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Abstract: The aim of this paper is to prepare and characterize partially-oxidized graphite oxide and
consider if it is possible to affect the level of oxidation of particles by an adjustment of the oxidizing
agent. Several samples were prepared, using different amounts of oxidizing agent. The samples
were subsequently analyzed. The C/O ratio was evaluated from XPS, EDS, and EA. The amount and
type of individual oxygen functionalities were characterized by XPS, Raman spectroscopy, and cyclic
voltammetry. The structure was studied by SEM and XRD. Thermal stability was investigated by
STA-MS in argon atmosphere. The results can be useful in order to design simple technology for
graphite oxide synthesis with required oxygen content.
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1. Introduction

Research on 2D carbon-based nanomaterials has become very intensive since the discovery and
first successful isolation of graphene in 2004 [1,2]. Many different procedures of the preparation [3]
and further functionalization of graphene have been reported [4]. The top-down approach is one of the
possible methods for its mass production [5]. This method is based on graphite/graphene oxidation,
followed by the subsequent reduction/exfoliation of graphite/graphene oxide. This is possible due to
the increase in interlayer distance between individual carbon layers [6–8].

On the other hand, for the fabrication of precise monolayer graphene material, the bottom-up
approach has to be used [9]. The most broadly used method is chemical vapor deposition (CVD), where
small saturated carbohydrates, such as methane, are decomposed at a reachable temperature, around
900 ◦C, on a highly smoothed copper or nickel surface [10,11]. Another approach is the decomposition
of silicon carbide (SiC), since it is directly prepared on the silicon wafer surface. Nevertheless, the
fabrication of ultrapure SiC itself represents a technological issue and is not reachable in large-scale
production [9]. Interestingly, a method for the precise patterning of graphite/graphene has been
reported [12].

Since the first preparation of graphite oxide (GO) in the 19th century [13], several possible structures
for this material have been reported [14–19]. Generally, graphite oxide is a lamellar compound consisting
of carbon layers. These layers have been wrinkled during the oxidation process due to change in the
hybridization of carbon atoms, with the simultaneous addition of oxygen-containing functionalities
(hydroxyls, epoxides, ketones, carboxyls, etc.). Carboxyl functionalities are usually found at the
edges of individual layers. Other oxygen functionalities, such as hydroxyls, epoxides, or ethers,
used to be found on the surface of the layers [6]. Nevertheless, the exact structure of the prepared
material is strongly influenced by the starting material used, oxidation process, and even purification
process [6,20,21]. Compared to pristine graphite, the interlayer distance significantly increases during
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the oxidation, from 3.4 Å to 6–12 Å, based on the procedure [6,22,23]. The interlayer distance within
individual graphene sheets is a crucial factor for subsequent exfoliation or further processing. Also,
the presence of water molecules intercalated into the interlayer space is obvious and cannot be ignored
when describing GO [24]. The C/O ratio is also very dependent on the method used and can vary
significantly. Usually, a C/O ratio from 1.8 to 2.5 can be achieved in fully oxidized GO. Recently, Dimiev
et al. reported that the C/O ratio does not change significantly with the addition of more than four
equivalents of potassium permanganate compared to original graphite, and this addition is, thus, not
necessary [24].

