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A B S T R A C T

Joint diseases greatly impact the daily lives and occupational functioning of patients globally. However, con-
ventional treatments for joint diseases have several limitations, such as unsatisfatory efficacy and side effects,
necessitating the exploration of more efficacious therapeutic strategies. Mesenchymal stem cell (MSC)-derived
EVs (MSC-EVs) have demonstrated high therapeutic efficacyin tissue repair and regeneration, with low immu-
nogenicity and tumorigenicity. Recent studies have reported that EVs-based therapy has considerable therapeutic
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Rheumatoid arthritis
Tendon and ligament injuries

effects against joint diseases, including osteoarthritis, tendon and ligament injuries, femoral head osteonecrosis,
and rheumatoid arthritis. Herein, we review the therapeutic potential of various types of MSC-EVs in the
aforementioned joint diseases, summarise the mechanisms underlying specific biological effects of MSC-EVs, and
discuss future prospects for basic research on MSC-EV-based therapeutic modalities and their clinical translation.
In general, this review provides an in-depth understanding of the therapeutic effects of MSC-EVs in joint diseases,
as well as the underlying mechanisms, which may be beneficial to the clinical translation of MSC-EV-based
treatment.
The translational potential of this article: MSC-EV-based cell-free therapy can effectively promote regeneration

and tissue repair. When used to treat joint diseases, MSC-EVs have demonstrated desirable therapeutic effects in
preclinical research. This review may supplement further research on MSC-EV-based treatment of joint diseases
and its clinical translation.

1. Introduction

Joints are the most fundamental organs executing motor functions,
composed of various tissues including articular cartilage, subchondral
bone, synovium, joint capsule, ligament and tendon [1]. Multiple factors
can contribute to pathological joint damage, resulting in the develop-
ment of various joint diseases such as osteoarthritis (OA), tendon and
ligament injuries, osteonecrosis of the femoral head (ONFH), and
rheumatoid arthritis (RA). These joint diseases induce joint swelling,
pain and limited movement, considerably worsening the patient’s
quality of life and leading to large social and economic burdens [2–4].
Conventional treatments for joint disease primarily include conservative
treatments and surgical therapy. Conservative treatments, such as
physical therapy and pharmacotherapy, are hindered by their inability
to reverse joint disease progression, limited efficacy, and their side ef-
fects [5–8]. Surgical therapeutic strategies have some limitations, such
as surgical trauma, postoperative complications, and economic burden
[5,7,9]. Therefore, research on and establishment of superior strategies
for joint diseases treatment are highly warranted.

Mesenchymal stem cells (MSCs), which have multidirectional dif-
ferentiation potential, can be obtained from tissues such as bone
marrow, brain, adipose tissue, synovium, umbilical cord, spleen, and
pancreas [10–15]. MSCs demonstrate great potential in the treatment of
a variety of diseases, such as joint diseases, as well as nerve and heart
injuries [16–19]. Recent research shown that MSCs exerted their

biological regulatory role through extracellular vesicles (EVs) secretion,
including wound healing, cardiac injury repair, nerve repair, kidney
injury repair, liver injury repair, and bone regeneration [20–22].

EVs, membranous structures secreted by cells, are characterised by
the presence of a lipid bilayer [23]. EVs encapsulate proteins, lipids,
nucleic acids, and other biomolecules; these EV contents play a crucial
role in intercellular communication, immune regulation, cell prolifera-
tion and differentiation, angiogenesis, and tissue repair [24,25]. Diverse
cellular origins and microenvironments can induce variations in EVs
contents, thus modulating the actions and functions of EVs [26]. EVs can
be obtained through different techniques on the basis of their physico-
chemical characteristics (Table 1) [24,27,28]. On the basis of the dif-
ferences in their sizes and biogenesis, EVs can be categorised into
microvesicles, exosomes, and apoptotic bodies [29]. Among different
types of EVs, exosomes are the most extensively studied currently. In the
first stage of exosome biogenesis, extracellular components are intern-
alised by MSCs through endocytosis and plasma membrane fusion and
then incorporated with organelle-derived components, such as mito-
chondria and the endoplasmic reticulum, to form early endosomes.
These early endosomes gradually mature into late endosomes. The
limiting membranes of late endosomes invaginate to generate multi-
vesicular bodies (MVBs). These MVBs subsequently release exosomes
through fusion with the plasma membrane (Fig. 1) [6,30]. MSC-derived
EVs (MSC-EVs), a promising cell-free therapy for regenerative medicine,
are associated with low toxicity and few side effects. In this review, we
provide a comprehensive overview of the therapeutic effects and

Abbreviations

ACAN Aggrecan
ACECM Acellular cartilage extracellular matrix
ACL Anterior cruciate ligament
ACLR ACL reconstruction
ADMSCs Adipose-derived MSCs
ADMSC-EXOs ADMSC-derived exosomes
α-SMA А-smooth muscle actin
BMP Bone morphogenetic protein
BMSC-EXOs BMSC-derived exosomes
CAP cartilage-affinity peptide
COL2A1 Type II collagen alpha 1
dECM Decellularized extracellular matrix
ECM Extracellular matrix
EVs Extracellular vesicles
GelMA Gelatin methacrylate
HUVECs Human umbilical vein endothelial cells
ICA Icariin
IPFP-MSCs Infrapatellar fat pad-derived MSCs
IPFP-MSC-EXOs IPFP-MSC-derived exosomes
KGN Kartogenin
LIPUS Low-intensity pulsed ultrasound

lncRNA Long non-coding RNA
MMPs Matrix metalloproteinases
MMP13 Matrix metalloproteinase13
MSCs Mesenchymal stem cells
MSC-EXOs MSC-derived exosomes
MVBs Multivesicular bodies
OA Osteoarthritis
ONFH Osteonecrosis of the femoral head
p-HA Photopolymerizable hyaluronic acid
PTH Parathyroid Hormone
RA Rheumatoid arthritis
RCCS Rotary cell culture system
RCT Rotator cuff tendon
SAH Sodium alginate hydrogel
Scx Scleraxis
SLE Systemic lupus erythematosus
SMSC-EXOs Synovial mesenchymal stem cell-derived exosomes
SOX9 SRY-box 9
TBH Tendon-bone healing
TDSCs Tendon stem cells
TDSC-EXOs TDSC-derived exosomes
TE Tropoelastin
TnC Tenascin C
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underlying mechanisms of MSC-EVs, particularly exosomes, in joint
diseases including OA, tendon and ligament injuries, ONFH, and RA (see
Table 2).

2. MSC-EVs in OA treatment

OA is a chronic degenerative joint disease, with common symptoms
including swelling, pain, deformities, and limited mobility. Globally, the
estimated number of patients with OA exceeds 240 million [31]. As
such, OA greatly worsens the patients’ quality of life and leads to a major
socioeconomic burden [32,33]. The main pathological features of OA
include articular cartilage degeneration, synovial inflammation, and
subchondral sclerosis [34,35]. Commonly used OA treatment modalities
can be divided into nonsurgical interventions and surgical procedures.
The primary objective of OA management involves pain control, func-
tional improvement, and disability reduction [31,36,37].

