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abstract

PURPOSE Primary plasma cell leukemia (pPCL) is an aggressive subtype of multiple myeloma, which is dis-
tinguished from newly diagnosed multiple myeloma (NDMM) on the basis of the presence of$ 20% circulating
tumor cells (CTCs). A molecular marker for pPCL is currently lacking, which could help identify NDMM patients
with high-risk PCL-like disease, despite not having been recognized as such clinically.

METHODSA transcriptomic classifier for PCL-like diseasewas bioinformatically constructed and validatedby leveraging
information on baseline CTC levels, tumor burden, and tumor transcriptomics from 154 patients with NDMM included
in the Cassiopeia or HO143 trials and 29 patients with pPCL from the EMN12/HO129 trial. Its prognostic value was
assessed in an independent cohort of 2,139 patients with NDMM from the HOVON-65/GMMG-HD4, HOVON-87/
NMSG-18, EMN02/HO95, MRC-IX, Total Therapy 2, Total Therapy 3, and MMRF CoMMpass studies.

RESULTS High CTC levels were associated with the expression of 1,700 genes, independent of tumor burden
(false discovery rate, 0.05). Of these, 54 genes were selected by leave-one-out cross-validation to construct a
transcriptomic classifier representing PCL-like disease. This not only demonstrated a sensitivity of 93% to
identify pPCL in the validation cohort but also classified 10% of NDMM tumors as PCL-like. PCL-like MM
transcriptionally and cytogenetically resembled pPCL, but presented with significantly lower CTC levels and
tumor burden. Multivariate analyses in NDMM confirmed the significant prognostic value of PCL-like status in
the context of Revised International Staging System stage, age, and treatment, regarding both progression-free
(hazard ratio, 1.64; 95% CI, 1.30 to 2.07) and overall survival (hazard ratio, 1.89; 95% CI, 1.42 to 2.50).

CONCLUSION pPCL was identified on the basis of a specific tumor transcriptome, which was also present in
patients with high-risk NDMM, despite not being clinically leukemic. Incorporating PCL-like status into current
risk models in NDMM may improve prognostic accuracy.
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INTRODUCTION

For over a century, the level of circulating tumor cells
(CTCs) has been assessed in multiple myeloma (MM)
to identify aggressive disease.1 Although MM is
characterized by an intramedullary outgrowth of ma-
lignant plasma cells, the degree of hematogenous
tumor cell dissemination is highly variable between
patients. At diagnosis, CTCs are routinely quantified in
peripheral blood by morphology and can be detected
in the majority of patients with MM if flow cytometry is
used.2 However, in only 2% of patients, these levels
are $ 20% or $ 2 3 109/L, which is pathognomonic
for primary plasma cell leukemia (pPCL).3,4 Symp-
tomatic MM patients with lower CTC levels at diagnosis
are classified as newly diagnosed MM (NDMM), but
these patients may still develop secondary PCL (sPCL)
after treatment.5

Clinically, pPCL is considered a high-risk disease entity
within MM.6 Patients commonly present with a large
tumor burden and extensive morbidity, show poor
response to standard treatment, and have a dismal
overall survival (OS).5,7-9 Yet, several reports have
suggested that certain patients with NDMM experi-
ence an equally aggressive disease course to patients
with pPCL, without having CTC levels$ 20%.10-12 The
International Myeloma Working Group has therefore
challenged the current diagnostic criteria for pPCL,
which has prompted ongoing research efforts to
identify these PCL-like patients in alternative ways.8

Disease aggressiveness in pPCL is considered to be
reflected by the presence of significantly higher CTC
levels than that in NDMM. Although this was previously
hypothesized to be the result of a spillover from a large
intramedullary tumor, evidence is accumulating that
altered molecular features involved in cell adhesion,
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evasion of apoptosis, migration, bone marrow (BM) inde-
pendence, and RNA metabolism are associated with this
phenotype.13-22 Still, molecular determinants of PCL-like
disease remain poorly understood, with conventional high-
risk markers in NDMM (ie, t(4;14), t(14;16) and deletion of
chromosome 17p13 (del17p13)) only being detectable in a
subset of pPCL tumors.23-29

We therefore hypothesized that by molecularly classifying
PCL-like disease, a novel high-risk biology could be un-
veiled that may already be detectable in patients with
NDMM, despite not being clinically leukemic.

METHODS

Study Design

This study was conducted in two phases: (1) transcriptomic
classifier construction for PCL-like disease, and (2) as-
sessment of its prognostic significance in NDMM. All hu-
man investigations in this study were performed after
approval by medical ethical committees. Patient samples
were obtained with written informed consent, in accor-
dance with the Declaration of Helsinki.

Patient Selection

For classifier construction, patients with NDMM enrolled in
the Cassiopeia (NCT02541383) or HO143 trials (EudraCT
2016-002600-90) and patients with pPCL from the EMN12/
HO129 trial (EudraCT 2013-005157-75) were selected (CTC
cohort; Fig 1).30-32 Patients with tumor transcriptomic profiles
were divided into a discovery (n5 124) and validation cohort
(n 5 59).

