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Abstract: Percutaneous Coronary Intervention (PCI) is currently the most conventional and effective
method for clinically treating cardiovascular diseases such as atherosclerosis. Stent implantation, as
one of the ways of PCI in the treatment of coronary artery diseases, has become a hot spot in scientific
research with more and more patients suffering from cardiovascular diseases. However, vascular
stent implanted into vessels of patients often causes complications such as In-Stent Restenosis
(ISR). The vascular stent is one of the sophisticated medical devices, a reasonable structure of stent
can effectively reduce the complications. In this paper, we introduce the evolution, performance
evaluation standards, delivery and deployment, and manufacturing methods of vascular stents.
Based on a large number of literature pieces, this paper focuses on designing structures of vascular
stents in terms of “bridge (or link)” type, representative volume unit (RVE)/representative unit cell
(RUC), and patient-specific stent. Finally, this paper gives an outlook on the future development of
designing vascular stents.

Keywords: vascular stent; ISR; medical device; bridge; representative volume unit (RVE)/representative
unit cell (RUC); patient-specific

1. Introduction

Atherosclerosis is one of the cardiovascular diseases. Its pathological mechanism is
that fat or lipid substances are deposited on the arterial wall under the influence of various
cardiovascular risk factors. These depositions form a large number of plaques, leading
to arterial wall thickening, causing a vascular blockage, and affecting blood flowing (as
shown in Figure 1a [1]). Severe atherosclerosis can also cause coronary artery disease,
stroke, peripheral artery disease, or kidney problems. At present, the most common and
effective treatment method in the world is Percutaneous Coronary Intervention (PCI) [2,3].
PCI is to unblock and restore blood by placing a vascular stent on the stenosis and hard-
ening of the artery for expansion. PCI is minimally invasive and highly effective. In
the treatment of PCI, the stent is a tiny tubular structure and used to expand the vessel
wall and expand the vascular lumen to prevent the artery wall from recoiling and restore
the cardiovascular obstructed by atherosclerosis [4,5]. Therefore, the vascular stent, as
the sophisticated medical device for clinical treatment, should have ideal functions and
mechanical properties [6]: (1) high elasticity to realize the curling and re-expansion of
the stent in the blood vessel; (2) high strength and fatigue resistance to withstand the
periodic physiological load of arteries; (3) good biocompatibility to reduce the incidence of
thrombosis and vascular restenosis and alleviate implant rejection in the body. In addition,
there are other properties. In addition to these features mentioned, 13 different properties
of ideal stent were listed in the review article of Liu et al. [7], which provides a great help
for the design of vascular stents. And Liu et al. also pointed out that there were no perfect
stents. The current clinical application of vascular stents, after decades of development,
has the corresponding therapeutic function and mechanical properties. Manufacturing
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technology and surgical technology are gradually becoming mature. What’s more, the
arterial blockage after interventional therapy has been significantly reduced. However,
each stent still has its own advantages and drawbacks inevitably. A stent cannot cover all
ideal properties, and usually offers several good properties. The design structure of stent
is related to restenosis. There are still many complications in the current PCI treatment.
Among them, In-Stent Restenosis (ISR) is the most common complication (as shown in
Figure 1b [8]), which is an important challenge for biomechanical engineering, and has
an impact on designing stent. Studies have shown that one year after the implantation
of ordinary metal stents, the probability of restenosis at the diseased blood vessel is as
high as 20–40% [9], and about 10% of patients need to re-implant the stent. Even for the
drug-eluting stent, which has been widely used in recent years, the restenosis rate in the
stent after implantation is as high as 8–15% [10,11].

Figure 1. Atherosclerosis of blood vessels and in-stents restenosis: (a) Atherosclerosis [1]; (b) ISR [7].

At present, the causes of ISR have not been fully found and discovered. Some scholars
believed that it is the result of huge changes in the geometric structure of the artery after
the stent is implanted [12], and some scholars hold that the lower shear stress in the artery
is also one of the reasons for restenosis [13,14]. The more important reason is that in
order to ensure that the vascular stent has sufficient radial stiffness to support the inner
wall of the blood vessel, Young’s modulus and hardness of the selected stent material
are higher than that of the vessel. Colombo et al. elucidated the possible link between
altered hemodynamics and ISR progression [15]. They found that focal re-narrowing
frequently occurred after investigating from six months to 12 months. In this section, the
factors triggering ISR are the following: (1) different geometry between expanded stent and
blood vessel. If the stent does not match the geometry of the diseased blood vessel after
expansion, a strong interaction force will generate between the stent and the inner vessel
wall resulting in stress concentration [16], which damages the inner wall of the vessel and
gives rise to ISR. (2) Structural stability of stent. The degree of blood vessel curvature
changes with the movement of the human body, studies have demonstrated that the degree
of vascular curvature of the human body is in the range of 30◦ to 150◦, especially the degree
of vascular curvature in the carotid artery position, which requires the stent to be well
adapted to the geometric shape of the vascular curvature [17]. Studies have indicated that
in the blood vessel with a higher degree of curvature, the stent exerted higher stress on
the vessel wall and caused greater damage [18]. In a word, the stent has to keep stability
after implanting. (3) Compatible mechanical properties of the stent. Due to the influence
of structure and material properties, the stent has a tendency to “straighten” during the
expansion process, which has a straightening effect on the diseased blood vessel. Therefore,
the bending degree of the curved blood vessel would generally be significantly reduced
after the stent is implanted [19–21]. Gyöngyösi et al. [19] found that before and after the
stent was implanted into the aorta, the bending angle of the blood vessel was reduced from
67◦ to 58◦, and the curvature of the blood vessel was significantly reduced. Wu et al. [21]
found there were high-stress gradients and stress concentration at both ends of the stent
through finite element simulation. Researchers have been looking for stents that can be
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bent along with blood vessels to treat the diseased blood vessels in high bending parts,
such as arches and bifurcations so that the stent can be in good fitness with the curvature of
the blood vessel after expansion [22]. Nevertheless, by designing a reasonable stent to make
the stent have the same curved shape as the blood vessel after expansion, it will reduce the
damage of the stent to the vessel wall and relieve the stress concentration of the blood vessel.
Consequently, the structural design of the vascular stent with good mechanical properties
and reasonable structures is one of the effective methods to effectively reduce complications
such as ISR. Structural design can improve the performances of a vascular stent, in terms of
promoting therapeutics, stability, mechanical properties, as well as alleviating side-effects.
For instance, various stents should compromise the selection of materials due to specific
applications. As a result, the mechanical properties and stabilities might be affected. But
structural design can supplement this weakness.