Articular cartilage, a type of hyaline cartilage, varies in thickness
(2–4 mm) and is composed of an extracellular matrix (ECM) and chon-
drocytes [38]. This ECM is mainly composed of type II collagen and
aggrecan (ACAN), which can maintain the stability and structural
integrity of cartilage and provide a viable environment for chondrocytes
[39,40]. Increased amounts of collagen-degrading enzymes, particularly
matrix metalloproteinase 13 (MMP13) and a disintegrin-like and met-
alloproteinase with thrombospondin type-1 motifs 4/5 (ADAMTS4/5),
play a role in reducing type II collagen and ACAN levels, eventually
resulting in ECM breakdown [40,41]. The chondrocytes are located in
the ECM, accounting for only 1%–5% of the articular cartilage content.
They are quiescent cells, which can synthesise many ECM-associated
proteins, such as collagen, hyaluronic acid, and proteoglycan, under
physiological conditions [47]. Several signalling molecules are involved
in chondrocyte regulation. For instance, SRY-box (SOX)9 is a main
regulatory protein in chondrocytes, playing a major role during chon-
drogenesis. It can enhance the expression of ECM genes, including type
II collagen alpha 1 (COL2A1) and ACAN [44]. The Wnt pathway is
essential for maintaining the normal characteristics and proliferation of
chondrocytes, and BMP is also involved in the regulation of chondrocyte
proliferation and differentiation [45]. mTOR is closely associated with
chondrocyte apoptosis [46]. In OA, chondrocytes in the quiescent state
undergo hypertrophy. Hypertrophic chondrocytes then secrete matrix
metalloproteinases (MMPs), downregulate COL2A1 and SOX9 expres-
sion, and mediate ECM degradation. In addition, the hypertrophic
chondrocytes finally progress to apoptosis, further reducing cartilage

quality [47,48]. Chondrocytes in patients with OA also express
senescence-related phenotypes, and the senescent chondrocytes
contribute to ECM degradation through MMPs secretion [49]. In the
joint cavity of patients with OA, inflammatory chondrocytes release
proinflammatory cytokines [e.g. interleukin (IL) 7], which mediate
cartilage degradation and cartilage fragment production. In addition,
the cartilage fragments can enhance inflammatory chondrocyte activa-
tion, leading to increased secretion of proinflammatory cytokines and
polarisation of M1 macrophages within the synovial membrane. The
proinflammatory cytokines can mediate synovial hypertrophy and
inflammation [50,51].

A considerable amount of recent research has focused on tissue
regeneration and repair capabilities of MSC-derived exosomes (MSC-
EXOs) [5,30,52]. These MSC-EXOs [e.g. bone marrow MSC
(BMSC)-derived exosomes (BMSC-EXOs) and adipose MSC (ADMSC)--
derived exosomes (ADMSC-EXOs)] can facilitate chondrocyte prolifer-
ation, inhibit chondrocyte apoptosis, promote ECM synthesis, and
regulate inflammation in OA (Fig. 2) [30,53–56].

2.1. BMSC-EVs in OA treatment

BMSC-EXOs have considerable therapeutic capabilities, enhancing
OA-related cartilage damage repair [55,57]. BMSC-EXOs can enhance
type II collagen and proteoglycan production and suppress MMP13 and
ADAMTS5 expression, thereby facilitating the maintenance of ECM
homeostasis [58–60]. The underlying mechanisms may be associated
with exosome contents, such as circRNA_0001236 and KLF3-AS1,
among which circRNA_0001236 can acts as an miR-3677-3p sponge to
regulate the ECM homeostasis [61,62]. In addition, BMSC-EXOs car-
rying miR-320c can upregulate SOX9 expression in chondrocytes, pro-
mote COL2A1 and ACAN synthesis, and alleviate cartilage damage [44,
63].

BMSC-EXOs can also facilitate chondrocyte proliferation and
migration and suppress chondrocyte senescence and apoptosis in OA
[64–66,76]. Dysregulated activation of the NF-κB pathway, a crucial
pathogenic factor involved in OA, canmediate chondrocyte hypertrophy
and apoptosis or mediate chondrocyte senescence through oxidative
stress [67]. BMSC-EXOs carrying miR-326 and miRNA-361-5p can pre-
vent chondrocyte senescence and apoptosis by inhibiting NF-κB
pathway activation [64,65]. Typical Wnt pathway activation can be
observed in the joint cartilage of patients with OA, and β-catenin over-
expression in mature chondrocytes can cause chondrocyte hypertrophy

Table 1
EVs or EXOs isolation methods.

Isolated methods Principles Advantages Disadvantages

Differential ultracentrifugation [217,
218]

Based on size ● Gold standard for exosome
separation

● Low cost
● Suitable for large-volume samples

● High equipment requirement
● Complex operation
● Potential for exosome destruction

Density gradient ultracentrifugation
[219]

Based on density ● High purity
● Allowing separation of exosome

subpopulations

● Complex operation
● Low yield

Ultrafiltration [24,219,220] Based on size ● Low equipment cost
● Good portability

● Medium purity
● Clogging and membrane trapping

Tangential flow filtration [221–223] Based on size ● High yield
● Little exosome destruction
● Suitable for large-volume samples

● Contamination with exosomes
similar in diameter

Size-exclusion chromatography [217,
224,209]

Based on size ● High purity
● Little exosome destruction
● High recovery efficiency

● Protein contamination
● High equipment cost
● Time-consuming

Polymer-based precipitation separation
[220,226,227]

Based on solubility ● Simple operation
● Low equipment requirement

● Little specificity
● High cost

Immunological separation [209,219,
228,229]

Based on antigen–antibody response ● High purity
● Easy to use

● High cost
● Separation of exosomes with

targeted proteins only
Microfluidic chip [225] Based on different principles, including

immunoaffinity, size, and density
● Easy to operate
● Small sample volume requirement
● Separation–detection integration

● Complex instrument
● Difficulty in maintaining high yield

and purity
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and mediate cartilage damage [68]. BMSC-EXOs carrying
miRNA-127-3p can inhibit IL-1β-induced chondrocyte apoptosis by
inhibiting CDH11-mediated Wnt/β-Catenin pathway activation [66]. In
an OA mouse model, miR-92a-3p-overexpressing BMSC-EXOs could
promote chondrocyte proliferation and migration, as well as regulate
chondrogenesis and ECM homeostasis, through WNT5A down-
regulation, thereby enhancing cartilage formation and inhibiting carti-
lage degradation [54]. Glutamine can engender ATP production—the
fundamental energy source for cellular activities—via the tricarboxylic
acid cycle. Therefore, glutamine content is somewhat positively corre-
lated with cell activity. BMSC-EXOs can inhibit chondrocyte apoptosis
and maintain chondrocyte homeostasis through the regulation of
glutamine metabolism [69,70]. Moreover, BMSC-EXOs can increase the
expression of the chondrogenic genes COL2A1 and ACAN and reduce the

expression of the chondrocyte hypertrophy markers MMP13 and RUNX2
in OA chondrocytes. The underlying mechanisms may be associated
with the activation of the lncRNA-KLF3-AS1/miR-206/GIT1 axis by
BMSC-EXOs [71]. Furthermore, BMSC-EXOs can reduce the levels of
proinflammatory cytokines and concurrently elevate anti-inflammatory
cytokines in the synovial fluid of OA joints. Moreover, they can inhibit
synovial hyperplasia and ameliorate OA synovitis and osteophyte for-
mation [55,72]. The possible underlying mechanisms are associated
with the regulation of proinflammatory cells such as synovial macro-
phages by BMSC-EXOs [55,73]. BMSC-EXOs can inhibit synovial in-
flammatory cell recruitment by promoting the transition of
proinflammatory (M1) macrophages to anti-inflammatory (M2) mac-
rophages and reducing proinflammatory mediator secretion [55]. M2
macrophage polarisation by BMSC-EXOs may be related to

Table 2
Biological functions and mechanisms of miRNA-carrying MSC-EVs or MSC-EXOs in joint diseases.

Source miRNAs Diseases Biological functions Mechanisms

miR-92a-3p [54] OA ● Promoting chondrocyte proliferation and migration
● Regulating chondrogenesis and ECM homeostasis

● Downregulating WNT5A expression

miR-326 [64] OA ● Regulating chondrogenesis and ECM homeostasis ● Targeting HDAC3 and STAT1//NF-κB p65 in
chondrocytes

miRNA-361-5p
[65]

OA ● Improving chondrocyte senescence and apoptosis ● Downregulating DDX20 and inactivating the NF-κB
pathway

miRNA-127-3p
[66]

OA ● Inhibiting IL-1β-induced chondrocyte apoptosis ● Inhibiting CDH11-mediated Wnt/β-Catenin pathway
activation

miR-320c [44,63] OA ● Improving cartilage damage ● Upregulating SOX9 expression
● Promoting COL2A1 and ACAN synthesis

miR-21-5p [154] Tendon and
ligament injuries

● Facilitating fibrocartilage regeneration ● Inhibiting SMAD7 expression

miR-23a-3p [141] Tendon and
ligament injuries

● Promoting M1 to M2 macrophage polarisation
● Inhibiting local inflammation at the tendon–bone

interface

● Inhibiting IRF1 expression and the NF-κB pathway in
macrophages

miR-223 [192] RA ● Inhibiting proinflammatory cytokine release ● Downregulating NLRP3 expression in macrophages
miR-6924-5p
[156]