Since graphite is a very inert mineral, it can undergo oxidation only with very strong oxidation
agents. There are several methods for graphite oxide production [13]. These methods are usually
termed in literature according to their inventors. Graphite oxides can be prepared from graphite by
electrochemical [25] or chemical approaches [26]. Chemical approaches are based on the oxidation of
carbon-based precursors (graphite, graphene, nanographite, amorphous carbon, single- and multiwall
carbon nanotubes). The structure of the resulting graphite oxide and the presence of specific oxygen
functionalities is strongly affected by the procedure used, which is caused by a different mechanism
of oxidation [27,28]. Basically, two common oxidizing agents are used to prepare graphite oxide:
potassium permanganate [29] and potassium chlorate [30,31]. Procedures using chlorates lead to the
synthesis of graphite oxide with mainly hydroxyl and epoxy functionalities, and the planar structure
of the material is preserved, whereas procedures using permanganate provide a product with mostly
carboxyl functionalities and the wrinkled structure is observed [32]. In the recently described method
of graphite oxidation, which is sometimes termed the Tour method [33], graphite powder is oxidized in
a mixture of sulfuric and phosphoric acid in the ratio 9:1, respectively, using potassium permanganate
as an oxidizing agent. Phosphoric acid is crucial for stabilizing the reaction. The recommended
ratio of graphite and potassium permanganate is 1:6. Another modification of this method has been
reported, where the time of the heating can be reduced to up to one hour instead of the original 12 [34].
Interestingly, a procedure using potassium ferrate (VI) as an oxidizing agent has been reported due to
its extraordinarily strong reduction potential [35]. However, in an acidic environment K2FeO4 is not
stable, since it can oxidize water in aqueous solutions [36].

Graphite oxide is not only a precursor for graphene synthesis, but it is also itself a suitable material
for membrane fabrication [37] or for various hybrid materials [38,39]. Graphene oxide is also an
essential material for the synthesis of functionalized graphene (e.g., halogenated or hydrogenated
graphene [32,40]). Graphite oxide prepared via permanganate oxidation can also undergo subsequent
re-oxidation [41,42]. During this reaction, the typical graphene structure disappears, forming an
“amorphous” structure called graphene acid. This re-oxidation process led mainly to the formation of
carboxyl functionalities in the sample. Graphene acid has a great potential to remove heavy metals
from waste water [43,44] or for the synthesis of highly selective membranes.

As apparent from the previous literature overview, there are many papers dealing with graphite
oxidation, however, only a few papers address the synthesis of partially-oxidized graphite oxides.
The aim of this paper is to prepare and characterize partially-oxidized graphite oxide and consider
whether it is possible to affect the structure and the level of oxidation by an adjustment of the
oxidizing agent.

2. Materials and Methods

Pure graphite (2–15 µm, 99.9999 wt.%) was purchased from Alfa Aesar (Haverhill, MA, USA),
while potassium permanganate (99.5 wt.%), hydrogen peroxide (30 wt.%), sulfuric acid (98 wt.%),
phosphoric acid (85 wt.%), and ethanol were purchased from Penta (Prague, Czech Republic).

A mixture of phosphoric acid and sulfuric acid was formed, with a volume ratio 40:360 mL.
The mixture was cooled to 0 ◦C. In the next step, graphite (3.0 g) and, subsequently, KMnO4 (0.2 g,
0.5 g, 3.0 g, or 6.0 g) were added. Then, the mixture was intensively stirred at 50 ◦C for 2 h [34]. After
this time, the mixture was cooled to 20 ◦C. When the temperature dropped below 20 ◦C, the mixture
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was poured onto ice, followed by the addition of 20 mL of hydrogen peroxide to remove the remaining
KMnO4 and MnO2. The mixture was then decanted five times and dried in a vacuum drier to obtain
pure material.

Samples were analyzed by a broad spectrum of analytic methods. These methods are described
in detail in the Supplementary Materials. The morphology was investigated by Scanning Electron
Microscopy, SEM (Tescan Lyra dual beam microscope, Brno, Czech Republic), structure was analyzed
by X-Ray Diffraction, XRD (Bruker D8 Discoverer powder diffractometer, Karlsruhe, Germany) and
Raman spectroscopy (Renishaw, Wotton under Edge, UK), chemical composition was studied by Energy
Dispersive Spectroscopy, EDS (Oxford Instruments, Abingdon on Thames, UK), elemental analysis,
EA (PE 2400 Series II CHNS/O Analyzer, Perkin Elmer, Waltham, MA, USA), and X-ray Photoelectron
Specroscopy, XPS (ESCAProbeP spectrometer, Omicron Nanotechnology Ltd., East Grinstead, UK).
The surface area was measured using a sorption analyzer BET (Coulter SA 3100, Backman Coulter, Brea,
CA, USA). Thermal stability was analyzed by Simultaneous Thermal Analysis–Mass Spectroscopy,
STA-MS (Setaram, Lyon, France) in an inert atmosphere. Moreover, electrochemical behavior was
measured by cyclic voltammetry (potentiostat PGSTAT 204, Metroohm, Prague, Czech Republic).