The way of expansion affects the positioning accuracy and mechanical performance
of stents. Currently, the expansion methods of vascular stents implanted in human blood
vessels include balloon expansion (Figure 2a [23]) and self-expanding (Figure 2b [24]).
Whether it is a balloon-expandable stent or a self-expanding stent, the structure of the
stent has a direct impact on the mechanical properties, such as the elastic-plastic stress
distribution after the stent is compressed before delivery to the blood vessel, the radial
stiffness, and axial flexibility after the stent is expanded, fatigue failure under the influence
of periodic blood pressure. A vascular stent implantation is a common operation of
interventional cardiologists at present, and the market for its development and design
is also expanding and developing. Therefore, in order to solve the problem of in-stent
restenosis and treat cardiovascular diseases, it is of great significance to design a stent with
multiple mechanical properties from the perspective of the structure of the vascular stent.

Figure 2. Two expansion forms of vascular stents: (a) Balloon stent [23]; (b) Self-expanding stent [24].

Although there have been some reviews about vascular stents [7,25], with the con-
tinuous development of stent design, it is very helpful to guide the structural design to
supplement and improve review by updating the latest stent structure. This paper aims
to summarize the types of vascular stent structure designed in recent decades, make a
new classification of the existing stent structure, evaluate the influence of structure on
mechanical properties, and predict the future direction of the design of vascular stent, and
summarize the progress of the research on the design of vascular stent structure.

2. Introduction to the Vascular Stents
2.1. The First Generation of Vascular Stents: Bare Metal Stents (BMS)

In 1969, Dotter, using stainless steel to wrap the coil stent, took the lead in researching
the structure of vascular stent, and successfully carried out animal implantation experi-
ments [26–28]. Figure 3a showed the Nitinol alloy-wrapped vascular stent designed by
Dotter [28]. Since the wrapped structure stent is spirally wound with one or more wires,



Micromachines 2021, 12, 770 4 of 26

although it has good bending flexibility, its radial stiffness is extremely poor, and the radial
force does not support the vessel wall insufficiently, which results in larger elastic recoil of
the stent. Research reports showed that the wrapped stent caused the restenosis rate of the
blood vessel to be as high as 57% [29]. Besides, the stent with a wrapped structure is not
suitable for treating small-diameter blood vessels due to its large diameter, which limits its
development. It was not until 1987 that Sigwart et al. [30] first applied BMS to clinically
treat coronary artery disease. This marked the first successful clinical application of vas-
cular stents in humans. Subsequently, in 1988, Palmaz et al. [31] also successfully applied
the BMS made of stainless steel to clinical applications. In 1989, Günther et al. [32] used
a self-expanding Wall-stent to treat iliac-femoral artery stenosis and occlusion. Figure 2b
was the Wall-stent model used by Kim et al. [33] to study the effect of stent structure on
blood flow. The BMSs have good radial stiffness and prevent serious elastic recoil and
reduce the restenosis rate in the stent. However, BMSs in the later stage of implantation
in the human body will still cause a higher rate of ISR [34,35], and the restenosis rate is
20–30% [36]. Because BMSs stay in the human body for a long time even permanently, it
will also cause vascular inflammation and the risk of atherosclerosis [37]. Nevertheless,
with the development of stent design, BMSs, as the first generation of vascular stents, have
greatly improved their structures and play an important role in the treatment of coronary
artery disease. At present, BMSs are still widely used in clinical practice applications.

Figure 3. Two structures of braided stents: (a) Coil-stent [28]; (b) Wall-stent [33].

2.2. The Second Generation of Vascular Stent: Drug Eluting Stent (DES)

In order to solve the problem of ISR, the researchers used the bare metal stent as the
structural basis and coated it with the biocompatibility coating and anti-proliferative drugs
finally developed the second-generation stent—drug-eluting stent (DES), which means
bioabsorbable or non-absorbable polymers or polymer-free stents. After renewed research
and development, the DESs have been widely used in clinical applications and achieved
remarkable therapeutic effects. Currently, eluting drugs include rapamycin, paclitaxel,
and everolimus [38], the main substrates are stainless steel, cobalt-chromium alloy, NiTi
shape memory alloy, etc. and PLLA (Poly L-lactic acid), PDLLA (Racemic polylactic acid),
PCL (Polycaprolactone), PGA (Polyglycolide) and their copolymers are commonly used to
prepare DESs [39]. The characteristics of stents are changed due to adding polymers, for
example, biocompatibility and biomechanics. There was a detailed introduction of DESs
in a review of Karjalainen et al. [40]. They described the coating materials for DESs. In
their review, the development of stent materials was introduced more. In 2002, Cordis
Corporations took the lead in developing the Cypher structure of DESs, as shown in
Figure 4a. Compared with the BMSs, the Cypher stent at the 9th month of implantation,
the target lesion revascularization (TLR) was reduced by about 80% and the target vessel
revascularization (TVR) was reduced by about 70%. Moreover, the mortality rate and
the incidence of myocardial infarction (myocardial infarction, MI) were not significantly
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different [41,42], and the rate of ISR was 5–10% [43]. DESs can effectively inhibit neointimal
hyperplasia, prevent the inflammatory response in the early stage of stent implantation,
and significantly improve the rate of vascular restenosis, TLR, and TVR. However, most of
the commonly used DESs are permanent metal substrates. After the drug coating on the
surface of DESs is decomposed and released, the metal substrates will still remain in the
human body permanently, which will cause vascular inflammation and the risk of recurring
atherosclerosis in the later stage [37]. In addition, the DESs also have the problem of slow
drug decomposition and carrier shedding. Therefore, when designing the structure of the
stent, it is necessary to consider designing a structure that can fully decompose the drug
and stabilize the carrier. Hsiao et al. [44] designed the drug-eluting stent with a micro-pot
structure on the surface (as shown in Figure 4b). The research results demonstrated that
the micro-pot structures on the stent surface had an effect on the anti-fatigue performance
and drug loading. By changing the size and density of the micro-pot, the drug loading
capacity can be controlled, and the structural mechanical properties of the stent can be
weighed against the drug loading capacity.