Tendon and
ligament injuries

● Suppressing osteoclastogenesis
● Inhibiting bone resorption surrounding the bone

tunnel
● Ultimately enhancing TBH’s mechanical strength

● Downregulating CXCL12 and OCSTAMP expression

miR-224-3p
inhibited [173]

ONFH ● Promoting angiogenesis ● Upregulating FIP200 expression

miR-122-5p
[180]

ONFH ● Promoting osteoblast proliferation ● –

miR-150-5p [194,
195]

RA ● Reversing proangiogenic effects of FLSs
● Inhibiting FLS invasiveness

● Inhibiting MMP14 and VEGF expression in FLSs

miR-320a [196] RA ● Inhibiting FLS activation ● Suppressing CXCL9 expression
ADMSCs miR-140-5p [98] OA ● Counteracting inhibitory effects of exosomes on ECM

secretion
● –

miR-451-5p [94] OA ● Improving cartilage matrix synthesis and alleviating
Osteoarthritis

● –

miR-199-3p [93] OA ● Promoting cartilage repair ● Inhibiting mTOR expression
miR-376c-3p [90] OA ● Inhibiting cartilage degradation

● Alleviating synovial fibrosis and synovial hyperplasia
● Inducing target inhibition of WNT3/WNT9a, thereby

suppressing WNT-β-catenin pathway activation
miR-338-3p [89] OA ● Inhibiting inflammation injury in chondrocytes ● Inhibiting RUNX2 expression
miR-378 [170] ONFH ● Enhancing angiogenesis and osteogenesis ● Downregulating Sufu and activating Shh
miR-146a [190] RA ● Increasing Treg proportions ● –

IPFP-MSCs miR-100-5p [92] OA ● Promoting proliferation and inhibiting apoptosis in
chondrocytes to rescue damaged cartilage

● Inhibiting mTOR pathway

SMSCs miR-320c [97] OA ● Inhibiting ECM degradation and chondrocyte
apoptosis

● Supressing ADAM19-dependent Wnt signal pathway

miR-212-5p [99] OA ● Suppressing chondrocyte degeneration and
inflammation

● Inhibiting ELF3

TDSCs miR-145-3p
[127]

Tendon and
ligament injuries

● Promoting TDSC proliferation, migration, and
tenogenic differentiation

● –

UCMSCs miR-29a-3p [128] Tendon and
ligament injuries

● Increased the expression of tendon markers in TDCSs ● Activating PTEN/mTOR/TGF-β1 pathway

miR-365a-5p
[175]

ONFH ● Promoting osteogenesis ● Activating Hippo pathway

miR-21-5p [172] ONFH ● Promoting osteogenesis ● Inhibiting SOX5/EZH2 axis
miR-451a [197] RA ● Inhibiting FLS proliferation, migration, and invasion ● Suppressing ATF2 expression
miR-140-3p
[200]

RA ● Inhibiting chondrocyte apoptosis
● Promoting FLS apoptosis
● Inhibiting FLS proliferation

● Downregulating SGK1 expression

Labial gland
MSCs

miRNA-125b
[202]

RA ● Inhibiting plasma cells ● Suppressing PRDM1 expression

iPSCs miR-135b [176] ONFH ● Reducing osteocyte apoptosis ● –
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PINK1/Parkin pathway inhibition [74]. In addition, increased expres-
sion of long noncoding RNA (lncRNA) TUC339 in BMSCs can improve
the ability of BMSC-EXOs to promote M2 macrophage polarisation [75].
The common pathological features of OA include subchondral bone
remodelling and sclerosis. BMSC-EXOs can partially maintain the
normal structure of trabeculae in OA subchondral bones, promote sub-
chondral bone remodelling, and alleviate OA pain [76,77]. Trans-
forming growth factor (TGF) β1-modified BMSC-EXOs can inhibit
uncoupled subchondral bone remodelling and alleviate OA pain by
suppressing platelet-derived growth factor-BB secretion and H-type
vascular activity in the subchondral bone [78]. Moreover, BMSC-EXOs
may alleviate OA pain by inhibiting nerve invasion in the OA sub-
chondral bone [77].

Several studies assessed different approaches to improve the efficacy
of BMSC-EXOs in OA treatment. Mechanical stimulation of MSCs
through low-intensity pulsed ultrasound, or pretreatment with decellu-
larized ECM, parathyroid hormone (1–34), and kartogenin (KGN), can
further enhance the capacity of BMSC-EXOs to exert a more protective
effect in OA chondrocyte [60,79–81]. Similarly, pretreatment of BMSCs
with TGF-β1 can enhance the capacity of BMSC-EXOs to promote M2
macrophage polarisation, possibly through miR-135b-mediated inhibi-
tion of MAPK6 [73]. Chen et al. developed a scaffold composed of
3D-printed cartilage ECM/gelatin methacrylate (GelMA)/exosomes,
facilitating the gradual release of BMSC-EXOs at the damaged cartilage
and extending the duration of BMSC-EXOs’ effects effectively [59]. Zeng
et al. designed a mussel-inspired multifunctional hydrogel system that
can protect cartilage by enhancing the synergistic effects of MSC-EXOs
with icariin (ICA) [82]. A recent study employed a combination of
strategies to enhance the therapeutic effects of BMSC-EXOs against OA.
First, the researchers loaded BMSC-EXOs with LRRK2-IN-1, a small
molecule drug that can alleviate OA efficaciously. Next, these
drug-loaded BMSC-EXOs were modified with a cartilage-affinity peptide
(CAP) to increase their chondrocyte-targeting ability. Finally, to prevent
rapid clearance and degradation at the administration site, these
modified BMSC-EXOs were encapsulated within photo-crosslinked
spherical hydrogels [83].

2.2. ADMSC-EVs in OA treatment

Adipose tissue can be easily obtained from common clinical pro-
cedures such as liposuction, arthroscopy, and plastic surgery. ADMSCs,
originating from adipose tissue, play a crucial role in regenerative
medicine for damaged cartilage and hold great potential for OA treat-
ment [56,84–87]. In a comparative study on the chondrogenic abilities
between different MSC-EV types, ADMSC-EVs demonstrated a stronger
capacity for cartilage formation than BMSC-EVs [88]. ADMSC-EXOs can
hinder the release of inflammatory substances (e.g. IL-6 and prosta-
glandin E) and concurrently promote the release of anti-inflammatory
substances (e.g. IL-10), thus improving the inflammation state within
joint microenvironments [87,89]. In a study on rat models with OA
induced by monosodium iodoacetate, ADMSC-EXOs carrying
miR-376c-3p not only inhibited cartilage degradation but also alleviated
synovial fibrosis and synovial hyperplasia; the underlying mechanism
involved the targeted inhibition of WNT3/WNT9a, which consequently
suppressed the Wnt/β-catenin pathway [90]. Similarly, the infrapatellar
fat pad–derived MSCs (IPFP-MSCs) obtained from patients with OA and
healthy individuals (i.e. patients undergoing ligament reconstruction)
enhanced cartilage repair, with a chondrogenic potential superior to
that of BMSCs or subcutaneous ADMSCs [91]. In an OA mouse model,
IPFP-MSC-derived exosomes (IPFP-MSC-EXOs) carrying miR-100-5p
activated the mTOR pathway in chondrocytes, promoting proliferation
and inhibiting apoptosis, eventually rescuing the damaged cartilage
[92]. Another study combined CAP with LAMP2 on the membranes of
subcutaneous ADMSC-EXOs for targeted delivery to chondrocytes.
These subcutaneous ADMSC-EXOs loaded with miR-199-3p exhibited a
substantial effect in promoting cartilage repair in an OA rat model,
potentially through inhibition of mTOR expression [93]. Furthermore,
pretreating ADMSCs with tropoelastin can increase the yield of
ADMSC-EXOs and enhance their capacity to alleviate OA cartilage injury
by increasing miR-451-5p levels [94]. In addition, pretreating
IPFP-MSCs with KGN can enhance the capacity of IPFP-MSC-EXOs to
promote chondrocyte proliferation and facilitate chondrogenic differ-
entiation of in situ MSCs [95].

