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ABSTRACT
The funnel plot is a graphical visualization of summary data estimates from a meta-analysis, and is a useful
tool for detecting departures from the standard modeling assumptions. Although perhaps not widely
appreciated, a simple extension of the funnel plot can help to facilitate an intuitive interpretation of the
mathematics underlying a meta-analysis at a more fundamental level, by equating it to determining the
center of mass of a physical system. We used this analogy to explain the concepts of weighing evidence
and of biased evidence to a young audience at the Cambridge Science Festival, without recourse to
precise definitions or statistical formulas and with a little help from Sherlock Holmes! Following on from
the science fair, we have developed an interactive web-application (named the Meta-Analyser) to bring
these ideas to a wider audience. We envisage that our application will be a useful tool for researchers when
interpreting their data. First, to facilitate a simple understanding of fixed and random effects modeling
approaches; second, to assess the importance of outliers; and third, to show the impact of adjusting for
small study bias. This final aim is realized by introducing a novel graphical interpretation of the well-known
method of Egger regression.

1. Introduction

Meta-analysis is the science of combining the evidence avail-
able from different sources to arrive at the most sensible and
informed conclusion to a given question. The technique has a
long history in medical research, where it is routinely used to
aggregate results from independent clinical trials testing com-
peting therapies (e.g., which is better: treatment A or B? And by
howmuch?). While each study may be too small or imprecise to
definitively answer the clinical question on its own, the overall
estimate delivered by ameta-analysis can often do so, thus negat-
ing the need to perform further costly research. Its application
is not limited to medicine, and spans the entire scientific spec-
trum. For example, it has been used to synthesize studies mea-
suring: aspects of humanpsychology such as emotion ormotiva-
tion (Elfenbein andAmbady 2002); the performance of standard
equipment across laboratories (Paule andMandel 1982); and the
rest mass of elementary particles in physics (Baker and Jackson
2013).

Scientists tasked with performing a meta-analysis are often
hindered by the suspicion that the set of studies they have col-
lected form an incomplete and biased selection of the total evi-
dence base. One reason why this may occur is that a study’s out-
come (or result) can affect its chances of being published and
put into the public domain (Rosenthal 1979). This can, in turn,
cause authors to selectively report study results to increase their
chances of being published (Ioannidis 2005; Bowden, Jackson,
and Thompson 2010). Therefore, bias can be due as much to
studies that are missing as to those that are present. In 2014, we
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attempted to explain the notion ofmeta-analysis and the concept
of biased evidence to a young audience at theCambridge Science
Festival (http://www.cam.ac.uk/sciencefestival/), an event for
Cambridge academics working across the scientific spectrum to
promote and explain their current research to the general pub-
lic. To achieve our specific aimwithout recourse tomathematical
formulas, or any precise definitions of bias, we came up with a
mechanical device, named the “Meta-Analyser.” We introduced
our invention within the context of a Sherlock Holmes inspired
mystery—see Box 1 for an explanation and Figure 1 for pictures
of the Meta-Analyser in action at the festival.

The Meta-Analyser shown in Figures 1 and 2 is a machine
that can be used to find the balance or pivot point of a set of
weights by hanging the weights from a pole in such a way that
the pole is parallel to the ground. It was explained to the chil-
dren that the weights reflected the importance of each source of
information in the calculation.

Although it does not materially affect the balance point, the
length of cord connecting each weight to the pole was cho-
sen to be proportional to its weight. With this convention in
place, the Meta-Analyser can be interpreted as a glorified Fun-
nel plot (Sterne and Egger 2001). Funnel plots are used in
meta-analysis to visually assess whether the data are potentially
affected by bias. If the study results are not symmetrical about
the pivot point (or funnel shaped) thenmissing studies could be
responsible.

By augmenting the Funnel plot with an additional pole, cord,
and pivot, the Meta-Analyser gives this abstract object, and the
overall estimate that it implies, a clear physical interpretation.
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Figure . The Meta-Analyser in situ at the Cambridge Science Festival.