PCL-like status prevalence per disease stage was assessed in
2,492 plasma cell samples (prevalence cohort). The prog-
nostic value of PCL-like status was determined in a subset of
2,139 patients with NDMM from the prevalence cohort (sur-
vival cohort) with tumor transcriptomic, follow-up data and
known age from the HOVON-65/GMMG-HD4 (EudraCT 2004-

000944-26), HOVON-87/NMSG-18 (EudraCT 2007-004007-
34), EMN02/HO95 (EudraCT 2009-017903-28), MRC-IX
(ISRCTN68454111), Total Therapy 2 (NCT00083551), Total
Therapy 3 (A: NCT00081939 and B: NCT00572169), and
MMRF CoMMpass (NCT01454297) studies (Fig 1 and Data
Supplement [online only, Supplementary Tables 1 and 2]).33-39

CTC Level Quantification

Baseline CTC levels were determined by Next-Generation
Flow (NGF; EuroFlow) in 297 patients with NDMM and by
morphological assessment in 51 patients with pPCL.40,41

Tumor Cell Transcriptomics

Transcriptomic profiles were generated from CD138-
enriched BM tumor cells, using microarray or RNA Seq
protocols. For technical validation, PCL-like scores were
generated with both protocols in a subset of 123 samples.

Classifier Construction

First, a linear regression model was used to rank genes on
the basis of their association with high CTC levels, inde-
pendent of tumor burden, defined as BM plasmacytosis.
Second, the optimal number of genes to distinguish NDMM
from pPCL was determined with a leave-one-out cross-
validation analysis. Third, a cutoff was chosen for PCL-like
disease by selecting the minimal PCL-like score to detect all
pPCL tumors in the discovery cohort.

Classifier performance was tested in the validation cohort.
Predicted CTC levels were calculated by fitting a linear
model with both tumor burden data and PCL-like scores.
The contribution of each term to the variance in observed
CTC levels was determined by analysis of variance.

Additional Molecular Testing

High-risk fluorescence in situ hybridization (FISH) was de-
fined as the presence of del17p13, t(4;14), and/or t(14;16).42

Single sample gene set enrichment analysis (ssGSEA) scores
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FIG 1. Study design. CONSORT diagram illustrating an overview of included patients in the study. CTC level, tumor
transcriptomic, and tumor burden data from the discovery/validation cohort were used to construct and validate a
molecular classifier for PCL-like disease. Transcriptomic profiling and follow-up data were leveraged to determine
the prevalence of PCL-like disease in a wide range of plasma cell samples (prevalence cohort) and test its
prognostic value in NDMM (survival cohort). BM, bone marrow; CTC, circulating tumor cell; LOD, limit of detection;
MGUS, monoclonal gammopathy of undetermined significance; NA, not available; NDMM, newly diagnosed
multiple myeloma; PB, peripheral blood; PD, progressive disease; pPCL, primary plasma cell leukemia; SMM,
smoldering multiple myeloma; TP, transcriptomic profiling.
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TABLE 1. Baseline Characteristics of Patients With CTC Level Data per Trial Cohort
Trial EMN12/HO129 (pPCL)a Cassiopeia (NDMM)b HO143 (NDMM) Overall

Total No. of patients in trial 51 176 130 357

Patients with baseline CTC level data, No. (%) 51 (100) 171 (97) 126 (97) 348 (97)

Patient demographics

Age, years

Median (min, max) 63 (31, 84) 58 (35, 65) 77 (65, 92) 64 (31, 92)

Sex, No. (%)

Female 23 (45) 67 (39) 51 (40) 141 (41)

Male 28 (55) 104 (61) 75 (60) 207 (59)

CTC level (%)

Median (min, max) 31 (2.0, 85) 0.021 (0, 26) 0.012 (0, 36) 0.031 (0, 85)

BM plasmacytosis (%)

Median (min, max) 64 (12, 100) 31 (0, 100) 35 (4, 97) 35 (0, 100)

Anemia, No. (%)

Absent 1 (2) 31 (18) 9 (7) 41 (12)

Present 50 (98) 140 (82) 117 (93) 307 (88)

Bone lesions, No. (%)

Absent 21 (41) 27 (16) 28 (23) 76 (22)

Present 30 (59) 144 (84) 95 (77) 269 (78)

Hypercalcemia, No. (%)

Absent 39 (76) 161 (95) 118 (94) 318 (92)

Present 12 (24) 9 (5) 8 (6) 29 (8)

Hypoalbuminemia, No. (%)

Absent 27 (53) 101 (59) 59 (47) 187 (54)

Present 24 (47) 70 (41) 67 (53) 161 (46)

LDH (ULN), No. (%)

# ULN 19 (43) 140 (83) 111 (90) 270 (80)

. ULN 25 (57) 28 (17) 13 (10) 66 (20)

Leukocytosis, No. (%)

Absent 19 (43) 162 (95) 123 (98) 304 (89)

Present 25 (57) 9 (5) 3 (2) 37 (11)

Renal failure, No. (%)

Absent 38 (75) 171 (100) 117 (93) 326 (94)

Present 13 (25) 0 (0) 9 (7) 22 (6)

Soft tissue plasmacytoma, No. (%)

Absent 40 (82) 171 (100) 82 (90) 293 (94)

Present 9 (18) 0 (0) 9 (10) 18 (6)

Thrombocytopenia, No. (%)

Absent 18 (41) 156 (91) 111 (88) 285 (84)

Present 26 (59) 15 (9) 15 (12) 56 (16)

Risk assessment

ISS stage, No. (%)

I 5 (11) 68 (40) 26 (21) 99 (29)

II 10 (22) 74 (43) 59 (47) 143 (42)

(continued on following page)
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TABLE 1. Baseline Characteristics of Patients With CTC Level Data per Trial Cohort (continued)
Trial EMN12/HO129 (pPCL)a Cassiopeia (NDMM)b HO143 (NDMM) Overall

III 31 (67) 29 (17) 40 (32) 100 (29)

R-ISS stage, No. (%)

I 1 (3) 39 (25) 20 (17) 60 (19)