Figure 1. MSCs origin and MSC-EXOs biogenesis. MSCs can be isolated from various sources, such as bone marrow, fat tissue, umbilical cord, and synovium. MSC-
EXOs secretion involves multiple stages, such as endocytosis, early and late endosome formation, multivesicular body formation, and exocytosis. MSC-EXOs contents
include proteins, RNAs, DNAs, amino acids, and metabolites.
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2.3. Other MSC-EVs in OA treatment

In addition to the aforementioned MSC-EXOs, exosomes derived
from other types of MSCs can have some therapeutic potential against
OA. Exosomes derived from embryonic stem cells can maintain ECM
homeostasis by upregulating type II collagen expression and down-
regulating ADAMTS5 expression [96]. Synovial MSC (SMSC)-derived
exosomes (SMSC-EXOs) can inhibit ECM degradation and chondrocyte
apoptosis by delivering exosomal miR-320c that targets
ADAM19-dependent Wnt signalling and thereby repairs cartilage dam-
age in OA rats [97]. SMSC-EXOs contents can also activate the YAP
pathway through Wnt5a and Wnt5b, promoting chondrocyte prolifera-
tion and migration but inhibiting ECM secretion. However, miR-140-5p
overexpression via SMSC-EXOs can counteract this inhibitory effect on
ECM secretion [98]. Furthermore, SMSC-EXOs overexpressing
miR-212-5p have been observed to suppress the production of inflam-
matory cytokines, including IL-6, MCP-1, TNF-α, COX-2, and iNOS, in
OA chondrocytes [99].

Recently, various approaches have been employed to enhance the
therapeutic effectiveness of these MSC-EXOs in OA treatment. For
instance, 3D culture methods have been used to increase the yield of
umbilical cord MSC–derived exosomes (UCMSC-EXOs), as well as their
therapeutic effects on OA-related cartilage injuries. These methods
include the use of a hollow-fibre bioreactor, rotary cell culture system,
or a 3D porous scaffold culture [100–102]. A study integrated
chondrocyte-targeting polymers onto the membrane of UCMSC-EXOs
and encapsulated them in thiolated hyaluronic acid microgels to effec-
tively target chondrocytes [103]. Combination with an acellular carti-
lage ECM scaffold can enhance the capacity of UCMSC-EXOs to promote
OA cartilage defect repair [104].

Taken together, these results indicate that MSC-EXOs have a high
therapeutic potential because they can promote chondrocyte prolifera-
tion, inhibit cell apoptosis, stimulate extracellular matrix synthesis,

regulate inflammation, and ultimately effectively alleviating OA symp-
toms and pathology. The integration of multiple approaches, including
genetic modification of MSC-EXOs, and combination of MSC-EXOs with
biomaterials, has been noted to improve outcomes compared with those
of each strategy individually [103]. Additional studies and integration of
these approaches may further enhance the therapeutic potential of
MSC-EXOs. For instance, a synergistic combination of MSC-EXOs with
specific hydrogels may facilitate controlled and precise release of
MSC-EXOs at designated sites and time points in response to stimuli,
such as light and ultrasound. This is because some hydrogels can change
their state after exposure to various stimuli; for instance, photosensitive
hydrogels have been used to control the release of aspirin through light
stimulation [105].

3. MSC-EVs in tendon and ligament injury treatment

Tendons and ligaments are fibrous connective tissues, a tendon
connects muscles to bones, whereas a ligament connects bones within a
joint for optimal functionality and stability. Structurally, tendons and
ligaments are composed of collagen fibres at varying levels; for instance,
the collagen fibre content of the rotator cuff tendon (RCT) is 66.6 % ±

5.3 %, whereas that of the anterior cruciate ligament (ACL) is approxi-
mately 75 % [106]. Tendon and ligament injuries are common muscu-
loskeletal disorders, and they can lead to pain and disability [107,108].
Common tendon and ligament injury sites include the ACL, RCT, and
Achilles tendon [108,109]. The treatment modalities used for tendon
and ligament injuries can vary depending on their location and severity.
Conservative treatment is typically used for minor injuries such as
sprains, strains, and partial tears, whereas surgical repair or recon-
struction is often employed for extensive tears and ruptures [110–112].
The challenges associated with conservative treatment and tendon
repair surgery include slow tendon healing and scar tissue formation.
Moreover, achieving optimal tendon–bone healing (TBH) at the graft

Figure 2. MSC-EXOs in OA treatment. In OA, MSC-EXOs can inhibit chondrocyte degeneration, M1 macrophage polarisation, and synovial fibroblast proliferation
and migration. ECM/GelMA/EXOs, ECM–gelatin methacrylate–exosome scaffold; ESCs, embryonic stem cells; HA-SH microgels, thiolated hyaluronic acid microgels;
LIPUS, low-intensity pulsed ultrasound; PTH, parathyroid hormone; SMSCs, synovial MSCs.
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and bone tunnel interface after tendon reconstruction surgery can be
difficult [3,6,113]. Nevertheless, many studies have demonstrated the
therapeutic potential of MSC-EXOs for tendon repair and TBH (Fig. 3).

3.1. MSC-EVs for injured tendon repair

Both tendons and ligaments are primarily composed of collagen fi-
bres, which in turn comprise collagen [114,115]. Under physiological
conditions, type I collagen is the main component of tendons, affording
them strong biomechanical properties, whereas type II collagen is
mainly present near tendon–bone junctions, and type III collagen pri-
marily occurs around tissues undergoing tendon repair [114,116]. The
tendon repair process, however, often results in scar formation, char-
acterised by suboptimal biomechanical properties. In the later stages of
tendon repair, type I collagen gradually replaces some of the type III
collagen [117,118]. Therefore, the ratio of type I collagen to type III
collagen can indicate the extent of functional recovery after the repair of
a damaged tendon.

The repair process of damaged tendons can be categorised into three
primary phases: inflammatory, proliferative, and remodelling. The in-
flammatory phase, occurring in the first few days after injury, is char-
acterised by red and white blood cell infiltration, as well as platelet-
secreted growth and chemotactic factors. Subsequently, macrophages
become activated and engulf dead cells, whereas tenocytes migrate to
the affected region and proliferate [119]. The proliferative phase com-
mences 2 days after injury, during which macrophages gradually tran-
sition from releasing proinflammatory factors to secreting growth
factors. During this phase, tenocytes, fibroblasts, and inflammatory cells
become recruited to the injured area, where the tenocytes secrete type
III collagen. These recruited cells demonstrate upregulation of VEGF and

bFGF expression, facilitating neovascularisation [120]. The remodelling
phase, beginning at 1–2 months after injury, is characterised by the
synthesis of type I collagen, which restores the physiological structure of
the injured tendon. In adults, damaged tendon repair typically involves
scar tissue healing. Therefore, it cannot restore the biomechanical
strength of the affected tendon entirely [118].

3.1.1. MSC-EVs for inflammation during tendon repair
Recent studies have suggested that MSC-EXOs can accelerate tendon

repair by regulating its various stages. During inflammation after tendon
injury, MSC-EXOs facilitate tendon healing by inhibiting excessive
inflammation. ADMSC-EXOs can inhibit M1 macrophage polarisation
but promote M2 macrophage polarisation, resulting in decreased
proinflammatory cytokine secretion [121]. Another study reported that
TDSC-derived exosomes (TDSC-EXOs) upregulate the expression of
IL-10 (M2 macrophage–stimulating factor) but significantly down-
regulate the expression of IL-6 (M1 macrophage–stimulating factor).
COX-2 is strongly associated with fibrosis and adhesion subsequent to a
tendon injury, whereas TDSC-EXOs treatment significantly attenuates
COX-2 expression, thereby facilitating early inflammation alleviation
and enhancing tendon regeneration [122]. In addition, MSC-EXOs have
been used for pretreating macrophages, which can then be used for
treating injured tendons. This approach can aid in effectively reducing
the M1 macrophage population in the damaged area, increasing the M2
macrophage population, and mitigating postinjury scar formation
[123].