It also facilitates a simple, graphical explanation of the general
notion of biased evidence. Box 1 shows the story as explained
to the (mainly young) science fair attendees: A small number of
study resultswere removed, leading to an imbalance in theMeta-
Analyser. Inspector Lestrade’s typically lacklustre approach is to
ignore the missing information altogether, and recalculate the
pivot point. Sherlock Holmes’ solution is to add in “missing”
studies to rebalance and restore symmetry to theMeta-Analyser.
Aficionados will notice this as a simplistic representation of the
“Trim and Fill” method Duval and Tweedie (2000).

The Meta-Analyser was intended to be a simple educa-
tional tool to demonstrate the basics of evidence synthesis to
a lay audience, capitalizing on the growing recognition of Ada
Lovelace in the birth of computation through initiatives such as
Ada Lovelace Day (http://findingada.com/) and jumping on the
bandwagon of “steampunk” fiction, which melds Victorian fan-
tasy and futurism (Onion 2008; Tanenbaum, Tanenbaum, and
Wakkary 2012). However, we continued to find the physical sys-
tem it describes useful, more broadly, to explain some common
secondary issues in meta-analysis. We have therefore developed
an online web application (the Meta-Analyser) to implement
the approach in practice and to bring this idea to a wider audi-
ence of students and researchers. Moreover, our work revealed
that the physical analogy the Meta-Analyser promotes is per-
haps a deeper andmore accurate description of themathematics
underlying a meta-analysis than many statisticians realize.

In Section 2, we give a more formal introduction to meta-
analysis and introduce the Meta-Analyser web app, showing
that it helps to transparently demonstrate the implications of
moving from a fixed to a random effects model and to assess
the influence of outlying studies. In Section 3, we discuss the
issue of biased evidence and how small study bias is com-
monly addressed by medical statisticians (the authors’ field)
using Egger regression (Egger et al. 1997). We then show that
by viewing Egger regression from an estimating equation per-
spective, a novel causal interpretation of this method is found
that can be intuitively visualized via theMeta-Analyser.We con-
clude with a discussion of the issues raised in Section 4 and
point to future research. Sections 3.1 and 4.3 formulate previ-
ously explained ideas using the estimating equation framework.
They may be of most interest to the statistically inclined reader,
but can be safely ignored by those wishing to focus on the graph-
ics content of this article alone.

2. TheMeta-Analyser As a Research Tool

2.1. A First Statistical Model forMeta-Analysis

Let yi, i = 1, . . . , k, represent summary estimates of the same
apparent quantity from k independent information sources in a
meta-analysis. The ith estimate is associated with a variance, s2i
that is assumed to be known. The standard fixed effectmodel for
combining the yis assumes

yi = μ + siεi, εi ∼ N(0, 1) (1)

and the focus for inference is the populationmean effect param-
eter μ. If si is uncorrelated with εi in Equation (1), so that
E[siεi]= 0, then each yi is an unbiased estimate for μ. The fixed
effect estimate μ̂ and its variance are given by the well-known
formulas

μ̂ =
∑k

i=1 wiyi∑k
i=1 wi

, where wi = 1/s2i , var(μ̂) = 1/
k∑

i=1

wi,

(2)

where the weight given to study i is inversely proportional to
its variance. This weighting is attractive, since it minimizes the
variance of the overall estimate, var(μ̂). The Meta-Analyser
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Figure . Left: Unbalanced Meta-Analyser. Middle: Rebalanced Meta-Analyser (Inspector Lestrade approach). Right: Rebalanced Meta-Analyser (Sherlock Holmes
approach).