II 18 (46) 102 (66) 84 (71) 204 (66)

III 20 (51) 13 (8) 14 (12) 47 (15)

High-risk FISH, No. (%)

Absent 17 (53) 104 (81) 90 (84) 211 (79)

Present 15 (47) 25 (19) 17 (16) 57 (21)

Cytogenetic aberrations

Hyperdiploidy, No. (%)

Absent 19 (90) 25 (36) 19 (28) 63 (40)

Present 2 (10) 45 (64) 48 (72) 95 (60)

IgH translocation, No. (%)

Absent 26 (51) 118 (69) 101 (80) 245 (70)

Present 25 (49) 53 (31) 25 (20) 103 (30)

Del1p32, No. (%)

Absent 20 (65) 79 (92) 92 (89) 191 (87)

Present 11 (35) 7 (8) 11 (11) 29 (13)

Gain1q21, No. (%)

Absent 19 (70) 76 (68) 73 (70) 168 (69)

Present 8 (30) 35 (32) 31 (30) 74 (31)

Del13q14, No. (%)

Absent 12 (38) 71 (63) 31 (46) 114 (54)

Present 20 (63) 41 (37) 37 (54) 98 (46)

Del17p13, No. (%)

Absent 20 (61) 145 (90) 101 (91) 266 (87)

Present 13 (39) 17 (10) 10 (9) 40 (13)

t(4;14), No. (%)

Absent 37 (95) 150 (92) 111 (97) 298 (94)

Present 2 (5) 13 (8) 3 (3) 18 (6)

t(8;14), No. (%)

Absent 8 (73) 87 (90) 31 (97) 126 (90)

Present 3 (27) 10 (10) 1 (3) 14 (10)

t(11;14), No. (%)

Absent 20 (50) 134 (79) 89 (83) 243 (77)

Present 20 (50) 36 (21) 18 (17) 74 (23)

t(14;16), No. (%)

Absent 35 (92) 128 (99) 108 (96) 271 (97)

Present 3 (8) 1 (1) 4 (4) 8 (3)

CTC immunophenotype

CD19, No. (%)

Negative 12 (100) 118 (97) 83 (95) 213 (96)

Positive 0 (0) 4 (3) 4 (5) 8 (4)

(continued on following page)
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and SKY92 high-risk, UAMS70 high-risk, and double-hit
status were calculated as previously described.43-47

Group Comparisons

Groups were compared using the two-sidedWilcoxon signed-
rank or Wilcoxon rank-sum test for paired or unpaired con-
tinuous scenarios, respectively. The Fisher’s exact test was
used for categorical variables. Associations between con-
tinuous variables were tested by linear regression. P values
were corrected for multiple testing according to the
Benjamini-Hochberg procedure. P values and false discovery
rates (FDRs) , .05 were considered statistically significant.

Survival Analysis

For progression-free survival (PFS), an event was defined
as either progressive disease (PD) or death from any cause.
For OS, an event was defined as death from any cause.

Survival analysis was performed in R using the survival
package (version 3.2.3), with the log-rank test to compare
survival between groups.48 Meta-analysis was performed
with the meta package (version 4.15.1), using a random
effects model.49

Hazard ratios (HRs) were estimated from a Cox proportional
hazards model stratified by the study cohort and including
PCL-like status with age # 65 years as covariates, in
combination with Revised International Staging System
(R-ISS) stage, ISS stage, high-risk FISH, SKY92 high-risk
status, UAMS70 high-risk status, or high-risk cytogenetic
aberrations.42,50,51 Two-sided P values , .05 were con-
sidered statistically significant for survival analyses.

Detailed information of all usedmethods is given in the Data
Supplement (Supplementary Methods).

TABLE 1. Baseline Characteristics of Patients With CTC Level Data per Trial Cohort (continued)
Trial EMN12/HO129 (pPCL)a Cassiopeia (NDMM)b HO143 (NDMM) Overall

CD27, No. (%)

Negative 1 (8) 30 (25) 11 (13) 42 (19)

Positive 11 (92) 92 (75) 76 (87) 179 (81)

CD45, No. (%)

Negative 6 (50) 62 (51) 31 (36) 99 (45)

Positive 6 (50) 60 (49) 56 (64) 122 (55)

CD56, No. (%)

Negative 7 (58) 32 (26) 27 (31) 66 (30)

Positive 5 (42) 90 (74) 60 (69) 155 (70)

CD81, No. (%)

Negative 11 (92) 94 (77) 75 (86) 180 (81)

Positive 1 (8) 28 (23) 12 (14) 41 (19)

CD117, No. (%)

Negative 10 (83) 85 (70) 54 (62) 149 (67)

Positive 2 (17) 37 (30) 33 (38) 72 (33)

CD138, No. (%)

Negative 12 (100) 118 (97) 87 (100) 217 (98)

Positive 0 (0) 4 (3) 0 (0) 4 (2)

CD38, No. (%)

Positive 12 (100) 122 (100) 87 (100) 221 (100)

Negative 0 (0) 0 (0) 0 (0) 0 (0)

CyIgK, No. (%)

Negative 6 (50) 29 (24) 27 (31) 62 (28)

Positive 6 (50) 90 (76) 60 (69) 156 (72)

CyIgL, No. (%)

Negative 6 (50) 87 (73) 61 (70) 154 (71)

Positive 6 (50) 32 (27) 26 (30) 64 (29)

Abbreviations: BM, bonemarrow; CTC, circulating tumor cell; FISH, fluorescence in situ hybridization; ISS, International Staging System; LDH, lactate dehydrogenase;
NDMM, newly diagnosed multiple myeloma; pPCL, primary plasma cell leukemia; R-ISS, Revised International Staging System; ULN, upper limit of normal.