Figure 4. Two structures of DESs: (a) Cypher stent [40,41]; (b) Depot stent [43].

2.3. The Third Generation of Vascular Stent: Biodegradable Stent (BDS)

Since the DESs still have the same problems as the BMSs after the drug layers are
released [45]. The ideal solution is to design a stent that has the function of supporting
blood vessels in the early stage of implantation. After the diseased vessels return to normal
function, the stent can be absorbed or decomposed and eliminated by the body in the
later stage to avoid the harm caused by the stent permanently left in the body [46,47].
Biodegradable stent (BDS), as the third-generation stent product, is made of biodegradable
or bioabsorbable materials and has good tissue compatibility and biodegradability. After
the stent is implanted, the blood vessel can be effectively expanded in the early stage.
Finally, the stent can be gradually degraded in the human body. The degradable product
can be excreted through metabolism or absorbed by the body without affecting the function
of the blood vessel. In 1988, Stack [48] took the lead in developing bioabsorbable stents. In
1991, Stack and Chapman et al. [49] conducted in-depth research on bioabsorbable stents
and made animal implantation experiments. They found that within a period of time
after implantation, the vascular patency rate was good, there was no inflammation and
serious thrombosis. At present, the matrix materials of BDSs mainly include degradable
polymers and degradable alloys. The degradable polymers include polylactic acid (PLA),
poly-L-lactic acid (PLLA), and polycaprolactone (PCL), racemic polylactic acid (PDLLA),
etc. [50], the degradable alloys include magnesium alloys, zinc alloys, and Fe alloys [51].
According to data, the first real application of biodegradable stents in animal experiments
was developed by Yamawaki et al. [52] in 1998 using the L-polylactic acid (PLLA) stent.
Subsequently, great deals of scholars have conducted research on degradable polymer
stents. In 2000, Tamai et al. [53] used the Igaki-Tamai-PLLA biodegradable stent for the first
human trials. The stent had a thickness of 0.17 mm and a zigzag spiral shape (as shown in
Figure 5a) and was implanted in 15 patients. Follow-up angiography and intravascular
ultrasound examinations at three and six months after stent implanted showed that no
thrombosis or major cardiac events occurred within 30 days, and no major cardiac events
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occurred within six months except for repeated angioplasty. Erbel et al. [54], Moravej
et al. [55], and Hehrlein et al. [56] studied magnesium alloy, iron alloy, and zinc alloy
degradable vascular stents (as shown in Figure 5b–d) and achieved certain research results.
BDSs have great advantages over BMSs and DESs. Nevertheless, there are also a series of
problems. For example, biodegradable polymer stent has defects such as poor mechanical
properties, high elastic recoil, and fast mechanical attenuation [57]. The matrix of the
magnesium alloy stent degrades quickly, and the radial force is obviously weak in the later
stage of implantation, and the place of stent implantation is prone to late retraction [58].
Fe-alloy stent can interfere with MRI imaging, degrade unevenly, and produce residues
in the body [59,60]. Zinc alloy stent is still in the preliminary stage of research, and there
are defects of uneven degradation and many problems that have not been discovered
yet [51]. The current methods to solve the mechanical properties and degradation problems
of BDSs, in addition to develop new materials, designing structures of stents can also be
considered [61,62] to improve radial stiffness, axial flexibility, and reduce foreshortening,
etc. [63–65].

Figure 5. BDSs: (a) PLLA stent [52]; (b) Mg-allot stent [53]; (c) Fe-alloy stent [54]; (d) Zn-alloy stent [55].

The above-mentioned vascular stents, their structures, and materials affect the me-
chanical properties and the manufacturing methods. From BMSs to BDSs is not only the
evolution of stent material but also the evolution of structure. With the emergence of new
materials and optimization of the structure, stent material has changed from stainless steel
to degradable alloys and degradable biomaterials, strut thickness of stent has reduced.
Generally, changing the structural design dominates the mechanical properties of the stent.
However, due to the limited choice of materials, materials are usually used to improve
biocompatibility. Table 1 lists materials and clinic performances of stents. Moreover, stent
implantation can induce complications and affect the second operation.

Table 1. Materials and properties of stents.

Therapeutic Techniques Bare Metal Stent (BMS) Drug Elution Stent (DES) Biodegradable Stent (BDS)

Main materials Stainless steel;
NiTi alloy.

Coated: sirolimus; paclitaxel;
everolimus.

The main substrates: stainless steel;
cobalt-chromium alloy; NiTi

shape memory alloy.

Polylactic acid; poly-L-lactic acid;
polycaprolactone;

Racemic polylactic acid; Mg alloy;
Fe alloy; Zn alloy.

Material strength High High Moderate/low

Biocompatability No No/coating material Yes Yes

Biodegradability No No/coating material Yes Yes

Post-implantation Drug
administration No Always Always
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Table 1. Cont.