3. Results and Discussion

In this work, samples of partially-oxidized graphite oxides (poGOs) were prepared using a
modified Tour method, with a reduced amount of oxidizing agent. Samples were termed according to
the amount of KMnO4 used, as poGO-0.2 g, poGO-0.5 g, poGO-3.0 g, and poGO-6.0 g. All samples were
analyzed by SEM, EDS, EA, XPS, XRD, BET, Raman spectroscopy, STA-MS, and cyclic voltammetry.

The morphology of the prepared poGOs in comparison to the starting graphite powder was
investigated by SEM (see Figure 1). It is obvious that the oxidation of the graphite did not significantly
influence the structure, as the planar layered microstructure characteristic to graphite remained. EDS
was measured simultaneously with SEM analysis. In the sample poGO-0.2 g, the chemical composition
was 92.4 at.% carbon, 7.4 at.% oxygen, and 0.2 at.% sulfur. In the second sample, poGO-0.5 g, the oxygen
content increased, the obtained chemical composition was 89.2 at.% carbon, 9.8 at.% oxygen, and 1.0 at.%
sulfur. A similar tendency was also found for the remaining samples. In the sample poGO-3.0 g,
the composition was 76.8 at.% carbon, 23.1 at.% oxygen, and 0.1 at.% sulfur, while for poGO-6.0 g it
was 71.7 at.% carbon, 28.2 at.% oxygen, and 0.1 at.% sulfur. Potassium, manganese, and phosphorus
were not found by SEM-EDS analysis. The obtained C/O ratios are compared in Table 1.

Table 1. Calculated C/O ratios of the partially-oxidized graphite oxides (poGOs). Measurements were
obtained by EA, EDS, and XPS. Expected relative uncertainty is less than 1% for all analytic techniques.

Sample C/O (EA) C/O (EDS) C/O (XPS)

PoGO-0.2 g 12.0 12.5 7.3

poGO-0.5 g 8.7 9.1 5.5

poGO-3.0 g 3.7 3.3 3.9

poGO-6.0 g 3.1 2.5 3.8

Chemical composition was also measured by EA. From the principle of this method, only nonmetal
elements can be detected; on the other hand, hydrogen content can be measured. In the sample
poGO-0.2 g, the chemical composition was 85.4 at.% carbon, 7.1 at.% oxygen, 6.7 at.% hydrogen,
and 0.8 at.% sulfur. Sample poGO-0.5 g contained 78.6 at.% carbon, 9.1 at.% oxygen, 11.2 at.% hydrogen,
and 1.2 at.% sulfur, while poGO-3.0 g contained 64.9 at.% carbon, 17.5 at.% oxygen, 16.2 at.% hydrogen,
and 1.4 at.% sulfur. The last sample, poGO-6.0 g, had the highest content of oxygen and hydrogen,
its chemical composition was 59.8 at.% carbon, 19.5 at.% oxygen, 19.9 at.% hydrogen, and 0.9 at.%
sulfur. Sulfur impurities were also detected. The origin of sulfur is in the synthesis procedure of GOs.
The obtained C/O ratios are again compared in Table 1.
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Samples were also analyzed by XPS. For the XPS survey spectra, C1s peak was visible at ~284.5 eV
and O 1s was found at ~532.5 eV (see Figure 2). The obtained C/O ratios are shown in Table 1.
It is evident that C/O ratios measured through different methods cannot be the same, due to the
different principles of these techniques. XPS is a surface sensitive method. Hence, the oxygen
content is slightly higher, due to the fact that the oxidation took place mainly on the graphite surface.
Nevertheless, the trend of increasing C/O ratio with the increasing amount of oxidizing agent used is
significant. When more than 3.0 g was added, the oxidation started also inside the grains, hence the
C/O ratio obtained by XPS for poGO-3.0 g and poGO-6.0 g is similar. A small amount of sulfur was
detected in all samples. The sulfur was present in the form of sulfate ions.
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XPS was used to calculate the amount of individual oxygen-containing functional groups of the
samples (see Figure 2). The following carbon bonding states were identified in the graphite oxide:
C=C (284.4 eV), C–C/C–H (285.2 eV), C–O (286.2 eV), C=O (287.8 eV), O–C=O (289.0 eV), and π–π*
interactions (291.0 eV). The number of oxygen-containing functional groups was calculated by the
deconvolution of C1s peak. The results (see Table 2) clearly document the trend of the increasing
number of oxygen functionalities. It is also evident that oxygen was present predominantly in the
form of hydroxyl groups in the less oxidized samples of poGO.
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Table 2. Calculated number of individual oxygen functionalities in poGOs measured with XPS in at.%.