aPatients enrolled in the EMN12/HO129 trial who had a protocol start before July 1, 2019, were included in this study.
bOnly HOVON patients were eligible for this study.
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RESULTS

Baseline Characteristics of pPCL Versus NDMM

To investigate clinical and molecular determinants of PCL-
like disease, baseline patient and tumor characteristics
were collected for 297 NDMM and 51 pPCL patients with
available CTC level data (CTC cohort; Fig 1 and Table 1).
NGF was performed to quantify CTCs in patients with
NDMM, which could be detected in 257 of 297 (87%)
patients (range, 0.00028%-36%), with 40 of 40 (100%)
CTC-negative assays reaching a limit of detection , 10–5

(Data Supplement, Supplementary Fig 1).

Both baselineCTC levels (median, 31% v 0.016%,P , .0001)
and tumor burden as reflected by BM plasmacytosis
(median, 64% v 32%, P , .0001) were higher in patients
with pPCL than in patients with NDMM (Figs 2A and 2B).
Tumor burden and CTC levels showed a positive, yet weak
association (Adj. R2, 0.16, P , .0001), with all pPCL
samples having higher CTC levels than expected on the
basis of their tumor burden (Fig 2C).

Patients with pPCL presented with significantly higher mor-
bidity than patients with NDMM, including more hypercal-
cemia (24% v 6%), renal failure (25% v 3%), and soft tissue
plasmacytomas (18% v 3%), yet a lower occurrence of bone
lesions (59% v 81%; FDR , 0.05; Fig 2D). Moreover, high-
risk FISH status (47% v 18%) and the presence of an IgH
translocation (49% v 26%), del1p32 (35% v 10%), del17p13
(39% v 10%), and t(11;14) (50% v 19%) were all more
frequently detected in pPCL than in NDMM, whereas
hyperdiploidy was less observed in pPCL (10% v 68%; FDR
, 0.05). Of note, 15 of 16 (94%) PCL-like features identified
in this analysis were also significantly associated with the CTC
level (FDR , 0.05), whereas 11 of 16 (69%) PCL-like fea-
tures were also significantly associated with tumor burden.
Many molecular aberrations co-occurred (Fig 2E).

A Transcriptomic Profile Representing PCL-like Disease

To enable a more comprehensive screening of tumor cell
aberrations that are associated with PCL-like disease, tran-
scriptomic profiling was performed for BM tumor cells in a
subgroup of 154 patients with NDMM and 29 patients with
pPCL from the CTC cohort (Fig 1 and Data Supplement

[Supplementary Tables 1 and 3]). In a global principal
component analysis (PCA) using all 12,928 genes that were
expressed in these 183 samples, pPCL samples clustered
together. Yet, a subgroup of NDMM samples had a highly
similar transcriptomic profile to pPCL samples and these
generally had CTC levels that were above average for NDMM
(Fig 2F).

To identify essential genes defining this PCL-like tran-
scriptome, a linearmodel was applied, in which the CTC level
was used as a surrogate marker for PCL likeness, rather than
comparing pPCL with NDMM samples in a dichotomous
model. After correction for tumor burden, 1,700 genes were
identified, which had a significant association with the CTC
level in the discovery cohort (FDR , 0.05). These genes
were among others involved in cell adhesion (eg, NCAM1,
ITGA6, and SDC1), tumor suppression (eg, PTEN, TUSC2,
and TAGLN2), proliferation (eg, MKI67, MCM2, and
CENPM), RNA splicing (eg, SRSF10, SF3A2, and PUF60),
cell migration (eg, ROCK1, DOCK11, and DLC1), and DNA
damage control (eg, CHEK1, DCLRE1C, and SLFN11; Data
Supplement [Supplementary Table 4]).52-66

By using the composite information of a selection of 54 of
1,700 genes, a score was constructed with which pPCL could
be best distinguished from NDMM samples: the PCL-like
score (Fig 3A, Table 2, and Data Supplement [Supplemen-
tary Fig 2 and Supplementary Table 5]). This score was in-
dependent of the platform that was used to generate it
(microarray v RNA Seq), as evidenced by a high interplatform
correlation of PCL-like scores in 123 paired samples (Adj.R2,
0.94; P, .0001; Data Supplement [Supplementary Fig 3 and
Supplementary Tables 1 and3]). In the validation cohort, 60%
of the variance in CTC levels could be predicted by the PCL-
like score and 6% by tumor burden, with observed CTC levels
strongly correlating with the predicted CTC levels (Adj.R2,
0.79; P , .0001; Data Supplement [Supplementary Fig 4]).

Identification of PCL-like MM Tumors

Since the PCL-like score is a reflection of PCL-like disease,
we hypothesized that this information could be leveraged to
identify NDMM tumors with a similar transcriptome to pPCL
tumors. To this end, a threshold for the PCL-like classifier

FIG 2. (Continued). showing baseline tumor burden data between patients with pPCL (n5 50) and NDMM (n5 271) from the CTC cohort. (C)
Combined scatter and density plot of tumor burden and CTC level data in NDMM patients with detectable CTC levels (n 5 235) and pPCL
(n5 50) from the CTC cohort. The dashed line represents the fitted linear model of the association between CTC level and tumor burden data,
with the corresponding adjusted correlation coefficient and P value indicated in the upper left corner. Data are shown on a log odds scale. (D)
Clinical, cytogenetic, and immunophenotypic baseline characteristics of patients with pPCL (n5 51) and NDMM (n5 297) from the CTC cohort.
(E) Correlation plot demonstrating the co-occurrence of cytogenetic and immunophenotypic aberrations in NDMM (n5 297) and pPCL (n5 51)
tumor samples from the CTC cohort. The size of the bubbles corresponds to the significance of the association, whereas the color of the bubbles
reflects the scaled odds ratio as determined with the Fisher’s exact test, followed by a sigmoid transformation. Only associations with an FDR ,