(https://chjackson.shinyapps.io/MetaAnalyser/) is an online free-
to-access tool to visualize the results from a meta-analysis using
the physical analogy previously described. Figure 3 shows the
Meta-Analyser populated with a fictional collection of k = 13
studies. This is the “Symmetric” example dataset included in our

tool. It shows a standard funnel plot (Sterne and Egger 2001)
that has been augmented so that the area representing point i
is proportional to wi = 1/s2i , to promote its interpretation as a
physical mass. Points are joined by vertical cord to a pole that is
joined itself to a vertical stand at a pivot point, p. Study weights

https://chjackson.shinyapps.io/MetaAnalyser/
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Figure . The Meta-Analyser supporting the symmetric data, a fictional body of  study results. The center of mass (overall estimate) is located at zero.

are imagined to exert a downward force due to gravity. Since the
pole is perfectly horizontal, it is intuitively understood that p
satisfies the physical law:

k∑

i=1

wi(yi − p) = 0, (3)

and is therefore equal to the center of mass (Beatty 2005). For-
mula (3) can be viewed as a rudimentary estimating equation,
a construction we continue to use throughout this article. It is
simple to verify that solving for p yields the fixed effect estimate
μ̂ in (2). The length of the stand base along the x-axis shows the
95% confidence interval for the overall effectμ, which is approx-
imately (−0.75,0.75).

If the modeling assumption E[siεi] = 0 is true, this would
imply that study effect sizes and precisions are also uncorrelated.
TheMeta-Analyser should then appear symmetrical, in that less
precise estimates should funnel in from either side toward the
most precise estimates. The Meta-Analyser therefore provides a
simple means to visually assess the reliability of the overall esti-
mate μ̂. Note that this is exactly satisfied for the toy example in
Figure 3. When populated with such idealized data, the Meta-
Analyser may remind some of Galton’s bean board or quincunx,
a tool that also illustrates how statistical laws can emerge from a
physical process in the presence of gravity.

Humans tend to be good at perceiving lengths in graphs,
but usually under-estimate areas, and do even worse with vol-
umes (Cleveland andMcGill 1984).However, as a reviewer com-
mented, the Meta-Analyser is not relying solely on areas, but
rather the entire system in balance and the ability to interact.
TheMeta-Analyser gives users the flexibility to show theweights
in absolute (wi = 1/s2i ) or percentage (wi/

∑
wi) terms and to

change the scale of the y-axis to improve its aesthetic quality.
This is particularly useful for those wishing to include an image
of the Meta-Analyser graphical output in a separate document,
as done here.

3. Random Effects Models

In a fixed effect meta-analysis, all studies are assumed to pro-
vide an estimate of the same quantity, and therefore any differ-
ences between study estimates should be due to chance varia-
tion alone. If the fixed effect model is true, then we would expect
Cochran’sQ-statistic,Q=∑k

i=1
1
s2i

(yi − μ̂)2 to be approximately
equal to k − 1. If, as is often the case, Q is significantly larger
than k − 1, then the fixed effect model is thought implausi-
ble. A common secondary issue in meta-analysis, therefore, is
accounting for between study heterogeneity via extended mod-
eling approaches.

Two distinct methods for incorporating heterogeneity have
emerged. The first is via an additional additive random effect,
as in model (4) (e.g., DerSimonian and Laird 1986; Higgins and
Thompson 2002). The second is via the addition of a multiplica-
tive scale factor, as inmodel (5) (e.g., Thompson and Sharp 1999;
Baker and Jackson 2013):

yi = μ + siεi + δi, δi ∼ N(0, τ 2), εi ∼ N(0, 1). (4)

yi = μ + φ
1
2 siεi, εi ∼ N(0, 1). (5)