3.1.2. MSC-EVs for TDSC and tenocyte function improvement during
tendon repair

Tendon stem cells (TDSCs) and tenocytes play a crucial role in

Figure 3. MSC-EXOs in tendon and ligament injury treatment. MSC-EXOs can accelerate the repair of damaged tendons by regulating the functions of TDSC. MSC-
EXOs can also increase TBH by promoting bone and fibrocartilage formation at the tendon–bone interface. INOP, iron oxide nanoparticles; p-HA, photopolymerisable
hyaluronic acid; PDGFR, platelet-derived growth factor receptors; WBPU, waterborne polyurethane.
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damaged tendon repair. A study demonstrated that a dynamic wet-
spinning system Rotator Cuff Patch loaded with BMSC-EXOs can effec-
tively promote tenocyte proliferation and migration of tenocytes [124].
ADMSC-EXOs can restore damaged tendons by fostering TDSCs prolif-
eration and migration. A study observed that GelMA-loaded ADMS-
C-EXOs promoted TDSCs proliferation by activating the SMAD2/3 and
SMAD1/5/9 pathways [125]. Similarly, TDSC-EXOs can enhance TDSCs
proliferation and migration by activating the TGF-β-SMAD2/3 and
ERK1/2 pathways [126]. TDSC-derived EVs (TDSC-EVs) carrying
miR-145-3p can also promote the proliferation, migration, and tendon
differentiation of TDSCs. TDSC-EVs loaded using GelMA hydrogels
demonstrate enhanced fixation and slow release and consequently
exhibit high therapeutic efficacy [127]. UCMSC-EXOs carrying
miR-29a-3p can activate the PTEN/mTOR/TGF-β1 pathway, facilitating
the differentiation of TDSCs into tenocytes [128].

Tenocytes can directly mediate ECM synthesis, facilitating the repair
of damaged tendons. MSC-EXOs can stimulate tenocyte proliferation
and migration, as well as enhance tenocyte ECM secretion. Notably,
TDSC-EXOs can activate the PI3K/AKT and MAPK/ERK1/2 pathways to
promote tenocyte proliferation and migration [122]. Moreover, a scaf-
fold of photopolymerisable hyaluronic acid loaded with TDSC-EXOs can
achieve sustained TDSC-EXOs release at the injury site [129].
BMSC-EXOs can facilitate tenocyte proliferation and migration through
TGF-β1 and enhance ECM synthesis by promoting the secretion of type
III collagen, α-smooth muscle actin (α-SMA), scleraxis (Scx), and
tenascin C [130]. A study combined BMSC-EXOs with fibrin and injected
them into a tendon injury site, allowing for controlled release of
BMSC-EXOs, which significantly increased the expression of type I
collagen, thereby enhancing the ability of BMSC-EXOs to promote ECM
synthesis [131].

During the remodelling phase of repairing damaged tendons, the
content of type I collagen is strongly associated with the restoration of
tendon physiological structure. ADMSC-EXOs can upregulate the ratio of
type I collagen to type III collagen by activating the AMPK pathway and
suppressing Wnt/β-catenin activity, ultimately enhancing the biome-
chanical properties of the healed tendons [132].

3.2. MSC-EVs for TBH improvement after ligament reconstruction

Severe tendon or ligament tears or ruptures typically require
reconstruction surgery for damaged tissue repair. For instance, ACL
reconstruction (ACLR) is commonly employed in cases of ACL tear or
rupture, which surgical procedure involves creating a bone tunnel on the
articular surface of the joint, inserting a tendon graft into the tunnel, and
securing the graft with anchor pins or other methods [133]. However,
ACLR is associated with a high incidence (11.9 %) of average failure,
attributable to the related TBH limitations [134,135]. In physiological
conditions, the tendon–bone junction consists of a tendon, non-
mineralised fibrocartilage, mineralised fibrocartilage, and bone [6].
During the post-ACLR healing process, the tendon graft is initially
connected to the bone tunnel by fibrous scar tissue. Trabecular remod-
elling is then performed around the bone tunnel, followed by bone
infiltration of the tendon graft and ossification of the tendon graft [135,
136]. However, compared with its normal physiological structure, the
fibrous scar tissue exhibits inferior biomechanical properties, such as
poorer tensile strength and impact resistance [137].

The TBH process can be divided into four stages: inflammation,
proliferation, remodelling, and maturation [6]. The inflammation stage
involves macrophage and neutrophil recruitment, subsequently leading
to the formation of fibrovascular scar tissue connecting the tendon graft
with the bone. The subsequent proliferation stage encompasses stem cell
proliferation, migration, and differentiation, along with restoration of
local blood circulation, prompted by cytokines and growth factors. The
remodelling stage is primarily characterised by cell-secreted ECM at the
graft–bone interface, which promotes the growth of bone into the graft
and the formation of continuous collagen fibres between them. The final

maturation stage is characterised by a gradual reduction in the number
of cells and blood vessels at the bone–graft interface, parallel alignment
of collagen fibres, and progressive restoration of biomechanical strength
[6,138]. Bone formation enhancement and blood supply optimisation
are considered essential for TBH improvement. Ameliorating inflam-
mation, facilitating osteogenesis, and augmenting fibrocartilage for-
mation might also enhance TBH [138].

MSC-EXOs have been reported to expedite the TBH process and
enhance the joint’s biomechanical strength, possibly by reducing
inflammation at the tendon–bone interface, improving blood supply,
promoting bone formation, and facilitating fibrocartilage formation
[139].

3.2.1. MSC-EVs for inflammation alleviation in TBH
Macrophages play a central role in the inflammatory phase following

tendon reconstruction. The early postoperative inflammation in the
tendon–bone junction area after tendon reconstruction primarily occurs
through the substantial influx of recruited macrophages [140,141]. The
inflammatory phase of TBH involves M1 and M2 macrophages, and
promoting the polarisation of M1 macrophages to M2 macrophages can
effectively suppress inflammation at the tendon–bone interface and
improve TBH [6]. Numerous studies have demonstrated the regulatory
effects of BMSC-EXOs on macrophages, effectively suppressing polar-
isation towards the M1 phenotype, promoting differentiation into the
M2 phenotype, and reducing the secretion of inflammatory cytokines. In
a rat model of RCT reconstruction, articular cavity injection of
BMSC-EXOs administration facilitated TBH and augmented its biolog-
ical effects, possibly mediated by macrophages [139]. In a mouse model
of Achilles tendon reconstruction, local injection of BMSC-EXOs reduced
cell apoptosis and fibrotic tissue formation by inhibiting M1 macro-
phage polarisation, thereby improving biomechanical function of the
reconstructed Achilles tendon [142]. Studies on rat models with ACLR
have demonstrated that BMSC-EXOs or IPFP-MSC-EXOs can also accel-
erate TBH and promote recovery of postoperative function. The under-
lying mechanisms involve the downregulation of IRF1 and NF-κB
pathway protein expression via miR-23a-3p, which promotes M2
polarisation and inhibits M1 polarisation of macrophages [141,143].

Recent research on MSC-EXOs in the inflammatory phase of TBH has
primarily focused on macrophage regulation. In particular, neutrophils
also play a role in inflammation regulation during this phase [6].
ADMSCs inhibit early inflammation during TBH and reduce the number
of neutrophils [144]. Moreover, BMSC-EXOs reduce the number of
neutrophils [145]. As such, investigating MSC-EXO-mediated regulation
of neutrophils during TBH may provide new strategies for the treatment
of the inflammatory phase.

3.2.2. MSC-EVs for angiogenesis improvement in TBH
Blood vessels are transportation channels for oxygen, cytokines,

amino acids, glucose, and other metabolites, and local blood supply is
crucial for tissue regeneration and repair [146]. The degree of post-
operative regeneration of blood supply in the tendon–bone region
significantly affects TBH. Insufficient local neovascularisation may
result in nonunion at the tendon–bone interface [42,148,149].
MSC-EXOs lead to efficient angiogenesis when used to treat various
diseases. For instance, UCMSC-EXOs can enhance fracture healing by
promoting angiogenesis, and atorvastatin-pretreated BMSC-EXOs can
promote diabetic wound healing through enhanced angiogenesis [151,
152]. In a rat model of rotator cuff reconstruction, BMSC-EXOs can
enhance angiogenesis, improve blood supply and tissue healing, and
promote postoperative biological function. The underlying mechanisms
may involve enhanced formation of new blood vessels during TBH
through VEGF and Hippo pathway activation [139].