0.05 are shown. (F) Global principal component analysis plot of all available transcriptomic profiles of pPCL (n5 29) and NDMM (n5 154) BM
tumor samples from the CTC cohort, using all 12,928 expressed genes as input. CTC, circulating tumor cell; BM, bonemarrow; De, demographics;
FDR, false discovery rate; FISH, fluorescent in situ hybridization; ISS, International Staging System; LDH, lactate dehydrogenase; LOD, limit of
detection; NA, not available; NDMM, newly diagnosed multiple myeloma; PC1, principal component 1; PC2, principal component 2; PCA,
principal component analysis; pPCL, primary plasma cell leukemia; R-ISS, Revised International Staging System; ULN, upper limit of normal.
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was set (Fig 3B). With this threshold, 13 of 14 (93%) pPCL
tumors in the validation cohort were correctly classified as
PCL-like (Fig 3C). Of note, a subgroup of NDMM tumors
was also classified as PCL-like on the basis of this threshold,
despite presenting with CTC levels as low as 0.083%: PCL-
like MM (Figs 3B and 3C). PCL-likeMM had both lower CTC
levels (median, 3.0% v 35%; P, .0001) and a lower tumor
burden (median, 36% v 71%; P 5 .045) than pPCL
(Fig 3D). Patients with NDMM who had a PCL-like score
below 3.55 were referred to as intramedullary MM (i-MM).

In all 10 NDMM cohorts of the prevalence cohort, a PCL-
like transcriptome was consistently identified, with a
prevalence ranging from 2 of 45 (4%; HO143 cohort) to 36
of 240 (15%; EMN02/HO95 cohort). PCL-like tran-
scriptomes were not detected in healthy plasma cell
samples, in 1 of 44 (2%) monoclonal gammopathy of
undetermined significance samples, and in 1 of 12 (8%)
smoldering MM (SMM) samples (Fig 4A). Ten of 51 (20%)
PD and 34 of 37 (92%) CTC samples were classified as
PCL-like, as well as 4 of 4 (100%) MM cell lines (Data
Supplement [Supplementary Fig 5A]). Dividing NDMM and
pPCL samples into four subgroups on the basis of previ-
ously reported transcriptomic clusters showed an enrich-
ment of PCL-like status in the MF (74 of 136, 54%) and
CD1/CD2 (74 of 374, 20%) clusters (Data Supplement
[Supplementary Figs 5B-C]). Of note, no change in the
PCL-like score was observed between paired NDMM and
PD samples (P5 .8), whereas both SKY92 (P5 .0001) and
UAMS70 high-risk scores (P 5 .0001) had increased
significantly at the time of PD (Data Supplement [Sup-
plementary Fig 6]).

Molecular and Clinical Determinants of PCL-Like MM

A comparison of ssGSEA scores between subgroups showed
that pPCL and i-MM were highly distinct at the tran-
scriptomic level, whereas PCL-like MM and pPCL were very
similar (Fig 4B). A total of 1,160 pathways were differentially

expressed between PCL-like MM and i-MM, which were
among others involved in p53 signaling, RhoGTPase activity,
mitosis, and binding and uptake of ligands (Figs 4C and 4D).

In addition, at the clinical and cytogenetic level, PCL-like
MMwasmore similar to pPCL than i-MM. PCL-like MM only
had a lower prevalence of R-ISS stage III (26% v 56%) and
ISS stage III (38% v 75%) than pPCL, whereas i-MM dif-
fered from pPCL with respect to the presence of 14 of 25
investigated baseline characteristics, including del1p32
(8% v 27%), del17p13 (10% v 46%), and t(11;14) (17% v
52%; FDR , 0.05; Fig 4E).

Comparing all three transcriptomic classifiers head-to-head
showed that the PCL-like classifier had the highest sensitivity
to detect pPCL (93%). PCL-like scores were only weakly as-
sociated with both SKY92 (Adj.R2, 0.26; P , .0001) and
UAMS70 scores (Adj.R2, 0.25;P, .0001; Figs 3C and4A and
Data Supplement [Supplementary Figs 7 and 8]). PCL-like
status was associated with double-hit status (P 5 .007), but
not with TP53 mutational status (P 5 .34; Data Supplement
[Supplementary Table 6]).

Of 37 patients with NDMM and pPCL, matched tumor
samples from BM and peripheral blood were available. CTCs
had a higher PCL-like score thanmatched BM tumor samples
(median, 7.64 v 5.54, P5 .0005). Of note, i-MM did not differ
from pPCL regarding the PCL-like score of their CTCs (me-
dian, 7.10 v 7.42; P 5 .39), despite having a significantly
lower PCL-like score of their BM tumors (median, 2.76 v 7.02;
P 5 .0004; Data Supplement [Supplementary Fig 9]).