Sample C=C C–C C–O C=O C(O)–O

poGO-0.2 g 87.3 6.1 5.1 0.9 0.6

poGO-0.5 g 77.9 9.8 8.6 2.4 1.3

poGO-3.0 g 61.8 15.4 14.9 5.0 2.9

poGO-6.0 g 41.5 23.2 26.7 3.5 5.1

The structure of partially-oxidized graphite oxides was investigated by X-Ray powder diffraction
analysis (see Figure 3). While for graphite the strongest reflection (002) was at 26.5◦, for fully oxidized
graphite oxide, reflection at 10.1◦ was observed [34]. Although the interlayer distances in poGO-0.2 g,
poGO-0.5 g, and poGO-3.0 g did not change a lot, in the case of poGO–6.0 g, the structural change was
significant due to a higher oxidation level (see Table 3). Using the Debye–Scherrer method, the average
particle sizes were calculated. The decrease in the average particle sizes with the increasing oxidation
level of GO was caused by several factors: partial exfoliation and changes in the structure.

Table 3. XRD measurements of (002) reflection of poGOs, interlayer distances, and average size of
particles in poGOs, calculated by the Bragg equation and Debye–Scherrer method.

Sample Diffraction Angle (◦) Interlayer Distance
(Å) Average Particle Size (Å)

poGO-0.2 g 26.48 3.36 94.61

poGO-0.5 g 26.14 3.41 43.59

poGO-3.0 g 25.76 3.46 12.43

poGO-6.0 g 11.35 7.79 -
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Figure 3. XRD measurements of poGOs.