Therapeutic Techniques Bare Metal Stent (BMS) Drug Elution Stent (DES) Biodegradable Stent (BDS)

Vascular function interruption Yes Yes Yes

Incidence complicaions High Moderate Low (but may be higher than
DESs)

Manufacturing method Laser cutting;
Traditional cutting.

3D printing; electrospinning
technology.

3D printing; electrospinning
technology;

laser cutting.

2.4. The Delivery Devices and Methods of Stents

The entire deployment of the stent is a complex process, including crimping stent,
fitting into a microcatheter, delivering the stent-microcatheter system, and release from the
microcatheter. The purpose of all work is to accurately deploy the stent to the stenosis of a
blood vessel and then release the stent to open the vessel. A microcatheter, as the delivery
device, is extremely important and complex. The delivery device affects the deployment
and expansion, which is an important part of therapy. Meng’s team [66–69] has been
doing research on stent delivery and deployment. They have established a simulation
workflow similar to the actual clinical work, which is highly reliable. When simulating the
real delivery pathway, the biggest difficulty is to set the motion path of the microcatheter.
Meng et al. [69] extracted a series of reference points and associated normal directions
from the center of a sequence of lumen cross-sections to represent the prescribed delivery
path. Figure 6 shows the delivery, deployment, and release of the stent. However, there
are some drawbacks to their work. The artery wall was a rigid body in Meng’s team,
which is inconsistent with a real vessel wall. Additionally, some literature [70–74] did
research on the delivery and deployment of a stent. Babiker et al. [70] proposed different
method to simulate the pathway of delivery. They extracted the nodes on the central
line of the microcatheter to define the pathway by imposing boundary conditions for
different nodes in a Cartesian coordinate system. Wang’s team [71] and Zhang and Xiang’s
team [72] extracted the central line of the patient’s blood vessel as the pathway of delivery
stent. All of these research have made some progress and simulated the crimper, delivery,
deployment, and release of vascular stent approximately. It also proves that finite element
analysis is an important application in medical field and has the reliability of results.

Figure 6. Stepwise deployment of stent [69]. (A) the delivery of stent; (B–F): the retraction of
microcatheter and expansion of stent.
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2.5. Introduction to the Manufacturing Method of Vascular Stents

As the precise medical device, the manufacturing methods of vascular stents mainly
include braided method (Figure 7a) [75–78], laser cutting method (Figure 7b) [79–82],
electrospinning technology (Figure 7c) [83–86] and additive manufacturing technology
(Figure 7d) [87–91]. The braided method is to first wind the wire on the carrier. There
are multiple carriers in Figure 6A, whose purpose is to use the two kinds of filaments to
fabricate the stent at the same time. Draw the cylindrical bar upwards and rotate carriers
at the same time, so that the filaments are wound around the bar, thereby forming a mesh-
like braided structure stent. As the stent structure tends to become more complicated,
the vascular stent manufactured by the braided method is limited to a simple structure,
and the stent has poor radial stiffness, so the braided method is no longer suitable for
fabricating stent.

Figure 7. Vascular stent processing method: (a) Braided [77]; (b) Laser cutting [80]; (c) Electrospinning technology [86];
(d) Additive manufacturing [91].

The laser cutting method mainly utilizes the high temperature generated by the laser
beam to instantaneously melt the material, and the material is rotated on the machine
tool so that the laser can cut along the circumference of the tubular material, and finally
fabricates the stent. However, the laser cutting method limits the stent material and is
mostly used for metal materials, and the heat-affected zone generated by the laser causes
the surface quality of the stent to deteriorate.

Electrospinning technology is the preparation of small-diameter vascular stents under
tens of thousands of voltages, which makes high spinning solution or melt charged. When
the charge reaches the critical value, the electrostatic repulsion force makes the solution
overcome the surface tension to form a jet stream, and the vascular stents are obtained
through the rotating collector device with different diameters. Although the electrospinning
technology is simple to operate, the electrospinning technology is not suitable for preparing
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complex vascular stent structures and is mostly used for preparing small-caliber stents or
coating metal stents, which results in limited application of electrospinning technology.

At present, additive manufacturing technology has become mature. Most scholars
mainly improve Fused Deposition Modeling (FDM) technology to fabricate vascular stents.
As shown in Figure 7d, a rotating shaft is added to the printing platform, and the printing
filament is melted at high temperature and sprayed through the nozzle, and deposited on
the rotating shaft to prepare the stent. Because the additive manufacturing technology has
the characteristics of a short printing cycle, high material utilization, complex printable
structure, and various sizes of vascular stents, it has been widely used in the field of
preparing stents [50]. At present, vascular stents have begun to tend to patient-specific
design, and the application of additive manufacturing technology provides unlimited
prospects for the design and manufacture of vascular stents.

For the currently available vascular stents, their in vivo performances and manufactur-
ing methods are highly dependent on the applied materials and structural designs. Table 1
summarizes widely utilized materials for producing BMSs, DESs, and BDSs, as well as
comparing their advantages and limitations. However, the options of suitable materials
are limited because of their weak radial strength, toxic degraded products, intractable
manufacturing, and so on. Therefore, the elaboration of stent structural design is essential
to improve the mechanical properties, geometrical compatibility, and structural stability of
stents to ensure their therapeutic functions.