The point estimate for μ obtained by fitting model (5) is always
identical to that obtained from fitting model (1), since the com-
mon term φ simply cancels from the numerator and denomi-
nator in (2). Only the variance of the estimate is altered, due
to the weight given to each study being rescaled by a factor of
φ (when φ is not equal to one). Consequently, when the study
weights are presented in percentage terms, moving from a fixed
effect model to a multiplicative random effects model does not
induce any physical change in the Meta-Analyser at all. In con-
trast, both the point estimate and variance for μ̂ change under
the additive random effect model (4) when τ 2 is estimated to
be greater than zero. Random effects model (4) is popular in
medical research; it is promoted by the Cochrane collaboration
(Higgins and Green 2011) who are responsible for a large pro-
portion of all meta-analyses in bio-medicine. Moreover, since
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its implementation via the Meta-Analyser demands a signifi-
cant graphical extension (as discussed in Section 3.2), we focus
on model (4) for the remainder of this section. The assumption
E[siδiεi]= 0 implicit inmodel (4) is required to ensure that each
study still provides an unbiased estimate for μ.

It is common practice to estimate τ 2 under model (4) using
the simple formula defined by DerSimonian and Laird (1986),
to give τ̂ 2

DL. This estimate conveniently provides a link between
Q and a popular measure of heterogeneity, I2 (Higgins and
Thompson 2002) as follows:

Q − (k − 1)
Q

= τ̂ 2
DL

τ̂ 2
DL + s2

= I2,

where s2 approximates the typical within study variance. When
Q is less than k − 1, τ̂ 2

DL is simply set to zero. Estimation of μ

(and its variance) then follows by simple application of formula
(2) except now the weight given to study i,wi, changes to 1

s2i +τ̂ 2
DL
.

3.1. An Estimating Equation Formulation ofModel (4)

To continue to provide a physical interpretation of the calcula-
tions underpinning ameta-analysis, and as a natural progression
of the single estimating equation for fixed effect model (1), we
can formulate random effects model (4) via a system of estimat-
ing equations as follows:

Weight equation: wi = 1/
(
s2i + τ 2) (6)

Mean equation:
k∑

i=1

wi(yi − μ) = 0 (7)

Heterogeneity equation:
k∑

i=1

wi(yi − μ)2 − (k − 1) = 0.

(8)

Formula (8) is referred to as the generalized Q statistic
(Bowden et al. 2011) and, when solved in conjunction with (6)
and (7), it returns the Paule–Mandel (PM) estimate for τ 2 (Paule
andMandel 1982), which we denote by τ̂PM. As with τ̂ 2

DL the PM
estimate is constrained to be positive, and it is known to pro-
vide a more reliable estimate for the between study heterogene-
ity than τ̂ 2

DL (Veroniki et al. 2016).

3.2. Random EffectsModels via theMeta-Analyser

Application of the random effects model, with additional vari-
ance component τ 2, leads to study results being both down-
weighted and more similarly weighted. Furthermore, the orig-
inal weight given to large studies is reduced to a greater extent
than those of smaller studies. This issue is fairly subtle and hard
to comprehend, but the Meta-Analyser provides a very sim-
ple visualization, by directly adjusting the mass of each weight.
Specifically, we represent the weight “loss” induced by moving
from a fixed to an additive random effects model by “drilling
out” a square of length xi to satisfy the Pythagorean identity
x2i + 1

s2i +τ̂ 2 = 1
s2i
, as illustrated in Figure 4.

Figure 5 (left) shows the Meta-Analyser populated with a
dataset of eight randomized trial results, each assessing the use

Figure . (a) Weight given to study i in a fixed effect meta-analysis. (b) Weight
given to study i in an additive random effects meta-analysis. A square of length xi is
removed from weight i to satisfy the Pythagorean formula.

of magnesium to treat myocardial infarction. The effect mea-
sure, yi, is the log-odds ratio of death between treatment and
control groups for study i. These data were previously analyzed
byHiggins and Spiegelhalter (2002). Between trial heterogeneity
is present for these data (τ̂ 2

DL = 0.095, I2 = 27.6%), so our anal-
ysis is under random effects model (4) using τ̂ 2

DL to estimate τ 2.
Full results obtained via the estimating equation approach (and
so using the PM estimate for τ 2) are shown in Table 1. Under
the random effects model, wi is reduced from 1

s2i
to 1/(s2i + τ̂ 2

DL).
The center of mass or balance point defined by the holed-out
weights in Figure 5 (left) is automatically consistentwith the ran-
dom effects estimate for μ. It is immediately apparent that large
studies lose a higher proportion of their fixed effect weight than
small studies under this model.