A sorption analyzer was used to determine surface area. For the pristine unoxidized graphite,
a surface area of 7.0 m2 g−1 was obtained. The less oxidized samples, poGO-0.2 g and poGO-0.5 g,
revealed slightly higher values of surface areas—7.6 m2 g−1 and 9.5 m2 g−1, respectively. A significant
increase was observed in the case of the poGO-3.0 g sample. The surface area reached 15.3 m2 g−1 in
this sample, while for the most oxidized sample, poGO-6.0 g, a value of 16.5 m2 g−1 was achieved. The
measurements strongly support the results from XRD.
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In order to obtain information about the structure of the poGOs, Raman spectroscopy was
measured (see Figure 4). The major band (so called G-band, at around 1580 cm−1) has been observed in
all graphite-like structures [45,46]. It represents sp2 bonded carbon atoms in the non-defected aromatic
rings. The 2D band is also present in all graphite-like structures at 2700 cm−1. This band is associated
with the stacking of individual layers. Another observed band in partially-oxidized graphite oxides is
called the D-band, and it is localized at around 1350 cm−1 [47,48]. The D-band indicates defects in the
graphene layer, which are mostly associated with sp3 hybridization of carbon atoms (mostly due to the
presence of oxygen functionalities). With an increase in the amount of KMnO4 used, the intensity of the
D-band increases, while the intensity of the 2D band is suppressed. To consider the level of oxidation
of the samples, the comparison of intensities (ID/IG) is crucial, since this value is directly proportional
to the level of defects in the sample. The obtained ID/IG ratios for all samples were between 0.10 for
poGO-0.2 g and 1.17 for poGO-6.0 g. During the oxidation, the graphene layer with sp2 hybridized
carbon atoms was impaired, and mainly hydroxyl functional groups were formed (sp3 hybridization)
on the surface of individual layers, which led to increasing values of ID/IG. Also, epoxides can be
formed on the graphene sheets, however, these functional groups can decompose after a few weeks or
on exposure by daylight [49]. No luminescence was detected for all studied samples, in comparison to
fully-oxidized graphite oxide samples [34].
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Thermal stability was measured for all samples in an inert atmosphere. The heating of the samples
was associated with weight loss, due to the evolution of gas molecules, such as carbon dioxide, carbon
monoxide, and water (see Figure 5). Let us note that during a fast heating, other molecules can be
released, too [50,51]. According to the observed data, the total weight loss of the prepared samples
was proportional to the increasing level of oxidation. Also, the temperatures of major gas release were
decreasing with the oxidation level. The samples poGO-0.2 g and poGO-0.5 g started to decompose at
~350 ◦C, whereas for poGO-3.0 g of poGO-6.0 g this occurred at lower temperatures. The exfoliation
(typical for graphite oxides) was detected for the sample poGO-6.0 g at ~200 ◦C. The exfoliation was
obviously caused by an extreme increase in interlayer pressure between the individual sheets.
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Cyclic voltammetry provided information about the amount of electrochemically reducible
oxygen-containing functionalities. According to the literature, peroxide, aldehyde, epoxide, and
carboxyl functionalities are reduced at potentials 0.7, −1.0, −1.5, and −2.0 V versus the Ag/AgCl
standard electrode, respectively. [52]. The samples poGO-0.2 g and poGO-0.5 g did not differ
significantly from pristine graphite (see Figure 6). By contrast, a reduction in peroxide groups was
observed in the samples poGO-3.0 g and poGO-6.0 g. The obtained results are in a good agreement
with other analytic methods. The reduction occurred only in the first cycle, and no reverse oxidation
was observed. During the second cycle, the number of oxygen functionalities (that were reduced) was
significantly lower.
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Figure 6. Measurements of inherent electrochemistry in first cycle (left) and second cycle (right).

4. Conclusions

In this paper, samples of partially-oxidized graphite oxide (poGO) were prepared by graphite
oxidation. For the oxidation, different amounts of potassium permanganate were used. The prepared
poGOs were subsequently analyzed in order to determine the oxidation level. The chemical composition
of the samples was studied by EA, XPS, and EDS. It was found that the oxygen content increased
proportionally to the amount of oxidizing agent. The interlayer distances in poGOs also increased,
as well as the surface area of the poGOs. The obtained results were supported by STA-MS, where
weight loss during the heating increased with the level of oxidation. Let us note that the results are only
applicable to graphite of this particle size, they can vary significantly with starting material of different
particle sizes. The results of our research can be useful for the fast, safe, and cost-effective synthesis
of partially-oxidized graphite oxides. By oxidation using potassium permanganates we are able to
tune the chemical composition. Samples with exact chemical composition can be used in various
composite materials, e.g., in conductive polymers for wearable electronics (PEDOT/GO composites),
for water-treatment (membranes or filters), or in building materials (self-cleaning surfaces). In addition,
partially-oxidized graphite oxides with higher oxygen content can be used for the synthesis of thermally
reduced graphene or as reactive precursors for further chemical modifications.
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