PCL-like Status as an Independent Prognostic Marker

in NDMM

The prognostic value of PCL-like status was evaluated in an
independent cohort of 2,139 patients with NDMM, with a
median follow-up time of 57.5 months and 214 of 2,139
(10%) patients being classified as PCL-like (Fig 1; Data
Supplement [Supplementary Tables 1, 2, and 7]). Overall,

FIG 3. Construction and validation of a molecular classifier for PCL-like disease. (A) Volcano plot showing all 12,928 expressed genes, of which, the
association with high CTC levels was tested in the discovery cohort (n5 95 NDMM and n5 15 pPCL patients). The log fold change corresponds to
the change in gene expression per log odds unit increase in the CTC level, independent of tumor burden. There were 1,700 genes that showed a
significant association, which are depicted in color (FDR, 0.05). The open circles represent the 54 most significant genes that have been selected
for the PCL-like classifier. Their corresponding normalized expression values are shown in the heatmap for all available pPCL (n5 29) and NDMM
(n5 154) BM tumor transcriptomes in the discovery/validation cohort. Gene symbols are displayed according to the HUGOGeneNomenclature that
corresponds to Ensembl release 74. Genes without a corresponding gene symbol in Ensembl release 74 are indicated with their Ensembl gene ID.
(B) Scatter plot showing the association between the PCL-like score and the CTC level in the discovery cohort (n 5 116 patients). The dashed line
represents the lowest PCL-like score of pPCL samples in the discovery cohort (3.55), which is the threshold for the PCL-like classifier. NDMM
samples with a PCL-like score$ 3.55 are classified as PCL-like MM; NDMM samples with a PCL-like score, 3.55 are classified as i-MM. The CTC
level is displayed on a log odds scale. (C) Scatter plot showing the association between the PCL-like score and the CTC level in the validation cohort
(n5 57 patients). The dashed line represents the threshold of the PCL-like classifier above which samples are classified as PCL-like. The CTC level is
displayed on a log odds scale. (D) Combined scatter and density plots of tumor burden, CTC level, and disease subtype data for all patients from the
discovery/validation cohort with available data (n5 121 patients with i-MM, n5 13 patients with PCL-like MM, and n5 28 patients with pPCL). The
adjusted correlation coefficient and P value represent the association between BM plasmacytosis and the CTC level. In the density plots, PCL-like
MM is comparedwith i-MM and pPCL, respectively. Only significant differences are shown. *P, .05; **P, .01; ***P, .001; and ****:P, .0001.
BM, bone marrow; CTC, circulating tumor cell; i-MM, intramedullary multiple myeloma; logFC, log fold change; NDMM, newly diagnosed multiple
myeloma; PCL-like MM, plasma cell leukemia-like multiple myeloma; pPCL, primary plasma cell leukemia.
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TABLE 2. PCL-Like Classifier Genes
Ensembl Gene ID Weight Center Gene Symbol Chromosome Band Description

ENSG00000115884 –0.15686 13.43547 SDC1 2 p24.1 Syndecan 1

ENSG00000211663 –0.31998 8.97326 IGLV3-19 22 q11.22 Immunoglobulin lambda variables 3-19

ENSG00000147535 –0.11061 12.86707 PPAPDC1B 8 p11.23 Phosphatidic acid phosphatase type 2 domain containing 1B

ENSG00000120008 0.09942 8.83483 WDR11 10 q26.12 WD repeat domain 11

ENSG00000172339 –0.11744 11.84765 ALG14 1 p21.3 ALG14, UDP-N-acetylglucosaminyltransferase subunit

ENSG00000119403 0.21957 8.32714 PHF19 9 q33.2 PHD finger protein 19

ENSG00000102804 –0.10556 8.23796 TSC22D1 13 q14.11 TSC22 domain family, member 1

ENSG00000174132 –0.17264 12.91024 FAM174A 5 q21.1 Family with sequence similarity 174, member A

ENSG00000140391 –0.09080 12.00530 TSPAN3 15 q24.3 Tetraspanin 3

ENSG00000128595 –0.09680 11.60858 CALU 7 q32.1 Calumenin

ENSG00000140416 –0.07104 8.02166 TPM1 15 q22.2 Tropomyosin 1 (alpha)

ENSG00000162692 –0.20787 7.84766 VCAM1 1 p21.2 Vascular cell adhesion molecule 1

ENSG00000182054 –0.12310 10.88433 IDH2 15 q26.1 Isocitrate dehydrogenase 2 (NADP1), mitochondrial

ENSG00000171631 –0.20658 7.92811 P2RY6 11 q13.4 Pyrimidinergic receptor P2Y, G-protein coupled, 6

ENSG00000104763 –0.05676 12.35472 ASAH1 8 p22 N-acylsphingosine amidohydrolase (acid ceramidase) 1

ENSG00000211973 –0.20865 9.59653 IGHV1-69 14 q32.33 Immunoglobulin heavy variable 1-69

ENSG00000179163 –0.09820 11.44311 FUCA1 1 p36.11 Fucosidase, alpha-L-1, tissue

ENSG00000115808 0.06294 7.75104 STRN 2 p22.2 Striatin, calmodulin-binding protein

ENSG00000120306 –0.05607 11.87386 CYSTM1 5 q31.3 Cysteine-rich transmembrane module containing 1

ENSG00000138613 –0.12757 8.99157 APH1B 15 q22.2 APH1B gamma secretase subunit

ENSG00000026751 –0.12833 13.85264 SLAMF7 1 q23.3 SLAM family member 7

ENSG00000145817 –0.05858 11.53408 YIPF5 5 q31.3 Yip1 domain family, member 5

ENSG00000130203 –0.13444 8.51976 APOE 19 q13.32 Apolipoprotein E

ENSG00000123352 –0.10267 10.82422 SPATS2 12 q13.12 Spermatogenesis associated, serine-rich 2