3.2.3. MSC-EVs for osteogenesis promotion in TBH
After ligament reconstruction, biomechanical strength is positively

correlated with both the ingrowth of bone tissue into the tendon and the
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ossification of the tendon [153]. In an ACLR rat model, both BMSC-EXOs
and IPFP-MSC-EXOs reduced bone tunnel cross-sectional area and pro-
moted bone tissue ingrowth into the graft [141,143]. Exosomes derived
from magnetically actuated BMSCs can effectively enhance trabecular
bone formation, reduce bone loss in the bone tunnel, promote osseous
ingrowth into the tendon, and improve postreconstruction biomechan-
ical function of the ACL [154]. Exosomes derived from
hypoxia-stimulated BMSCs can facilitate the formation of specialised
H-type vessels within the bone tissue, and promoting the differentiation
of osteoprogenitor cells to osteoblasts. The differentiated osteoblasts
contribute to the development of surrounding bone tissue around the
tendon graft, stabilising the connection between the tendon and bone
tunnel further and ultimately enhancing TBH [155]. Furthermore,
exosomes derived from genetically modified Scleraxis-overexpressing
PDGFRα(+) BMSCs, generated through Scx in BMSCs, can suppress
osteoclastogenesis and inhibit bone resorption surrounding the bone
tunnel, finally enhancing the mechanical strength of TBH. This effect is
attributable to miR-6924-5p-mediated targeted downregulation of
CXCL12 and OCSTAMP expression [156].

3.2.4. MSC-EVs for fibrocartilage regeneration promotion in TBH
As an intermediate structure between tendon and bone, fibro-

cartilage facilitates the efficient transmission and absorption of local
tensile forces during movement [157]. During the tendon reconstruction
process, the normal fibrocartilage structure becomes disrupted, which
leads to disorganised fibrous scar tissue formation at the tendon–bone
interface, which results in compromised mechanical properties [137,
158]. MSC-EXOs can promote fibrocartilage regeneration and improve
collagen fibre alignment. This enhancement eventually improves post-
operative biomechanical function recovery [159,160].

In a rat model of Achilles tendon reconstruction, BMSC-EXOs can
facilitate fibrocartilage regeneration at the tendon–bone interface, the
underlying mechanism might be associated with the stimulation of M2
macrophage polarisation and promotion of local cell proliferation [142].
In an ACLR rat model, the therapeutic strategy combining cartilage
fragments with BMSC-EXOs promoted fibrocartilage regeneration at the
tendon–bone interface, of which possible underlying mechanisms
include promotion of chondrocyte proliferation, upregulation of the
expression of cartilage-related genes SOX9 and ACAN in chondrocytes,
and activation of the BMP7/SMAD5 axis [161]. Moreover,
IPFP-MSC-EXOs can enhance the regular arrangement of early collagen
fibres and facilitate fibrocartilage regeneration, this effect may be
attributing to the inhibitory effect of IPFP-MSC-EXOs on early inflam-
mation [143]. In the rabbit model of chronic RCT tear, treatment with
ADMSC-EXOs promoted fibrocartilage formation at the tendon–bone
interface and improved the biomechanical properties of TBH, which
may have occurred due to the anti-inflammatory effects of ADMSC-EXOs
[162]. Compared with typical BMSC-EXOs, miR-21-5p-carrying exo-
somes derived from magnetically actuated BMSCs demonstrate a
stronger role in facilitating fibrocartilage regeneration. The underlying
mechanism may be attributable to miR-21-5p in the exosomes, which
inhibits SMAD7 expression, consequently promoting fibroblast prolif-
eration and migration and upregulating expression of fibrosis markers
such as type I collagen and α-SMA [154]. A study pretreated BMSCs with
KGN and then loaded them into sodium alginate hydrogel (SAH) to
achieve slow BMSC-EXOs release at injury sites. Compared with the
control group, treatment with BMSC-EXO-loaded SAH at the injury site
increased the number of mature collagen fibres and formation of carti-
lage at the tendon–bone interface [163]. Tenocytes can trans-
differentiate into chondrocytes, whereas chondrocytes can
transdifferentiate into osteoblasts [164]. Moreover, someMSC-EXOs can
regulate intercellular transdifferentiation; for instance, UCMSC-EXOs
have been noted to inhibit epithelial–myofibroblast trans-
differentiation [165]. Further research on the regulatory effects of
MSC-EXOs on intercellular transdifferentiation may enable the discov-
ery of newer strategies that facilitate fibrocartilage generation during

TBH, thereby promoting functional recovery.

4. MSC-EVs in ONFH treatment

As a prevalent refractory orthopaedic disorder, ONFH is charac-
terised by progressive osteonecrosis in the femoral head due to
compromised blood supply [4,166]. ONFH can be caused by various
factors including hip joint trauma, corticosteroids, alcohol, and genetic
factors, and it can be divided into traumatic and nontraumatic types [7].
Nonoperative and operative interventions are used for ONFH treat-
ments. The clinical effectiveness of nonoperative interventions, such as
enoxaparin for coagulation inhibition and bisphosphonates for bone
resorption inhibition, is limited by their uncertain therapeutic effect and
considerable side effects. Moreover, the long-term outcomes of opera-
tive interventions, including core decompression, osteotomy, vascu-
larised bone grafting, and joint replacement, tend to be unsatisfactory
[7]. Recent studies have indicated that because they can promote
microvascular regeneration, repair damaged microcirculation, and
regulate bone metabolism, MSC-EXOs may represent an effective
treatment strategy for ONFH (Fig. 4) [167,168].

4.1. MSC-EVs for angiogenesis in ONFH

Impaired blood supply due to exogenous or endogenous factors is
considered a core pathogenic factor related to ONFH, as even short-term
blood supply interruptions can lead to its development [4]. Commonly
used animal models of ONFH include the glucocorticoid-induced ONFH
(GC-ONFH), surgical vascular deprivation ONFH, and liquid nitro-
gen–induced ONFH models. In GC-ONFH, MSC-EXOs, such as exosomes
derived from induced pluripotent stem cell–derived MSCs (iPSC-EXOs),
ADMSC-EXOs and BMSC-EXOs, can promote vascular regeneration
[167,169,170]. Furthermore, encapsulation with short interfering RNA
(siRNA), such as those targeting FGF2, FSTL1, TNF-α, Wnt11, S100A9,
and Caspase3, can enhance the vascular regeneration potential of
BMSC-EXOs [169]. A study reported that when used for in the treatment
of GC-ONFH, lithium ions–stimulated BMSC-EXOs incorporated into an
ECM-mimicking hydrogel (i.e. Lightgel), demonstrating considerable
angiogenic potential [171]. In the surgical vascular deprivation ONFH
animal model, UCMSC-EXOs carrying miR-21-5p were reported to pro-
mote vascular regeneration by specifically inhibiting SOX5, thus
downregulating the expression of enhancer of zeste homologue 2
(EZH2) [172]. A comparative study analysed the differential gene
expression profiles between typical BMSC-EXOs from healthy volunteers
and those from patients with traumatic ONFH (ONFH-EXOs). The results
revealed that ONFH-EXOs carrying miR-224-3p-inhibited exhibited
enhanced potential in promoting vascular regeneration through the
upregulation of focal adhesion kinase family interacting protein of 200
kDa (FIP200) expression [173]. Therefore, MSC-EXOs may restore blood
supply in patients with ONFH.

