. (a, b) We retained 

every 10th 100 kb contig in the genome, leaving 0.9 Mb gaps between contigs. We then 

estimated the positions of all contigs, without using any prior knowledge regarding their 

positions. We arbitrarily scaled the predicted positions to the interval [0,1]. Note that the 

slope, which reflects scaling and orientation, is arbitrary. (a) Scaled predicted contig 

positions versus actual contig positions on chromosome 4. (b) Ranks of predicted contig 

positions versus rank of actual contig positions. (c, d) De novo scaffolding applied to a real 
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set of contigs from chromosome 14 (see Methods). (c) Shown are the scaled predicted contig 

positions versus actual contig positions. (d) Ranks of predicted contig positions versus rank 

of actual contig positions.
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