ENSG00000154229 –0.07135 7.58374 PRKCA 17 q24.2 Protein kinase C, alpha

ENSG00000068878 0.05854 8.48072 PSME4 2 p16.2 Proteasome (prosome and macropain) activator subunit 4

ENSG00000172716 –0.12365 8.57144 SLFN11 17 q12 Schlafen family member 11

ENSG00000137824 –0.08050 11.03227 RMDN3 15 q15.1 Regulator of microtubule dynamics 3

ENSG00000177830 –0.10643 12.38713 CHID1 11 p15.5 Chitinase domain containing 1

ENSG00000181458 –0.33533 11.00338 TMEM45A 3 q12.2 Transmembrane protein 45A

ENSG00000185418 –0.05809 8.88060 TARSL2 15 q26.3 Threonyl-tRNA synthetase-like 2

ENSG00000152457 0.04923 7.31397 DCLRE1C 10 p13 DNA cross-link repair 1C

ENSG00000119977 –0.08533 10.65743 TCTN3 10 q24.1 Tectonic family member 3

ENSG00000112977 –0.05357 11.73473 DAP 5 p15.2 Death-associated protein

ENSG00000156136 0.10351 8.62415 DCK 4 q13.3 Deoxycytidine kinase

ENSG00000198732 –0.17651 9.90896 SMOC1 14 q24.2 SPARC-related modular calcium binding 1

ENSG00000134153 –0.08978 13.85704 EMC7 15 q14 ER membrane protein complex subunit 7

ENSG00000229228 –0.13519 10.71547 LINC00582 1 q42.2 Long intergenic nonprotein coding RNA 582

ENSG00000105438 –0.07502 12.07882 KDELR1 19 q13.33 KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 1

ENSG00000198832 –0.18901 12.32055 22 q12.2 Selenoprotein M

ENSG00000179750 0.20241 10.10608 APOBEC3B 22 q13.1 Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B

ENSG00000170275 –0.05868 11.09302 CRTAP 3 p22.3 Cartilage-associated protein

ENSG00000160469 –0.15617 7.43462 BRSK1 19 q13.42 BR serine/threonine kinase 1

ENSG00000241772 0.09524 6.81885 2 q22.1

ENSG00000170476 –0.10034 14.80320 MZB1 5 q31.2 Marginal zone B cell–specific and B1 cell–specific protein

ENSG00000117419 0.05877 7.93624 ERI3 1 p34.1 ERI1 exoribonuclease family member 3

ENSG00000099958 –0.15285 12.90637 DERL3 22 q11.23 Derlin-3

ENSG00000100162 0.11013 7.96935 CENPM 22 q13.2 Centromere protein M

ENSG00000006007 –0.03682 11.51708 GDE1 16 p12.3 Glycerophosphodiester phosphodiesterase 1

ENSG00000196924 0.14607 8.95727 FLNA X q28 Filamin A, alpha

ENSG00000272871 0.10302 6.42443 9 p22.3

ENSG00000100365 –0.12066 10.05939 NCF4 22 q12.3 Neutrophil cytosolic factor 4, 40 kDa

ENSG00000163687 –0.09393 7.07032 DNASE1L3 3 p14.3 Deoxyribonuclease I-like 3

ENSG00000077943 –0.18114 8.98384 ITGA8 10 p13 Integrin, alpha 8
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PCL-like status conferred both a significantly worse PFS
(HR, 1.85; 95% CI, 1.60 to 2.14) and OS (HR, 2.12; 95%
CI, 1.78 to 2.51) in univariate meta-analyses (Data Sup-
plement [Supplementary Fig 10]). This negative prognostic
impact was largely irrespective of the received treatment,
with the highest impact on PFS and OS observed in the
Total Therapy 3 trial cohort, in which PCL-like status had a
HR of 2.96 (95% CI, 1.56 to 5.61) and 3.33 (95% CI, 1.68
to 6.61), respectively.

PCL-like status was significantly associated with both PFS
and OS in the context of R-ISS stage, ISS stage, high-risk
FISH, SKY92 high-risk status, UAMS70 high-risk status,
t(4;14), t(14;16), del17p13, del1p32, and gain1q21 (Fig 5,
Table 3, and Data Supplement [Supplementary Figs 11-13
and Supplementary Tables 7 and 8]). PCL-like MM patients
with R-ISS stage III (28 of 983, 3%) had amedian OS of only
13.2 months (95% CI, 6.8 to 41.1) versus not reached
(95% CI, 87.8 to infinite) for i-MM patients with R-ISS stage
I (209 of 983, 21%).

DISCUSSION

In this study, a molecular classifier representing PCL-like
disease was constructed and validated. On the basis of
tumor transcriptomic data alone, this classifier not only
identifies pPCL with a high sensitivity but also detects a PCL-
like transcriptome in 10% of patients with NDMM, despite
not meeting current diagnostic criteria for pPCL. PCL-like
status had significant prognostic value in the context of
conventional risk factors in NDMM and thereby represents a
novel diagnostic tool to identify high-risk patients.

pPCL is an aggressive subtype of MM that in contrast to
NDMM is characterized by high CTC levels. To the best of our
knowledge, this is the first comprehensive study to dem-
onstrate that pPCL can not only be classified at the clinical
but also at the molecular level. This finding allowed for the
identification of NDMM tumors with a PCL-like tran-
scriptome, which demonstrated an enrichment of many
characteristics that have been associated with pPCL previ-
ously, eg, increased proliferation, increased hypoxia,

decreased expression of adhesion markers, assignment to
the MF cluster, and the presence of t(11;14).13,23,27,28,52,67-69