3.3. Outliers and Sensitivity Analysis

The amount of heterogeneity estimated in a meta-analysis can
depend heavily on extreme, and often small, study results (Bow-
den et al. 2011). It is therefore useful in some circumstances to
perform a sensitivity analysis, in which an outlying study result
is excluded. Figure 5 (right) shows the Meta-Analyser support-
ing themagnesium data with the Shechter study (shown in gray)
excluded. This is achieved by simply clicking on its weight. The
solid black support stand shows the overall estimate and corre-
sponding 95% confidence interval in this case. For comparison,
the original point estimate and confidence interval using all the
data is kept but shown in gray. In this example, exclusion of the
outlying study removes a large proportion of the between trial
heterogeneity (updated τ̂ 2

DL = 0.012, I2 = 5.2%). From looking

Table . Meta-analysis of themagnesiumdata under randomeffectsmodel (), with
and without the Shechter trial. S.E.= standard error.

Model
parameter Estimate S.E. t-Value p-Value

All studies
μ − . . − . .

τ 2
PM . — — —

τ 2
DL . (I2 = .%) — — —

Shechter study removed
μ − . . − . .

τ 2
PM . — — —

τ 2
DL . (I2 = .%) — — —
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Figure . The Meta-Analyser supporting the magnesium data under a random effects model for all trials (left); and with the Shechter trial removed (right).

Figure . Left: The Meta-Analyser supporting the Aspirin data under a random effects model. Right: The Meta-Analyser incorporating Egger regression enacted on the
Aspirin data and shown under the potential outcome transform.

at the scale of the y-axis, one can see that theweight given to each
study has increased, with the largest study benefitting the most.
The Meta-Analyser facilitates easy transitions between various
models like this as part of a sensitivity analysis. Users also see
theMeta-Analyser dynamically tip and rebalance in response to
the latest analysis choice.

4. Small Study Bias

4.1. The Aspirin Data

Figure 6 (left) shows the Meta-Analyser enacted on 63 random-
ized controlled trials reported by Edwards et al. (2000) that each
investigated the benefit of oral Aspirin for pain relief. Study
estimates yi represent the log-odds ratios for the proportion of
patients in each arm who had at least a 50% reduction in pain.
Between trial heterogeneity was present for these data (τ̂ 2

DL =
0.04, I2 = 10%) and Figure 6 (left) reflects the weight given
to each study by the Meta-Analyser under the random effects
model (4) using τ̂ 2

DL as the heterogeneity parameter estimate.
Despite the apparent between trial heterogeneity, the conclu-
sion of the random effectsmeta-analysis is that oral Aspirin is an
effective treatment, the combined log-odds ratio estimate is 1.26
in favor of Aspirinwith a 95% confidence interval (1.1,1.41). Full
results are shown in Table 2.

The hypothetical data shown in Figure 1 is perfectly sym-
metrical about its center of mass, indicating that there is no cor-
relation between effect size and precision across studies. How-
ever, there is a clear asymmetry present in the Aspirin data,
smaller studies tend to show larger effect size estimates, whereas
larger studies tend to reportmoremodest results. For these data,
Cor(yi, 1/si) = −0.7, which suggests that E[siδiεi]= 0 does not
hold for model (4). The phenomenon of observing a negative
correlation between study precision and effect size is often given
the umbrella term “small study bias” (Egger et al. 1997; Rücker
et al. 2011; Sterne et al. 2011).

Table . Results for Meta-analyses of the Aspirin data. S.E.= standard error.

