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Abstract

Alzheimer’s disease (AD) is a serious neurodegenerative condition that affects millions of people 

across the world. Recently machine learning models have been used to predict the progression of 

AD, although they frequently do not take advantage of the longitudinal and structural components 

associated with multi-modal medical data. To address this, we present a new algorithm that uses 

the multi-block alternating direction method of multipliers to optimize a novel objective that 

combines multi-modal longitudinal clinical data of various modalities to simultaneously predict 

the cognitive scores and diagnoses of the participants in the Alzheimer’s Disease Neuroimaging 

Initiative cohort. Our new model is designed to leverage the structure associated with clinical data 

that is not incorporated into standard machine learning optimization algorithms. This new 

approach shows state-of-the-art predictive performance and validates a collection of brain and 

genetic biomarkers that have been recorded previously in AD literature.
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1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that has serious mental and 

financial consequences for those affected and their families. AD is characterized by 

progressive declines of memory and cognitive capabilities. According to the Alzheimer’s 
Association1 5.7 million people in the United States are currently suffering from AD-related 

dementia. In 2018 alone, the total financial cost associated with health care, long-term care, 

and hospice services for patients suffering from dementia was estimated to be $277 billion. 

It is forecasted that by 2050, the number of people suffering from AD will surpass 13.8 

million. Furthermore, the Alzheimer’s Association emphasizes that early detection and 

diagnosis of individuals with AD could save up to $7.9 trillion in associated medical costs. 

With the projected increase in individual hardship and financial burden caused by AD, it is 

essential that the scientific community develop computational methods for early diagnosis 

and treatment of AD.

A central research component, designed to assist in early identification of dementia, has 

focused on discovering characteristic biomarkers that are closely associated with the 

development of AD. This branch of research has been driven by the successful development 

and deployment of a variety of non-invasive clinical observations such as positron emission 

tomography (PET), magnetic resonance imaging (MRI) scans, and genetic analysis through 

the identification of single nucleotide polymorphisms (SNPs). By way of public-private 

partnerships, such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI),39 clinical 

data from each of theses modalities have been made publicly available to the scientific 

community. Through the effective analyses of these AD data sources, we are able to build 

models that have the potential to help clinical researchers narrow down the array of 

phenotypic and genetic measures that are predictive of cognitive decline. Given the 

complexity and size of these clinical datasets, there has been a concerted effort to design 

new machine learning methods to assist in the discovery of AD-related biomarkers.

In recent years, various computational methods18,27,40,41 have been proposed to identify 

biomarkers associated with AD. Although these methods have shown good predictive 

performance, they only incorporate clinical data that is collected at a single time-point. Since 

these approaches rely on a single point in time, they are unable to identify longitudinal 

patterns found across patient data. Recent works3,15,33,34 explored using longitudinal data to 

predict an AD diagnosis, which validated that specific regions of the brain (derived from 

neuroimaging modalities) are the most useful for diagnosing AD over time.

With the above recognitions, in this work we aim to develop a principled approach to 

incorporate longitudinal data from multiple data sources that the ADNI provides. Through 

extensive empirical studies, our new approach has shown great promise in predicting 
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cognitive scores, diagnoses and identifying AD-relevant genetic and phenotypic biomarkers. 

Specifically, we present the following:

- A principled strategy for incorporating tensor data (e.g. longitudinal) collected 

from multiple data sources, which leads to a new objective that is able to 

combine multimodal longitudinal clinical data of various modalities to 

simultaneously predict the cognitive scores and diagnoses of the participants in 

the ADNI cohort.

- An effective optimization algorithm, using the multi-block alternating direction 

method of multipliers, to optimize the proposed objective.

- A collection of phenotypic biomarkers, some of which have been shown by 

previous research to be predictive of cognitive decline, identified by our model.

2. Methods

In this manuscript, we write tensors as cursive uppercase letters (A, B, C,...), matrices as 

bold uppercase letters (A, B, C,...), vectors as bold lowercase letters (a, b, c,...), and scalars 

as lowercase letters (a, b, c,...). Given a matrix M, its i-th row and j-th column are denoted as 

mi and mj respectively. We define the Frobenius norm of the m × n matrix A as 

A
F

= ∑i = 1
m ∑ j = 1

n ai j
2
.

The input imaging features are represented by the tensor: 𝒳 = X1, X2, …, XT ∈ ℝn × d × T

Each Xt represents the input observations for n patients with d features at a given time t. 