3. Structure Design of Vascular Stents
3.1. Evaluation Standards of Mechanical Properties

The design of the stent structure is of great significance for the treatment of atheroscle-
rotic blood vessels. If the stent deforms unevenly during the expansion process, it will
cause serious damage to the blood vessels. In view of the above-mentioned types of
vascular stents and the problem of ISR, this paper summarizes the ideal functions and
mechanical properties of BMSs, DESs, BDSs [5,63–65,92,93]. As a result, when designing
the structure of vascular stent, there are some standards to evaluate stents:

3.1.1. Radial Stiffness or Radial Elastic-Recoil

The radial elastic-recoil of vascular stent refers to the expansion of the stent under
the action of the balloon. After the balloon is removed, the expansion force of the balloon
on the stent will disappear. At this time, because of the radial pressure of the vascular
wall on the stent and the elastic deformation of the stent itself, the stent will have certain
radial elastic recoil. If the stent undergoes large elastic recoil, the radial support effect of
the stent on the vessel wall will be severely weakened, and ideal vascular expansion cannot
be achieved. Equation (1) is the radial elastic recoil formula of the stent:

Rrecoil = (Rload − Runload)/Rload (1)

In the formula, Rload represents the radial diameter of the stent when the balloon is
fully expanded, and Runload represents the radial diameter of the stent after the balloon
is removed.

The radial elastic-recoil of the stent is related to the stiffness. Supposing that the stent
has a large elastic-recoil after expanding, the stent cannot support blocked blood vessels.
As a result, the stent does not strut plaques and restore blood flow.

3.1.2. Foreshortening

After the vascular stent expands radially, the designed stent structure has a negative
Poisson’s ratio, resulting in a certain shortening in the axial direction. If the stent is severely
shortened, the stent cannot be accurately placed to the position of the blood vessel plaque,
which affects the outcome of the treatment. Equation (2) is the foreshortening formula of
the stent:

Foreshortening = (L0 − Lfinal)/L0 (2)
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where L0 is the initial axial length of the stent without any deformation, and Lfinal is the
final axial length of the stent after positioning in the blood vessel.

The foreshortening affects the accurate positioning of the stent in the vessel. When the
stent is implanted into the blood vessel and placed in the location of the plaque through
the catheter, if a stent causes the foreshortening, the expanded stent can’t completely cover
the plaque or even deflect away from the blocked vessel under blood flowing, making it
impossible to cure atherosclerosis.

3.1.3. “Dogbone”

When the stent is in the process of vascular expansion, the stent will deform unevenly
under influence of a balloon, which usually shows that the two distal of the stent expand
more than the middle part, forming a shape similar to a “dogbone”. Equation (3) is the
“dog bone” formula:

Dogbone = (rdistal − rcentral)/rdistal (3)

where rdistal is the radius at both ends of the stent, and rcentral is the radius at the middle of
the stent.

The “dogbone” of stent often occurs using balloon expansion. If the stent undergoes
non-uniform “dogbone” deformation, it will cause damage to the inner wall of the blood
vessel and result in complications such as ISR.

3.1.4. Axial Flexibility

After the stent expands in the blood vessel, the stent is not prone to bending defor-
mation due to the restriction of the radial stiffness. As a result, it is difficult to achieve the
same degree of bending between the stent and the blood vessel. It leads to poor adhesion
to the inner wall of the blood vessel, resulting in high wall stress and large damage caused
by the implantation of the stent [94]. The higher the radial stiffness, the greater the pressure
on the vascular wall of the stent, and the better it can ensure smooth blood flow; the higher
the axial compliance, the easier it is for the stent to achieve bending deformation, and the
less damage to the wall of the blood vessel with a higher degree of curvature. Solving
the two contradictory coexistence problems of axial flexibility and radial stiffness is an
important standard when designing stents.

Therefore, designing a stent should avoid undesired structural failures. The above-
mentioned standards are important for designing stents. The structural design of vascular
stent is directly related to its mechanical properties, whether it is the first generation of
BMSs or DESs, as well as BDSs, all need to improve the performances of the stent in
terms of structural design and optimization. In this paper, vascular stents are divided
into two types. One is composed of the rings and the links (also called “bridge”) [95],
as shown in Figure 8a. The function of the rings is to radially expand and support the
blood vessel, and the function of the links is to connect the rings axially to achieve the
axial flexibility of stents. The shape and size of bridges is usually a hot spot for scholars to
research and design. The second type is a scaffold structure formed by directly connecting
and arranging representative volume elements (RVE)/representative unit cell (RUC), as
shown in Figure 8b [96]. By designing different unit cell structures, the stent with target
deformation can be obtained, which also is a hot research content of stent design. In order
to facilitate readers to understand the mechanical properties of different stents, Appendix
A lists the advantages and disadvantages of each stent mentioned in this paper.
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Figure 8. Two types of vascular stent designs: (a) Link/bridge stent [86]; (b) RVE/RUC stent [96].

3.2. Design of “Bridge/Link” Stents

The link/bridge is one of the important factors affecting the axial flexibility of the
stent [84]. Regarding the design of the “bridge” vascular stent, the researchers pointed out
that the geometric parameters of the link/bridge determined the mechanical properties
of the stents [92,94,97–100]. At present, the bridges of vascular stents roughly include
L-shaped, N-shaped, V-shaped, S-shaped, etc. In the analysis of the mechanical properties
of the vascular stents with L-shaped, V-shaped, and S-shaped, Behrend used the cantilever
method to verify that the RX Multilink stent with an L-shaped bridge had the smallest axial
stiffness [99]. However, due to not involved the S-shaped stent in the experiments, and
the number of experimental samples was too small, the conclusion cannot be used as an
evaluation standard for different bridge stents. Ormiston et al. [100] used the three-point
support method to study vascular stents with a variety of bridge structures. The results
showed that the performance of the S-shaped vascular stent was better than that of the
L-shaped and V-shaped stents, and the axial flexibility of the L-shaped and V-shaped stents
was almost the same. Similarly, Wei et al. [101] pointed out that among the six different
stent structures, when the vascular curvature was 0◦ and 15◦, the stent with an S-shaped
bridge structure was the most flexible. When the vascular curvature was 30◦, 45◦, and
60◦, the U-shaped stent had the best flexibility. However, these studies are based on the
finite element simulation of the ideal model analysis, and do not simulate the effect of
balloon dilatation on the structure and ignore the role of intravascular plaque. Azaouzi
et al. [92] separately studied the effects of V-shaped, N-shaped, unsymmetrical V-shaped,
and unsymmetrical N-shaped on the mechanical properties of balloon-expandable stents
(as shown in Figure 9) and conducted finite element analysis on the axial flexibility and
radial strength of stents with different bridge shapes. The results showed that in terms
of bending performance, the symmetrical N-shaped bridge and unsymmetrical V-shaped
bridge had better flexibility. In terms of torsional performance, symmetrical V-shaped
bridge stent had the worst flexibility, and unsymmetrical N-shaped stent had the best
flexibility. Since the radial force and stress of the symmetrical N-shaped bridge structure
are small, it is the structure with the best radial support performance in all stents. However,
the Azaouzi team do not make a quantitative analysis of the stent structures and did not
directly give the radial elastic recoil rate and axial foreshortening rate of different bridge
stents, but only limited to a qualitative evaluation of the structure.
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Figure 9. Different bridge structures [92]: (a) V-shaped; (b) N-shaped; (c) Unsymmetrical V-shaped;
(d) Unsymmetrical N-shaped.