Model
parameter Estimate S.E. t-Value p-Value

Random effects model ()
μ . . . <e-
τ 2 . — — —

Random effects model ()
μ . . . <e-
φ . — — —

Egger regression model ()
β0 . . . .e-
μ . . . .
φ . — — —
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Small study bias could actually be caused by real differences
between small and large studies. Small trials may employ amore
intensive intervention and therefore generate a greater effect on
disease outcomes than larger trials (Egger et al. 1997; Bowater
and Escarela 2013). Asymmetry could also be a simple arte-
fact of the data. For example, point estimates are not strictly
independent of their estimated variances when calculated from
binary or count outcomes, (Harbord, Egger, and Sterne 2006,
Peters et al. 2010). However, its cause could also be more sin-
ister. Publication bias, or the file-drawer problem (Rosenthal
1979) occurs when journals selectively publish study results that
achieve a high level of statistical significance, and also induces
asymmetry.

4.2. Egger Regression

When attempting to explain the concept of biased evidence and
of bias adjustment to the science festival audience, we opted
for a simplified version of Trim and Fill (Duval and Tweedie
2000). Trim and Fill can be essentially understood as fol-
lows. First, smaller studies causing the asymmetry are removed
(or “trimmed”) from the data, and the remaining studies are
used to estimate the overall effect. Then the trimmed studies
are replaced (or “filled”), along with their mirror images, by
reflecting them about vertical line defined by the overall effect
estimate. Trim and Fill therefore provides an estimate for the
number of missing studies and a bias-adjusted estimate for the
overall effect. Because of its intuitive nature and visual appeal,
it was natural to use this idea within our Sherlock Holmes mys-
tery (Box 1). However, themathematics behindTrim and Fill are
quite complicated and some dislike the way its results depend
on imputed data. Perhaps due to its relative simplicity, the most
popular approach to testing and adjusting for small study bias
in medical research is Egger regression (Egger et al. 1997). This
assumes the following linear fixed effect model to explain the
correlation between yi and 1/si:

yi
si

= β0 + μ

si
+ εi, εi ∼ N(0, 1). (9)

The addition of an intercept parameter β0 in model (9) allows
small study bias to be accounted for. Testing for small study bias
is then equivalent to testing H0: β0 = 0. If E[siεi] = 0 for model
(9), then the overall effect estimate, μ̂, adjusted for possible small
study bias (via β̂0) is a consistent estimate for μ. Several authors
have considered the addition of randomeffects intomodel (9), to
account for possible residual heterogeneity after adjustment for
small study bias, see, for example, Moreno et al. (2009), Peters
et al. (2010), and Rücker et al. (2011). Their approaches have
been straightforward generalizations of the additive and mul-
tiplicative random effects models (4) and (5), respectively, as
below:

yi
si

= β0+ μ

si
+ δi

si
+ εi, δi ∼ N(0, τ 2) εi ∼ N(0, 1).

(10)
yi
si

= β0 + μ

si
+ φ

1
2 εi, εi ∼ N(0, 1). (11)

At first sight, model (10) seems the most natural extension to
model (9). However, when a nonzero value for τ 2 is estimated
under model (10), the resulting overall estimate for μ differs

from, and can often exhibit more substantial bias than the fixed
effect estimate (Rücker et al. 2011). By contrast, multiplicative
model (11) is farmore well behaved in this respect since its point
estimate is identical to that obtained from fitting model (9).
Nullifying the influence of variance components on the overall
mean, a property enjoyed by model (11) is so attractive in the
presence of small study bias, that approaches have been devel-
oped to artificially incorporate this feature into additive random
effects models as well (Henmi and Copas 2010).

For these reasons, we analyze the Aspirin data using themul-
tiplicative Egger regression model only. This is straightforward,
because model (11) is automatically fitted by the process of stan-
dard linear regression, inwhich the variance of the residual error
is estimated, rather than assumed to be 1. For these data, β̂0 =
2.11, with a p-value of approximately 1 × 10−8, μ̂ is equal to
0.025, with a p-value of 0.89, and φ̂ = 0.64. In summary, Egger
regression detects a highly significant presence of small study
bias and, after this has been removed, no evidence of a treatment
effect whatsoever.