Each Xt can be further broken down into K modalities: Xt
j

j = 1
K

. The output diagnoses and 

cognitive scores are represented by another tensor:y = Y1, Y2, …, YT ∈ ℝn × c × T. Each 

Yt = YrtYct  is a concatenation of the cognitive scores (for regression) and diagnosis (for 

classification) for n patients at time t. The goal of our proposed new machine learning model 

is to learn a joint regression and classification model represented by the tensor 

𝒱 = [𝒲𝒫]:𝒱 = W1P1 , W2P2 , …, WTPT ∈ ℝd × c × T where Wt ∈ ℝ
d × cr and 

Pt ∈ ℝ
d × ce are the learned coefficient matrices for the respective regression and 

classification tasks. The input 𝒳 output 𝒴, and learned coefficient 𝒱 tensors are illustrated 

in Fig. 1.

2.1. The Longitudinal Joint Learning Model

A key idea behind our approach is to perform the regression and classification tasks at the 

same time. Joint regression and classification can help discover more robust patterns than 

those discovered when classification and regression are performed separately.3,31,35 In order 

to link the regression and classification tasks, following the large body of previous 

works3,31,35 we introduce the following regularized joint learning model:
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min
𝒲, 𝒫

ℒr(𝒲) + ℒc(𝒫) + ℛ(𝒱), (1)

where ℒr and ℒc are the prescribed loss functions associated with the regression and 

classification tasks respectively. Here the regularization function ℛ(𝒱) is applied to the 

matrix unfolded from tensor 𝒱, i.e., we construct V ∈ ℛd × cT by taking the (Wt, Pt) matrix 

pairs at each time-point and joining them along their columns.33,34 This joint regularization 

scheme in Eq. (1) is designed to identify features in 𝒳 that are predictive of both clinical 

diagnoses and cognitive scores. This approach reasonably assumes that there exists a 

relationship between the classification and regression tasks. For example, if a patient does 

poorly on a given cognitive test then they are more likely to be diagnosed with AD. 

Regularizing the joint coefficient matrices (𝒲, 𝒫) allows us to discover biomarkers that are 

strongly associated with the two related tasks. We design the regularization function ℛ(𝒱)
as following.

First, in order to associate the longitudinal imaging and genetic markers to predict cognitive 

scores and diagnoses over time, we apply the widely used l2,1-norm20,32 to the unfolded 

coefficient matrix V: V 2, 1 = ∑i = 1
d vi

2.

Second, as we combine K different modalities (MRI, SNP, FreeSurfer, etc.) together, it is 

critical for our model to differentiate the impact that each modality has on the joint model. 

In order to capture the impact of each modality, we leverage the group l1-norm (G1 -norm):
3,35–37 V

G1
= ∑ j = 1

K V j
2, where Vj is a matrix constructed of the rows in V that 

corresponds to the j-th modality in𝒳.

Finally, we know that as AD develops, many cognitive measures are related to one another 

within the same modality. In order to account for this inter-modal relationship, we leverage 

the trace norm regularization21,24,33,34,38 of V: V * = ∑σi(V), where σi (V) are the singular 

values of V.

Bringing together these three regularizations, we present our new objective as following:

min
V

J = ∑
t = 1

T
XtWt − Yrt F

2 + ∑
t = 1

T
∑
i = 1

n
∑

k = 1

ce
1 − xitpkt + bkt yikt +

+γ1 V 2, 1 + γ2 V
G1

+ γ3 V *,
(2)

where the first term is the multivariate regression loss at each longitudinal time-point; and 

the second term represents the loss of cC × T one-vs-all multi-class support-vector machine 

(SVM) penalized via the hinge-loss, where yikt ∈ − 1, 1  is the class label associated with i-

th patient at time t, and bkt is the bias associated with the (k × t)-th SVM. The notation (·)+ is 

defined as (a)+ = max(0, a).
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2.2. The Solution Algorithm Using the Multi-Block ADMM

While the objective of our new method in Eq. (2) is clearly and reasonably motivated, all its 

terms are dependent on 𝒱. Thus, it is difficult to optimize this objective in general. To solve 

the proposed objective, we derive an efficient iterative algorithm using the multi-block 

extension8 of the alternating direction method of multipliers (ADMM).2

The ADMM aims to decouple a larger and more difficult problem into a series of smaller 

sub-problems that are easier to solve.2 An extension to ADMM, known as multi-block 