4.2. Osteogenetic role of MSC-EVs in ONFH

In ONFH, interruption of blood supply to the femoral head contrib-
utes to an increase in osteocyte apoptosis and a decrease in osteoblast
number, potentially leading to microfractures and eventually causing
subchondral bone damage and collapse in the femoral head [4,174]. In
GC-ONFH, various MSC-EXOs, including BMSC-EXOs, SMSC-EXOs,
UCMSC-EXOs, and iPSC-EXOs, can promote bone trabecula repair and
reduce the necrotic area [168,175–178]. BMSC-EXOs can improve
osteogenesis in GC-ONFH by enhancing the osteogenic differentiation of
BMSCs. Pretreating BMSCs with lithium ions or transfecting
tsRNA-10277 into BMSCs can further enhance the osteogenic differen-
tiation effects of BMSC-EXOs [171,178,179]. SMSC-EXOs may facilitate
osteogenesis in GC-ONFH by promoting proliferation and inhibiting
apoptosis of in situ BMSCs [168]. UCMSC-EXOs carrying miR-365a-5p
may increase osteogenesis in GC-ONFH by activating the Hippo
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pathway [175]. IPSC-EXOs can reduce the apoptosis of osteocytes in
GC-ONFH, and miR-135b overexpression can enhance the osteocyte
apoptosis inhibition ability of iPSC-EXOs [176]. In surgical vascular
deprivation ONFH animal models, UCMSC-EXOs carrying miR-21-5p
were found to inhibit the expression of SOX5 and EZH2 in osteoblasts,
thereby promoting osteogenesis and alleviating ONFH [172]. In the
rabbit model of ONFH induced by liquid nitrogen, BMSC-EXOs carrying
miR-122-5p can increase osteogenesis by promoting osteoblast prolif-
eration and differentiation [180].

In sum, MSC-EVs can restore osteonecrosis by improving the func-
tions of osteoblasts and osteocytes. As such, the effects of exosomes on
osteoclasts and other inflammatory cells in ONFH warrant further
investigation. Moreover, recent research on the effects of MSC-EVs in

ONFH has mainly used ONFH animal models induced through gluco-
corticoid use, surgical vascular deprivation, and freezing with liquid
nitrogen. Additional studies assessing the application of MSC-EVs in a
broader range of ONFH models may yield novel therapeutic strategies
for ONFH.

5. MSC-EVs in RA treatment

As a prevalent autoimmune disease, RA can affect multiple organs
throughout the body, but it most commonly affects the joints. In the
affected joints, RA primarily manifests as symmetrical chronic synovitis,
cartilage damage, and bone erosion [181]. Given its global prevalence of
approximately 0.27 %, RA imposes a large socioeconomic burden [182].

Figure 4. MSC-EXOs in ONFH treatment. Blood supply disruption and osteonecrosis are the main pathologic features of ONFH. MSC-EXOs can ameliorate ONFH by
promoting angiogenesis and osteogenesis in damaged areas.

Figure 5. MSC-EXOs in RA treatment. RA pathogenesis is closely related to intraarticular immune inflammatory responses, including adaptive immunity with T and
B cells, innate immunity with macrophages, and immune tissue responses involving synovial fibroblasts. MSC-EXOs can ameliorate RA through regulating the
biological functions of different cells within the joint.
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Pathogenic cells participating in adaptive immune responses (i.e. T and
B cells), innate immune responses (i.e. macrophages), and mesenchymal
tissue responses [i.e. fibroblast-like synoviocytes (FLSs)] contribute to
the pathological damage at RA-affected joints [43,183]. Targeting the
aforementioned pathogenic cells through MSC-EVs may represent a
novel therapeutic approach for RA (Fig. 5).

5.1. MSC-EVs for targeting adaptive immunity in RA

Adaptive immunity mediated by T cells and B cells plays a central
role in the early stage of synovitis in RA [43]. T cells are pivotal in the
occurrence and development of RA. In particular, activated T cells can
differentiate into different subsets under the stimulation of various cy-
tokines in the surrounding environment. Among them, Th1 cells secrete
interferon γ, whereas Th17 cells produce IL-17 and IL-22, both of which
contribute to RA exacerbation through increased recruitment of mac-
rophages and release of proinflammatory cytokines such as TNF-α and
IL-6 [184]. Regulatory T cells (Tregs), which differentiate from CD4+ T
cells, mainly exert immunosuppressive effects by inhibiting the prolif-
eration and differentiation of Th17 cells, as well as the proinflammatory
effects of Th1 and Th17 cells [185,186]. In RA, B cells can either become
coactivated with Th1/Th17 cells or differentiate into plasma cells under
antigen stimulation, promoting macrophage recruitment and activation
through autoantibody production and cytokine secretion [187].
UCMSC-EXOs and gingival MSCs-EXOs (GMSC-EXOs) can alleviate joint
swelling and synovial hyperplasia in collagen-induced arthritis (CIA)
mice, the underlying anti-RAmechanisms might be related to reductions
in the numbers of Th1 and Th17 cell proportions and significant in-
creases of Tregs [188,189]. In RA, MSC-EXOs can exert their biological
effects through the miRNA. Compared with normal ADMSC-EXOs,
ADMSC-EXOs overexpressing miR-146a have an enhanced immuno-
regulatory capacity in RA, as evidenced by enhanced lymphocyte
secretion of cytokines including TGF-β and IL-10 and increased pro-
portions of Tregs [190]. Furthermore, BMSC-EXOs can suppress arthritic
inflammation in RA animal models. In addition to regulating Th1/Th17
cells and Tregs, BMSC-EXOs can inhibit plasmablast differentiation,
ultimately mediating inflammatory inhibition, in RA [191].

5.2. MSC-EVs targeting innate immune response in RA

In the innate immune response of RA synovitis, macrophages play a
crucial role in synovial inflammation. Macrophages are recruited under
the influence of T or B cells, and their differentiation is closely related to
the surrounding environment. M1 and M2 macrophages, which secrete
proinflammatory or anti-inflammatory cytokines, are involved in the
regulation of synovial inflammation [43]. BMSC-EXOs can down-
regulate NLRP3 expression in macrophages through miR-223, thereby
inhibiting the release of proinflammatory cytokines such as IL-1β and
TNF-α [192]. ADMSC-EXOs can inhibit M1 macrophage polarisation.
Moreover, the regulatory capacity of these exosomes can be enhanced
using various bioengineering strategies. For instance, precise modifica-
tion of the surface of ADMSCs through metabolic glycan engineering can
improve the regulatory function of M1/M2macrophage polarisation and
increase M2 macrophage levels considerably, enhancing the therapeutic
potential of ADMSC-EXOs in RA [193].

5.3. MSC-EVs targeting mesenchymal tissue responses in RA

Under the physiological state, FLSs actively secrete synovial fluid,
contributing to the maintenance of the synovium’s normal function and
providing essential nutrition for the joint cartilage [43]. In patients with
RA, FLSs proliferate and become activated, which leads to the secretion
of MMPs, inflammatory cytokines (e.g. IL-6), chemokines (e.g. CXCL10),
and angiogenic factors (e.g. VEGF). Through secretion of these mole-
cules, FLSs can aid in mediating cartilage damage, synovial inflamma-
tion, lymphocyte recruitment, and angiogenesis. Furthermore, FLSs are

invasive, facilitating the spread of RA to other unaffected joints [194,
238].

A study reported that patients with RA may demonstrate signifi-
cantly higher MMP14 and VEGF expression but significantly lower miR-
150-5p expression than patients with OA. Moreover, observed human
umbilical vein endothelial cells treated with the conditioned medium of
inflammatory pretreated FLSs demonstrated significantly upregulated
VEGF expression, as well as an increase in tube formation. However,
treatment with miR-150-5p-overexpressing BMSC-EXOs reversed the
proangiogenic effects of FLSs, and they also reduced the invasiveness of
FLSs, potentially through the inhibition of MMP14 and VEGF expression
in the FLSs. Finally, in CIA mice treated with miR-150-5p-
overexpressing BMSC-EXOs, the synovium thickness and vascularisa-
tion reduced significantly compared with control mice [194,195].

BMSC-EXOs carrying miR-320a can inhibit FLS activation in RA by
suppressing CXCL9 expression, whereas UCMSC-EXOs carrying miR-
451a can inhibit FLS proliferation, migration, and invasion in RA by
suppressing ATF2 expression [196,197]. In addition, SMSC-EXOs can
delay RA progression by downregulating miR-216a-3p expression
through circFBXW7, as well as inhibit the proangiogenic effects of FLS
through circEDIL3 [198,199].