Wei et al. [102,103] designed the JS-shaped bridge, the OCS-shaped bridge, and the
CCS-shaped bridge (as shown in Figure 10), and used the plane compression method,
the V-groove compression method, and the three-point bending method to study the
mechanical properties of stents. The experimental results showed that the radial strength of
the JS-shaped stent, the open OCS-shaped stent, and the closed CCS-shaped stent was 14%,
34%, and 42% higher than the radial strength of the ordinary biodegradable stent structure,
respectively. The bending stiffness of the JS-shaped and OCS-shaped was equivalent
to that of the ordinary biodegradable stent structure, which was reduced by about 73%
compared with the CCS-shaped. All stents had no axial foreshortening. Although the
radial stiffness has been improved, they do not take into account the radial stiffness and
axial flexibility performance when designing stents with various bridges. For the study of
the axial flexibility of vascular stents, Mori and Saito [104] analyzed the influence of four
different structures, W-shaped, S-shaped, WD-shaped, and N-shaped on the compliance
performance of stents (as shown in Figure 11). They used the four-point bending test
method to test the bending stiffness of the stents and found that the S-shaped stent was
85.28 N mm2, the N-shaped stent was 41.67 N mm2, and the improved WD-shaped stent
was 78.79 N mm2, W-shaped stent was 188.67 N mm2, respectively. This test provides a
new method for studying the axial compliance and flexibility of vascular stents, namely the
four-point bending test. Similarly, these studies have not balanced the radial stiffness and
axial compliance, and they are all based on a single factor to design the bridge to improve
the structure of the stent.

Figure 10. Models of vascular stents [102,103]: (a) JS-shaped; (b) OCS-shaped; (c) CCS-shaped.
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Figure 11. Four different model structures [104]: (a) W-model; (b) S-model; (c) WD-model; (d) N-model.

In order to obtain better mechanical properties and design a better stent structure,
researchers optimized the bridge structure of vascular stent, and studied the influence on
the mechanical properties by changing the length and width of the bridge. Tammareddi
et al. [105] adopted a controlling variables approach to aiming at multiple optimization
goals such as increasing radial stiffness, improving axial flexibility, and reducing the
maximum stress on the vessel wall (as shown in Figure 12), and analyzed 4 × 23 sets of
stents with different geometric parameters by means of finite element simulation. The
research results indicated that by reasonably reducing the width of the bridge Wlink and
increasing the length of the bridge Llink could appropriately improve the axial compliance
and flexibility of vascular stent and reduce the maximum stress on the vascular wall, but
this would also cause the stent had an excessive axial foreshortening during expansion,
which would affect the precise positioning and restore the diseased blood vessel. Wang’s
team [106] used finite element simulation technology to analyze six sets of stents with
different bridge widths and concluded that appropriately increasing the width of the bridge
could effectively reduce the “dogbone” deformation of stents after expanding. However,
due to the discrete comparison of the differences between different designs, this study does
not give the optimal design.

Figure 12. MAC-Plus stent and parameters [105]: (a) Oblique view of MAC-Plus; (b) View along z-axis
(axial direction) is used to show the stent thickness; (c) Planar view of the MAC-Plus stent structure.
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3.3. Design of RUC/RVE Stents

In the structural design of vascular stents, the representative volume element (RVE)/
representative unit cell (RUC) is often studied [107,108]. By designing the unit cell and
analyzing its performance, the design efficiency is improved, and the diversification of
the stent structure can be realized. The Prithipaul team [96] designed vascular stents with
different RVE structures (as shown in Figure 13) and compared the mechanical properties.
They carried out an experimental analysis of mechanical properties from the radial elastic
recoil, foreshortening, radial stiffness, and Wall Shear Stress (WSS). They deemed that
except the Diamond structure exhibiting poor mechanical properties, Reentrant Auxetic,
Hybrid A, Hybrid C, and Chevron B exhibited better radial stiffness, foreshortening
respectively. Each structure cannot have the advantages of multiple mechanical properties.
For example, the radial stiffness and WSS of the Diamond stent were contradictory. Douglas
et al. [109] also studied five-unit structures of vascular stents Diamond, Reentrant Auxetic,
Hybrid A, Hybrid C, and Chevron B, and their conclusions were consistent with Prithipaul
et al. In addition, Dolla et al. [110] and Tan et al. [111] both verified the conclusion that the
Reentrant-Auxetic stent had good mechanical properties. Figure 14 is two vascular stents
with different unit cells designed by Dolla et al. [110].

Figure 13. RVE structure of vascular stent [96]: (a) Diamond; (b) Reentrant Auxetic; (c) Hybrid A;
(d) Hybrid C; (e) Chevron B.
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Figure 14. Two-unit cell of stents [110]: (a) Diamond stent; (b) Auxetic stent.