4.3. An Estimating Equation Formulation ofModel (11)

We now show that, like Trim and Fill, Egger regression can be
understood as a means to de-bias a meta-analysis by restoring
symmetry to the funnel plot, in away that complements its appli-
cation via the Meta-Analyser and makes connections with the
world of causal inference. We start by assuming model (11).
Multiplying each side by si and subtracting β0si yields

yi(β0) = yi − β0si = μ + φ
1
2 εisi.

The term yi(β0) is a transformed version of the effect size
estimates, and when E[siεi] = 0, yi(β0) is mean-independent
of si. The intercept estimate obtained from fitting model (11),
β̂0, can be viewed as defining a particular transform of the data
that forces yi(β̂0) to be independent of si across all studies. We
note the similarity between this formulation of Egger regression
and the structural mean model framework in causal inference,
in which observed outcomes are related to potential outcomes
(Rubin 2005) using a parametric transform to satisfy statistical
independence rules. Parameter estimation via this strategy is
termed G-estimation, and has been used extensively to adjust
for biases due to noncompliance or dropout in clinical trials
and confounding bias in observational studies. For a general
overview, see Vansteelandt and Joffe (2014) or, in the context
of epidemiology, Bowden and Vansteelandt (2011). For this
reason, we refer to yi(β0) as the potential outcome transform.
Employing the estimating equation framework, model (11) is
equivalent to solving the following system:

Weight equation: wi = 1/
(
φs2i

)

Potential outcome transform: yi(β0) = yi − β0si

Mean equation:
k∑

i=1

wi{yi(β0) − μ} = 0 (12)

G-estimation equation:
k∑

i=1

wi{yi(β0) − μ}

× (si − s) = 0 (13)
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Heterogeneity equation:
k∑

i=1

wi{yi(β0) − μ}2

−(k − 2) = 0,
(14)

where s is the arithmetic mean of the si terms. We now clar-
ify the connection between the above system of estimating
equations and estimation of β0, μ, and φ using standard linear
regression theory. Fitting model (9) to obtain estimates for β0
and μ is equivalent to solving Equations (12) and (13) leaving
φ unspecified (in the Appendix we provide some simple R code
to verify this). We then formally define φ as a parameter and
solve equation (14) to give

φ̂ =
∑k

i=1 wi{yi(β̂0) − μ̂}2
k − 2

. (15)

We note the equivalence of the numerator of Equation (15)
to the Q′ statistic defined in Rücker et al. (2011). The variances
of β̂0 and μ̂ are given by

var(μ̂) = φ̂
∑k

i=1(1/si − 1/s)2
, var(β̂0) = var(μ̂)1/s2,

where 1/s2 is the sample mean of the 1/s2i terms.
Concerns over the use of Egger regression have been raised

when analyzing binary data because a study’s outcome esti-
mate will not truly be independent of its standard error, even
when small study bias is not present. For this reason, Peters
et al. (2010) proposed to replace si in the Egger regression equa-
tion with a measure of precision based on study size, 1/ni say.
This could easily be represented in our estimating equation with
suitable modification. For example, G-estimation Equation (13)
above would then be used to find the β0 that forces indepen-
dence between yi(β0) = yi − β0/ni and 1/ni.

4.4. Reanalysis of the Aspirin Data via theMeta-Analyser

Returning to the Aspirin data, Figure 6 (right) shows the final
resting point of the Meta-Analyser upon enacting Egger regres-
sion using the estimating equation interpretation described
above. Once the Egger regression option is ticked, users observe
a dynamical change in the Meta-Analyser from its initial start-
ing point of the standard random effects analysis in Figure 6
(left). The x-axis position is now the transformed or potential
outcome scale yi(β̂0) = yi(2.11) for study i. The meta-analysis
now exhibits a high amount of symmetry that can be immedi-
ately visualized by the user. This transformation is highlighted
in Figure 7, which plots potential outcomes yi(β̂0) on the hori-
zontal versus 1/φ̂si on the vertical axis with the original data (yi
vs. 1/si) also shown for comparison. When small study bias is
present, estimates from small studies are shifted by a relatively
large amount in the horizontal dimension (in this case to the
left), whereas those from large studies are shifted horizontally
by a relatively small amount.