5.4. MSC-EVs for cartilage damage alleviation in RA

The pathological features of RA can also include cartilage damage
and bone erosion. The mechanisms underlying cartilage damage in RA
are closely associated with FLS adhesion and invasion. IL-1 and IL-6
released by FLSs can also aggravate cartilage damage. MMP14 mainly
mediates ECM degradation, whereas IL-1 and IL-7A primarily mediate
chondrocyte apoptosis [43]. Serum and glucocorticoid-induced protein
kinase 1 (SGK1)—an important regulatory factor in chondrocyte dif-
ferentiation and calcification—can facilitate tissue fibrosis by upregu-
lating the NF-κB pathway. In rats with RA, UCMSC-EXOs carrying
miR-140-3p can downregulate SGK1, thereby inhibiting chondrocyte
apoptosis, promoting FLS apoptosis, and inhibiting FLS proliferation,
ultimately alleviating cartilage damage [200]. In addition, chondrocytes
can directly absorb BMSC-EXOs that promote their proliferation and
migration and thereby reverse RA-related cartilage damage [201].
BMSC-EXOs also can downregulate MMP14 expression in RA, poten-
tially alleviating cartilage damage [195].

Because RA pathogenesis involves autoimmune responses, thera-
peutically applied MSC-EVs primarily modulate immune cells to alle-
viate RA symptoms. Recent studies on the use of MSC-EVs in RA
treatment have mainly focused on T cells, macrophages, and FLSs.
However, B cells, playing a role in antigen presentation and T-cell
activation, also participate in RA-related immune inflammation [147].
MSC-EXOs carrying miRNA-125b can alleviate experimental jogren’s
syndrome by inhibiting plasma cells [202]. MSC-EVs can also alleviate
systemic lupus erythematosus by inhibiting B-cell proliferation and
activation [203]. Therefore, further exploration of the regulatory effects
of MSC-EXOs on B cells in RA may aid in the development of newer RA
treatment strategies.

6. Limitations of MSC-EVs therapy

Further research on MSC-EVs and their clinical translation are faced
with many challenges, involving large-scale production, safety concerns,
efficacy, durability, storage, and transportation [204–206]. The chal-
lenges of large-scale production include achieving high yields,
increasing recovery rates, and establishing MSC-EVs quality standards
with each extraction [204]. Clinical therapeutic application of MSC-EVs
is also associated with several risks, such as the potential for “off-target”
side effects of including the risk of hypercoagulation [207]. Moreover,
during therapeutic iPSC-EXO production, the conditioned media used
for cell expansion may contain DNA fragments from apoptotic cells. In
rare cases, the DNA from malignant cells may be transferred to normal
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cells through the MSC-EVs cargo, promoting tumor formation [207].
Several studies have also suggested that the transfer of tumor-associated
factors present in MSC-EVs can promote cancer cell proliferation [208].
MSC-EVs also have issues of relatively low efficacy, such as weak tar-
geting and low content of functional components [26,150]. In the
treatment of joint diseases such as OA and ONFH, the observation period
for long-term efficacy of MSC-EVs administration typically spans from 8
to 12 weeks [92,180]. MSC-EVs are susceptible to metabolism and
clearance at the administration site, this leads to the durability of
MSC-EVs therapy needs to be further strengthened [210]. In addition,
recent research indicates that the storage conditions for MSC-EVs are
highly demanding, with temperature, pH, time and freeze–thaw cycles
significantly impacting both quantity and quality of MSC-EVs, thus
posing challenges for long-term storage and transportation [211].

Recent studies have proposed several strategies to address the
aforementioned limitations of EVs application. Good manufacturing
practice standards can be used to regulate the production of MSC-EVs
through multiple aspects, such as cell control, culture medium compo-
sition, extraction methods, and initial product characterisation testing,
so as to standardise the production process and establish a robust
foundation for large-scale manufacturing [204]. There are also multiple
strategies to improve the limitations of MSC-EVs in the treatment of joint
diseases. Employing size-exclusion chromatography for MSC-EXOs pu-
rification can enhance exosome recovery rates, reduce impurity levels,
and improve exosome therapeutic efficacy in OA chondrocytes [212].
Moreover, surface modification of BMSC-EXOs with hydrogels can
enhance targeted delivery to OA chondrocytes and reduce local degra-
dation [83]. Furthermore, pretreating MSCs with TGF-β1 can increase
the miR-135b content in the exosomes, thereby augmenting the
MSC-EXOs’ capacity to stimulate OA chondrocyte proliferation [213].
Furthermore, the protective technologies of EVs such as cryopreserva-
tion, lyophilisation, and spray-drying can aid in overcoming storage and
transportation challenges associated with EVs [26].

7. Conclusions and prospects

MSC-EVs, especially exosomes, exhibit remarkable therapeutic po-
tential for joint disease treatment. Over the past decade, significant
progress has been made in this field. As a novel treatment approach
bridging the gap between pharmacological and surgical procedures,
MSC-EVs use can ameliorate the symptoms of joint diseases or prevent
their progression by promoting tissue regeneration, suppressing
inflammation, and modulating immune responses [66,171,188,189].
Moreover, MSC-EVs can be used as an adjunct to surgical treatment of
joint diseases, promoting postoperative functional recovery and pre-
venting postoperative complications [6,139]. Although the potential
therapeutic effects and applicability of MSC-EVs have been evaluated
preclinically in small animal (mouse, rat, or rabbit) models of various
joint diseases (e.g., OA, ONFH, and RA), their therapeutic effect in large
animal studies or clinical trials have been mostly lacking until now.
More strategies may be employed for the clinical translation of
MSC-EV-based therapy in the future. In terms of basic research, the
number of studies using large animal models should be increased, and
the mechanism research should be deepened. For clinical research,
large-scale, multi-center clinical trials with optimized statistical strate-
gies are also warranted.

A major factor affecting the clinical translation of MSC-EVs is their
heterogeneity, which is mainly influenced by different cell sources and
culture conditions. MSC-EVs surface markers can vary across some
different MSC sources. For instance, ADMSC-EXOs express CD9, CD63,
and CD81, BMSC-EXOs express CD63, CD9, and TSG101, and iPSC-EXOs
express CD9, TSG101, and SSEA1 [214]. Moreover, BMSC-EVs have a
stronger ability to promote cell proliferation than ADMSC-EVs, whereas
ADMSC-EVs are more prone to promote angiogenesis than BMSC-EVs
[215]. The above function of EVs is closely associated with their
cargo, which may include mRNAs, noncoding RNAs (miRNAs, circRNAs,

siRNAs, or lncRNAs), lipids, and proteins [215]. Moreover, maintaining
stable culture conditions aids in reducingMSC-EVs heterogeneity, which
could also facilitate large-scale EV production.

Different EV types, such as BMSC-EVs, ADMSC-EVs, SMSC-EVs, and
UCMSC-EVs, can demonstrate similarly high therapeutic efficacies for
cartilage injury in different joint diseases [54,88,97,200]. Moreover,
BMSC-EVs can enhance cartilage regeneration and repair in OA and
tendon and ligament injuries, while they can also promote vascular
regeneration in ONFH and tendon and ligament injuries. ADMSC-EVs
can alleviate both OA and RA synovitis [55,57,139,142,172,191]. In
addition, MSC-EVs derived from the same cell source can exert similar
therapeutic effects for different joint diseases. Further research
exploring the synergistic therapeutic effects of MSC-EVs from different
sources on various cells is warranted.

MSC-EVs can also play a major role in regenerative medicine and
tissue engineering, functioning as drug delivery systems and carriers for
gene editing tools. In addition, combining novel biomaterials with EVs
may aid in optimizing the therapeutic advantages of MSC-EVs. MSC-EVs
with targeting and low immunogenicity characteristics can cross the
biological barrier and thus be used as an efficient carrier for cargo de-
livery in vivo [216]. BMSC-EXOs loaded with ICA can synergistically
enhance the cellular uptake and therapeutic effects of ICA in OA,
partially though promoting chondrocyte proliferation and migration
[82]. A study constructed a chondrocyte-targeting miRNA delivery
system, which improved the targeting ability of exosomes to chon-
drocytes and promote cartilage regeneration of OA mice by loading of
miR-199-3p [93]. Moreover, MSC-EVs combined with biomaterials,
such as hydrogels, can further enhancing their therapeutic effects
through improving their local targeting effects, and enhance their local
retention [83,103,127,131].

In summary, MSC-EVs have potential clinical applicability to treat
various joint diseases in the future. More studies should focus on
elucidating their molecular mechanisms of action, determining the
associated risks, and establishing administration protocols, aiming to
promote the clinical translation of MSC-EVs.
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