The auxetic structure is the negative Poisson’s ratio material that expands/contractions
during tension/compression [112]. This special deformation behavior produces some
favorable mechanical properties, such as excellent resistance to indentation, resistance to
shear and fracture resistance, enhanced sound absorption, variable permeability, etc. [113].
In view of these properties, Auxetic structure has been used in the design of self-expanding
vascular stents [114]. Reentrant (Figure 15a) and Chiral (Figure 15b) are Auxetic structures
currently used for vascular stent research [115]. Liu et al. [116] designed the Reentrant
shape memory polymer vascular stent. Numerical analysis results indicated that the
Reentrant stent with a smaller radius had a higher critical buckling load and a smaller
buckling displacement. Compared with traditional stents, the contact area between the
stent and the blood vessel was smaller, the stress was smaller after implantation. And
they explained that the radial strength depended on the stent radius and the number of
circumferential unit cells. Based on the Reentrant structure and the Chiral structure, the
Ruan team [117,118] designed the Antichiral-Reentrant vascular stent (Figure 16). They
verified that the Antichiral-Reentrant stent had good mechanical properties after being
implanted in the blocked lesion by designing stents of different sizes. But for the research
of Antichiral-Reentrant stent, during the finite element analysis, the Ruan team still set
the balloon as a rigid surface, which did not match the actual clinical balloon expansion
method, and did not explain radial stiffness, foreshortening, “dogbone” of stents.

Figure 15. Auxetic structures of application stents [115]: (a) Reentrant; (b) Chiral.
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Figure 16. Reentrant-chiral stent [117,118]. (a) Reentrant-chiral unit cell, (b) Reentrant-chiral stent.

Currently, for the structure design of vascular stent, in addition to the introduced
Auxetic structures such as Reentrant, Chiral, and Reentrant-chiral with negative Poisson’s
ratio, scholars have designed the Arrowed stent. However, the Arrowed stent is still in the
initial stage of research, and its mechanical properties have not been rigorously scientifically
studied. The Arrowed stent manufactured by Wu et al. [119] using FDM technology (as
shown in Figure 17a) was of poor quality and required a long time of post-processing. The
Ameer team [120–122] synthesized a new Arrowed degradable polymer stent (Figure 17b),
and successfully achieved non-supported printing by using a new micro-continuous liquid
interface manufacturing technology. This research reduced the cumbersome procedures
for post-processing of vascular stents, and the Arrowed stents had good elasticity, high
strength, anti-oxidation, and biodegradability.
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In addition to the stent design with uniform cell size, Torki et al. [123] designed a
stent structure with a non-uniform cell size (Figure 18). They optimized the parameters to
obtain the best stent model and placed the optimized stent in an artery with 49% plaque
unevenness to simulate the performances of the stent. The finite element results showed
that the internal area of the artery cross-section increased 74%, which meant that blood flow
had improved by 74%. The concept of designing and optimizing the non-uniform stent
proposed by Torki et al. has great significance for designing structures of stents, which
provides new ideas for improving the function of stents.

Figure 18. Non-uniform size of stent [123].

3.4. Design of Patient-Specific Stents

At present, the realization of patient-specific vascular stents for patients with vascular
disease is becoming a research hotspot. Designing the patient-specific stent relays on the
shape of the patient’s blood vessel. The patient-specific stent is able to achieve an identical
shape as the blood vessel after deployment and deformation. This geometrical match can
avoid or significantly reduce the interaction stress between the stent and vascular wall
after; and thus, can effectively reduce ISR. That is because two ends of the patient-specific
stent do not trigger stress concentration in a vessel and can be in compliance with the
shape of the vessel. Adversely, conventional stents straighten the vessel resulting in stress
concentration, which triggers complications such as ISR. Consequently, scholars focus
on designing the patient-specific stent. Han and Lu [124] designed a vascular stent with
non-uniform Poisson’s ratio for patients with curved blood vessels and performed a finite
element comparative analysis with Diamond stents and Reentrant stents with uniform
Poisson’s ratio (Figure 19). Diamond stent and reentrant stent do not exhibit the same
curvature as the blood vessel after expansion. The two ends of the stent cause severe stress
concentration on the vessel wall, resulting in vascular intimal hyperplasia and high ISR. But
the non-uniform Poisson’s ratio vascular stent designed by Han and Lu can have the same
curvature as a curved blood vessel, flexible in axial, and does not cause stress concentration
on the inner wall of the blood vessel. Han and Lu pointed out that by adjusting the position
of the connecting place between the link and the ring, that is, changing the length of the link
Llink (Figure 20), the Poisson’s ratio of the unit cell can be changed from positive to negative.
According to the performance of the non-uniform Poisson’s ratio structure, Han and Lu
designed a patient-specific stent for the patient’s blood vessel. In fact, before Han and Lu,
Auricchio et al. [125] had already researched target vascular stents for patients, but the
blood vessels they studied were blood vessels with a small degree of curvature, and they
did not solve the complicated design of vascular stents. Morlacchi et al. [126] tried to study
the stent of the target blood vessel, but for the diseased part of the curved blood vessel,
they adopted the method of implanting two vascular stents, and the two stents overlapped
at the curved part (as shown in Figure 21). Such the structure does not allow the stent to fit
the blood vessel perfectly. On the contrary, it still causes stress concentration on the inner
wall of the blood vessel at both ends of the stent. When Ragkousis et al. [127] solved the
problem of target vessel stenosis, they only evaluated the existing stent structure. Although
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the stent structure was optimized, the blood vessels they studied have low curvature and
lack research on axial compliance performance.

Figure 19. FEA results of four different stent-vessel systems after expansion [124]: (a) Diamond stent; (b) Reentrant stent; (c)
Patient-specific stent.

Figure 20. Nonuniform stent [124].
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Figure 21. Implantation of two stents facing the target vessel [126].