ADMM,8 is designed to extend the ADMM framework to optimize functions of the 

following form:

min
xi

f 1 x1 + f 2 x2 + ⋯ + f K xK ,

subject to E1x1 + E2x2 + ⋯ + EKxK = c .
(3)

Equation. (3) can be solved by minimizing the following unconstrained objective:2,8

ℒμ x1, x2, …, xk, y = ∑
k = 1

K
f xk + μ

2 ∑
k = 1

K
Ekxk − c + 1

μ y
2

2
, (4)

where y is a Lagrangian multiplier and μ > 0 is a constant. The objective in Eq. (4) can be 

solved by the following iterative procedure that updates each xk (primal) and the Lagrangian 

variable y (dual):

x1
t + 1 argminx1

ℒμ x1
t , x2

t , ⋅ , xK
t ,

⋯
xK

t + 1 argminxK
ℒμ x1

t + 1, x2
t + 1, …, xK

t ,

yt + 1 = yt + μ ∑
k = 1

K
Ekxk − c ,

μt + 1 = ρμt,

(5)

where ρ > 1 is a constant. The process described above in Eq. (5) is repeated until the 

algorithm converges. In order to decouple the terms containing 𝒱 in Eq. (2), we introduce 

four new variables and a set of corresponding equality constraints as following:

min
V

J = ∑
t = 1

T
XtWt − Yrt F

2 + ∑
t = 1

T
∑
i = 1

n
∑

k = 1

cc
yikteikt +

+γ1 F 2, 1 + γ2 G
G1

+ γ3 H *,

subject to eikt = yikt − (xitpkt + bkt), F = V, G = V, and H = V .

(6)
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Since each yikt in the second term must be equal to either −1 or 1, we can use the following 

to move from Eq. (2) to Eq. (6):

1 − xitpkt + bkt yikt = yiktyikt − xitpkt + bkt yikt = yikt yikt − xitpkt + bkt . 22 Then we can solve 

Eq. (6) by minizing the following ojective:

ℒμ V, eikt, F, G, H, λikt, Σ, Θ, Ω = ∑
t = 1

T
XtWt − Yrt F

2 + ∑
t = 1

T
∑
i = 1

n
∑

k = 1

cc
yikteikt +

+ μ
2 ∑

t = 1

T
∑
i = 1

n
∑

k = 1

ce
eikt − yikt − xitpkt + bkt + 1

μλikt
2

+ γ1 F
2, 1

+ γ2 G
G1

+ γ3 H
*

+ μ
2 F − V + 1

μΣ
F

2
+ μ

2 G − V + 1
μΘ

F

2
+ μ

2 H − V + 1
μΩ

F

2
,

(7)

where λikt, Σ, Θ, and Ω are the Lagrangian multipliers. The updates for each of the primal 

variables can be calculated by taking the derivative of Eq. (7), with respect to each of the 

primal variables, setting the resulting equation equal to zero, and solving for the associated 

primal variable. Due to space considerations, we will provide the detailed mathematical 

derivation for each variable in an extended journal version of this paper. The derived 

parameter updates are provided in Algorithm 1.

3. Experiments

Data.

We downloaded MRI scans, SNP genotypes, and demographic information for 821 ADNI-1 

participants. We performed FreeSurfer automated parcellation on the MRI data by following 

Risacher et al.25 and extracted mean modulated gray matter measures for 90 target regions 

of interest. We followed the SNP quality control steps discussed in Shen et al.26 We also 

downloaded the longitudinal scores of the participants’ Rey’s Auditory Verbal Learning Test 

(RAVLT) and their clinical diagnosis: Alzheimer’s disease (AD), mild cognitive impairment 

(MCI), and healthy control (HC). All the participants with no missing Baseline/Month 6/

Month 12/Month 24 MRI measurements, SNP genotypes, and cognitive measures were 

included in this study, resulting in a set of 412 subjects (79 AD, 190 MCI, 143 HC at 

Baseline, 86 AD, 180 MCI, 155 HC at Month 6, 111 AD, 155 MCI, 146 HC at Month 12, 

and 155 AD, 110 MCI, 147 HC at Month 24).

Settings.