Because φ is estimated to be 0.64 in this instance, indi-
cating under-dispersion after adjustment for small study bias,
study precisions under the potential outcome transformation
are increased in proportion to their size, so that the precisions

Figure . Funnel plot of the original Aspirin data (yi vs. 1/si , hollow red dots) versus
its transformed counterpart (yi(β̂0) vs. 1/φ̂si , solid black dots).

of small studies are shifted vertically upward by a small amount
and those of large studies are shifted by a large amount. If over-
dispersion had been observed after adjustment, we would have
seen a shift vertically downward instead.

5. Discussion

From its original conception and success as a science festi-
val exhibit aimed at a lay audience, we believe that the Meta-
Analyser will prove a useful online tool for explaining the ratio-
nale, and interpreting the effect of, extended modeling choices
inmeta-analysis to amore advanced audience. It has also proved
a useful vehicle for forging new connections between methods
of bias adjustment from the statistical literature.

To keep theMeta-Analyser as faithful as possible to the origi-
nal funnel plot, the length of the cord connecting each weight to
the horizontal pole was also set to be proportional to the weight.
Clearly, only the weight matters for the physical interpretation.
This redundancy could be exploited to come up with different
versions of the Meta-Analyser. For example, the cord lengths
could all be uniform, but this would lose the ability to detect
asymmetry. One could also modify the weights. At present they
are holed out when between study heterogeneity is present, to
show how the weight of each study decreases. Other ways of
achieving the same end are surely possible. The program code
for the Meta-Analyser is available on the GitHub repository
https://github.com/chjackson/MetaAnalyser. An R package con-
taining the Meta-Analyser is also available, which allows users
to run the application off-line. This can be installed from the
repository as follows:
install.packages(”devtools”) # if neces-
sary
devtools::install_github(”rstudio/DT”)
devtools::install_github(”chjackson
/MetaAnalyser”)

https://github.com/chjackson/MetaAnalyser
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We hope to continue to develop and improve the Meta-
Analyser to incorporate new features and analysis choices. New
ideas and offers of collaboration are very welcome.
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Appendix: R code for Section 4.3

Below we provide simple R code to verify that the estimating equa-
tion formulation of Egger regression in Section 4.3 is equivalent to
fitting a weighted linear regression using the lm()function.
> ## G-estimation routine given Aspirin
data vectors y,s
> G_est = function(a){
+ w = 1/s^2 ; Beta0 = a[1]
+ yBeta0 = y - Beta0*s ; MU =
sum(w*yBeta0)/sum(w)
+ L = (sum(w*(yBeta0-MU)*(s - mean(s))))^2
+ }
> Beta0hat = optimize(G_est,c(-5,5))$min
> yBeta0hat = y - Beta0hat*s
> mu = sum(w*yBeta0hat)/sum(w)
> Beta0hat
[1] 2.112803
> mu
[1] 0.02519816
> ## standard Egger regression
> summary(lm(y˜s,weights=1/s^2))$coef
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0252 0.1884 0.134 0.894
s 2.1128 0.3122 6.767 5.81e-09 ***
> # Std. error estimation
> phi = summary(lm(y˜s,weights=1/s^2))
$sigma^2

> SE_MU = sqrt(phi/sum((1/s -
mean(1/s))^2))

> SE_Beta0 = sqrt((SE_MU^2)*mean(1/s^2))
> SE_MU
[1] 0.1883619
> SE_Beta0
[1] 0.3122023
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