4. Perspectives on the Future and Challenges of Designing and Fabricating Stents

At present, cardiovascular disease has become the primary cause of death in humans.
Although PCI can alleviate the patient’s bad condition, there are still many problems, such
as ISR. Therefore, a reasonable structure of the stent can effectively solve the complications
after implanting it into the blood vessels. Faced with such problems, whether it is BMSs,
DESs, or BDSs, it is necessary to study the structural influence on the mechanical properties
of the vascular stent. Because a first-class stent structure can better solve the contradiction
between “radial stiffness” and “axial flexibility”, it can not only ensure the radial stiffness
but also improve the axial flexibility of the stent. In addition, an outstanding stent structure
can also increase the drug loading rate of the DESs and balance the degradation rate of the
BDSs. At present, the existing structures of stents have different characteristics. However,
there are few stents with multiple properties at the same time. The performance of different
types of stents has been summarized, see Appendix A.

In the future of vascular stents, research should mainly focus on the key issues of high
stress, high damage, and high restenosis rate after the stent implantation, especially curved
blood vessels. More importantly, different patients have different degrees of vascular
stenosis. Therefore, vascular stents tend to be patient-specific and customized for patients,
so that cardiovascular diseases such as atherosclerosis can be effectively treated, and the
damage caused to patients after the implantation of existing structural stents is avoided.
The structure design of stents is one of the important methods to realize patient-specific
stents. As mentioned in this review, a reasonable structure can effectively improve the
characteristics of the stent.

Additionally, delivery and deployment of the stent is extremely important. It is a very
complicated process, whether it is a simulation or clinical operation. Accurate delivery and
deployment are necessary for the treatment of atherosclerosis. The release of the vascular
stent in the prescribed position is a necessary condition for precision medicine and patient
specific. Therefore, researchers cannot ignore any part of the crimper, delivery, deployment,
and release of stents. In future work, we need to evaluate the mechanical properties of
vascular stents more comprehensively.

Besides, fabrications of the stent should also not be limited to current manufacturing
methods. It is difficult to fabricate vascular stents with complex structures and precise size
with the existing methods. Therefore, it is necessary to improve the processing method for
the fabrication of stents. Stereolithography (SLA) is an additive manufacturing technology
with extremely high printing accuracy, which can be used to fabricate stents, for exam-
ple, Ameer’s team [120–122] successfully used SLA technology to achieve unsupported
printing by designing an arrow-shaped stent. The fabricating method will have a direct
impact on the performance of stents. Therefore, comprehensive consideration of the struc-
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ture and the manufacturing methods of stents can make medical devices have a broader
application field.

Finally, the combination of medical and structural design may improve the real role
of vascular stents. Scholars in the field of structural design should communicate with
cardiovascular experts in hospitals so that the design and manufacture of vascular stents
can meet the needs of hospitals and patients. This can not only greatly promote the design
and manufacture of stents, but also enable hospitals to treat patients and save lives. At the
same time, it is also an important premise to realize the patient-specific stents.

5. Conclusions

This paper summarizes the various structures of a vascular stent, briefly expounds on
the development process of the stent, as well as the criteria for evaluating the mechanical
properties, delivery and deployment, and the manufacturing method of a stent. This paper
focuses on the structural design of the stent from the three types including the bridge stent
and the RUC/RVE stent, and patient-specific stent. We analyze the problems and short-
comings of the existing stent structure. It is pointed out that the stent structure is designed
simply, and it is difficult to balance the radial stiffness and axial compliance. Additionally,
current research on vascular stents is still limited to improved and optimized design on the
existing stent structure and lacks patient-specific designs for different patients.

There are also many advantages here. With the design and optimization of a vascular
stent, strut thickness of stent has been substantially reduced, which is conductive to reduce
injury and metal to artery ratio for BMSs. With the emergence of new materials, stent
material has changed from stainless steel to degradable alloys and degradable biomaterials.
This also reduces the size of the stent and the interference of BMSs on the MRI. In any case,
vascular stents should be scientifically and rigorously designed and developed to ensure
that the stent can effectively treat blocked blood vessels, open up thrombi, and restore
vascular functions. And the design, manufacture, and engineering & medicine of vascular
stents are prospected. All in all, the design of vascular stent should be in the direction of
patient-specific.
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Appendix A

Table A1. Comparison of the Advantages of Vascular Stents.

Types of Stent Advantages Disadvantages

L-shaped bridge Axial stiffness and flexibility [99]

N-shaped bridge Axial flexibility [92]

Un/symmetrical N-shaped bridge Axial flexibility [92]



Micromachines 2021, 12, 770 21 of 26

Table A1. Cont.

Types of Stent Advantages Disadvantages

S-shaped bridge Axial flexibility [101]

symmetrical V-shaped bridge stent Torsional performance [92]

unsymmetrical V-shaped bridge Axial flexibility [92]

W-shaped bridge Bending stiffness [104]

WD-shaped bridge Axial flexibility [104]

JS-shaped bridge Bending stiffness
No axial foreshortening [102,103] Radial strength [102,103]

CCS-shaped bridge Radial strength
No axial foreshortening [102,103]

OCS-shaped bridge
Radial strength

Bending stiffness
No axial foreshortening [102,103]

Diamond

Axial flexibility
Axial foreshortening

Radial recoil
Radial stiffness [96,110,124]

Auxetic
Radial stiffness

Elastic recoil
No axial foreshortening [110,111,115]

Hybrid A
Radial stiffness

Elastic recoil
No axial foreshortening [96]

Hybrid B Elastic recoil
No axial foreshortening [96] Radial stiffness [96]

Chevron Elastic recoil
No axial foreshortening [96] Radial stiffness [96]

Non-uniform Poisson’s ratio stent

Axial flexibility
Radial stiffness

Elastic recoil [124]
No axial foreshortening
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