The performance and standard deviation results reported in Table 1 and Table 2 are 

calculated from ten five-fold cross validation experiments applied to 𝒳 and 𝒴; in-between 

each cross validation experiment 𝒳 and 𝒴 are randomly shuffled. Each method reported in 

the following experiments were tuned via a reasonable hyper parameter search to guarantee 

a fair comparison. The optimal tuning parameters are chosen by the model that provides the 

best regression or classification performance during a single five-fold cross validation 

experiment. In choosing the parameters for our new method, we fine tuned the γ parameters, 

described in Eq. (7), by applying powers of 10 between 10−5 and 105 and choosing the best 
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model based on the average multitask performance. Following the search, we achieve the 

best performance at γ1 = .00001, γ2 = .01, γ3 = 100, μ = .001 and ρ = 1.2, which we use in all 

our experiments.

3.1. Performance

Regression.—We compare our algorithm against multivariate linear regression (Linear), 
l2- regularized linear regression (Ridge), l1-regularized linear regression (Lasso),29 and 

multi-layer perception regression (MLP).7 In Table 1, our new method shows superior 

regression performance when compared to the aforementioned methods. This is likely 

because our method incorporates information provided by the longitudinal regularizations 

across both tasks.

Algorithm 1:

The solution algorithm to optimize Eq. (2).

Classification.—We report the iterated five-fold cross validation results on the 

classification task of our method compared to a variety of popular machine learning 

algorithms for classification in Table 2. We compare our method against logistic regression 

(Logistic), random forest classifier (RandomForest), support vector machine using a 

sigmoid-kernel (SVM), k-nearest neighbors classifier (KNN), logistic regression with elastic 

net regularization (ElasticNet),4 and a linear support vector machine (LinearSVM).13 Both 

ElasticNet and LienarSVM have been used in the past to classify patients with AD vs. HC. 

From Table 2 we can see that our algorithm shows significant improvement when predicting 

AD and HC diagnoses. This improvement does not appear to extend to MCI diagnoses, 
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where logistic regression improves upon our model. This disparity is likely because the cc 

one-vs-all multi-class SVMs constructed in 𝒫 are not normalized against one another. 

Nonetheless outperforms the detection of HC and AD in ADNI participants when compared 

to the methods in Table 2.

3.2 Empirical Convergence

It is well known that the multi-block ADMM approach described in Algorithm 1 does not 

necessarily converge.5 So, in order to determine convergence properties of the proposed 

algorithm, we perform the following empirical analyses. First, we want to determine 

whether the initialization of the model has a significant effect on the convergence of 

Algorithm 1. Second, we want to determine whether our multi-block optimization scheme 

actually matches the constraints incorporated by the augmented Lagrangian after a 

reasonable number of iterations.

To analyze the first issue we apply our algorithm to the same dataset three times and plot the 

objective on the left-hand-side of Fig. 2. This plot shows that, even with random 

initialization, our algorithm converges to a similar solution after only one-hundred iterations. 

To analyze the second issue, we plot the difference between the introduced variables (eik, F, 

G, H) designed to decouple the original objective in Eq. (2). As can be seen on the right-

hand-side of Fig. 2, once the objective has converged the difference between the decoupled 

variables and the variables that they replaced are within 10−3 after one-hundred iterations of 

the proposed method. The convergence of the overall objective across differently initialized 

runs, and the eventual gap decrease, provide empirical evidence for the convergence of the 

proposed multi-block ADMM algorithm.

3.3 Biomarker Identification

In addition to predictive performance, our method is easily interpreted and can assist in the 

identification of AD-related biomarkers.

MRI.—In Fig. 3 we plot the magnitudes, derived from 𝒱, of coefficients associated with the 

FreeSurfer features contained in 𝒳. We can clearly see that the biomarkers discovered across 

all four time-points are all longitudinally consistent. Visually, the brain heat-map images 

from Baseline to Month 24 look almost identical; this illustrates the power of the l2,1-norm 

regularization that provides our algorithm with the ability to identify longitudinally 

consistent biomarkers. This consistency is especially important from the clinical perspective. 

We find that the biomarkers identified by our method are strongly supported by previous 

research. For example, Mu et al.19 provide a review documenting how the hippocampus is 

affected by the early stages of AD; this part of the brain is one of the top-5 regions 

discovered by our model in Fig. 3. Van Hoesen et al.30 provide strong evidence that a 

severely damaged entorhinal cortex (Broadmann’s area 28) is observed in patients suffering 

from AD; the thickness of the entorhinal cortex is also identified by our method. 

Furthermore, Poulin et al.23 analyzed the impact of amygdala atrophy and determined that it 

was highly predictive of AD severity during the early clinical stages of AD; this finding is 

also supported by the FreeSurfer brain regions identified by our model.
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SNP.—In Table 3 we rank the top-30 SNPs discovered by our algorithm. As we expect, the 

highest impact SNP discovered by our algorithm is rs429358; this SNP, known frequently as 

the APOE-ε4 allele, has been found12 to be highly predictive of early-onset AD. The 

authors’ note that approximately one third of the SNPs identified by our new method have 

previously been linked to AD; this further validates the utility of our approach in discovering 

well-known, as well as possibly-novel, AD biomarkers.

4. Conclusion

In this work we present a multi-block alternating direction method of multipliers approach to 

optimize the proposed new model that incorporates the l2,1 -norm, group l1-norm and trace-

norm regularizations to discover important features contained in the ADNI dataset. This 

work illustrates a principled approach to combine multi-modal data using clinical time series 

data. The presented optimization algorithm is able to identify clinically relevant biomarkers 

and shows state-of-the-art predictive performance when jointly predicting the cognitive 

scores and diagnoses of ADNI participants.
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Fig. 1. 
Visualization of the input (X), coefficient (V) and output (Y) tensors. In each time-point of 

X the K modalities (MRI, SNP, etc.) are explicitly defined to facilitate the calculation of the 

group l1-norm. The goal of the proposed method is to learn a joint model V that can 

effectively map X to the cognitive scores and diagnoses encoded in Y.
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Fig. 2. 
Left: The proposed objective in Eq. 7 plotted over one-hundred iterations of Algorithm 1. In 

each run the primal and dual variables are randomly re-initialized. Right: The difference 

between the introduced variables designed to decouple the terms in Eq. (2).
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Fig. 3. 
Top-5 ordered biomarkers in the FreeSurfer modality at each time-point. The identified 

biomarkers, listed on the far-left and far-right, are ordered from largest coefficient (top) to 

smallest (bottom) derived from V.
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Table 1.

Root mean-squared error values and standard deviations between the true and predicted RAVLT scores for the 

proposed method compared against an array of widely used machine learning algorithms. RAVLT scores vary 

between 0 and 74.

Model RAVLTTOT RAVLT30 RAVLT30-RECOG

Linear 4.19e11±7.20e11 1.06e12±1.34e12 8.85e11±1.06e12

Ridge 18.9±0.888 20.5±1.17 19.6±0.872

Lasso 19.4±0.913 21.1±1.29 20.0±0.957

MLP 19.2±0.961 20.7±1.25 19.8±1.05

Our method 12.7±1.05 19.7±1.30 19.8±0.928
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Table 2.

Multi-class F1 scores and their standard deviations, of the iterated five-fold cross validation experiments, for 

predicting the cognitive status of ADNI participants averaged over each time-point.

Model F1(AD) F1 (MCI) F1 (HC) F1 (All)

Logistic 0.265±0.0276 0.500±0.0353 0.313±0.0562 0.396±0.0299

RandomForest 0.325±0.0201 0.415±0.0466 0.401±0.0308 0.386±0.0325

SVM 0.289±0.0341 0.474±0.0450 0.363±0.0254 0.396±0.0286

KNN 0.330±0.0415 0.472±0.0524 0.410±0.0388 0.420±0.0332

MLP 0.312±0.0588 0.475±0.0523 0.341±0.0737 0.400±0.0366

ElasticNet4 0.255±0.070 0.447±0.0485 0.405±0.0655 0.390±0.0284

LinearSVM13 0.308±0.038 0.448±0.0381 0.332±0.0364 0.378±0.0311

Our method 0.496±0.0419 0.415±0.0222 0.477±0.0308 0.459±0.0125
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Table 3.

The top-30 SNPs identified by our algorithm.

1. rs42935811,12 7. rs17477673 13. rs7894245 19. rs2994978 25. rs2125256

2. rs7870463 8. rs11218301 14. rs431044610 20. rs6746923 26. rs17477827

3. rs9461735 9. rs11687624 15. rs43940111 21. rs18011339 27. rs2177828

4. rs6139494 10. rs40550911,16 16. rs1556758 22. rs794593117 28. rs703678114

5. rs17561 11. rs17123514 17. rs2248478 23. rs4631890 29. rs2627641

6. rs74900828 12. rs10512186 18. rs6037894 24. rs471343214 30. rs17209374
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