A similar observation has recently been described with re-
spect to the detection of NDMM-like mutational and copy
number profiles in a subgroup of SMM, raising the question
whether treatment decisions in MM should be driven by
disease manifestations or rather by their molecular
classification.70-72

Although PCL-like disease is associated with high CTC
levels, it should be emphasized that a different group of
patients with NDMM is identified with the PCL-like classifier
than with clinically relevant CTC level thresholds (Data
Supplement [Supplementary Fig 14]).4,10-12,73-78 Although
53% of PCL-like MM patients in our cohort had CTC
levels $ 2%, which may represent underdiagnosed pPCL
because of circadian fluctuations in CTC levels or atypical
CTC morphology, a subgroup of NDMM patients with CTC
levels as low as 0.083% also had BM tumor cells that
transcriptionally resembled pPCL.79,80

We demonstrated that the lower CTC levels observed in
PCL-like MM versus pPCL could be explained by a smaller
tumor burden. Yet, about one third of CTC variance remains
unexplained, which warrants further exploration. This in-
formation could be of particular relevance when studying
the evolutionary biology of MM, as high CTC levels repre-
sent advanced disease.81,82 The observation that paired
NDMM and PD samples in our study did not differ in terms
of PCL-like score could suggest that PCL likeness is an
inherent, rather than an acquired feature of MM tumors. In
this regard, PCL-like status could be one of several con-
ditions that need to be met for the development of sPCL, in
combination with additional factors such as immune eva-
sion or increased BM angiogenesis.83,84

Although PCL-like status is associated with both an in-
ferior PFS and OS in univariate analyses, it is prognos-
tically most valuable in combination with other risk
models. Combining PCL-like status with R-ISS stage
improved prognostic accuracy and enabled the identifi-
cation of a subgroup of NDMM patients with exceptionally

FIG 4. (Continued). in NDMM trials. (B) Density plot showing the number of differentially expressed ssGSEA pathways (FDR, 0.05) per comparison between
PCL-like versus pPCL and i-MM versus pPCL samples from the prevalence cohort (n5 757 i-MM, n5 99 PCL-like MM, and n5 29 pPCL samples). ssGSEA
scores of 1,788 pathways were compared between 29 pPCL and a random sample of 29 i-MM or PCL-like samples, which was performed 1,000 times. (C) Box
plots of 10 pathways that were most significantly upregulated in a subset of PCL-like MM (n5 99) versus i-MM samples (n5 757) from the prevalence cohort
with a logFC . 0.75 (FDR , 0.05), displayed per disease subtype. The bold lines in the boxplots correspond to the median normalized ssGSEA scores per
disease subgroup, and the lower and upper hinges to the first and third quartiles. The whiskers extend to 1.5 times the interquartile range at most; data points
beyond this level are depicted as outliers, as represented by black dots. (D) Box plots of 10 pathways that were most significantly downregulated in a subset of
PCL-like MM (n5 99) versus i-MM samples (n5 757) from the prevalence cohort, with a logFC, –0.75 (FDR, 0.05), displayed per disease subtype. (E) Bar
charts comparing baseline characteristics of PCL-like MM with pPCL and of i-MM with pPCL in a subset of patients from the prevalence cohort. Error bars
represent the 95% CI of the observed prevalence per disease subgroup, as determined with the Wilcoxon score interval with continuity correction. BM, bone
marrow; Demo, demographics; FDR, false discovery rate; FISH, fluorescence in situ hybridization; i-MM, intramedullary multiple myeloma; ISS, International
Staging System; LDH, lactate dehydrogenase; logFC, log fold change; MAPK, mitogen-activated protein kinase; MGUS, monoclonal gammopathy of un-
determined significance;MM,multiplemyeloma;NDMM,newly diagnosedmultiplemyeloma; PCL-likeMM,plasma cell leukemia-likemultiplemyeloma; pPCL,
primary plasma cell leukemia; R-ISS, Revised International Staging System; SMM, smoldering multiple myeloma; ssGSEA, single sample gene set enrichment
analysis; ULN, upper limit of normal.
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FIG 5. Kaplan-Meier plots of the association of PCL-like status with OS in combination with conventional prognostic factors in NDMM.
P values represent the prognostic significance of the overall model. PCL-like status in combination with (A) R-ISS status, (B) ISS status, (C)
high-risk FISH status, (D) SKY92 high-risk status, and (E) UAMS70 high-risk status. FISH, fluorescence in situ hybridization; i-MM,
(continued on following page)intramedullary multiple myeloma; ISS, International Staging System; HR, high-risk; NDMM, newly diagnosed
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high-risk disease, as evidenced by a median OS of
13.2 months (95% CI, 6.8 to 41.1) for PCL-like MM
patients with R-ISS stage III. Considering that most pa-
tients with pPCL in our study also presented with R-ISS
stage III in combination with a PCL-like tumor tran-
scriptome, it is remarkable to see that this OS in patients

with NDMM agrees well with recently reported survival
rates in pPCL.85-93 This suggests that a combination of
R-ISS stage with PCL-like status may be used to identify
borderline pPCL patients although it should be noted that
many diagnostic laboratories still have limited experience
with transcriptomic classifiers.

FIG 5. (Continued). multiple myeloma; OS, overall survival; PCL-like MM, plasma cell leukemia-like multiple myeloma; R-ISS, Revised International
Staging System; SR, standard risk.

TABLE 3. Multivariate Analyses of PCL-Like Status in Combination with Conventional Prognostic Factors for PFS and OS in NDMM

Prognostic Factor

PFS OS

HR (95% CI) P HR (95% CI) P

PCL-like classifier: PCL-like MM v i-MM 1.64 (1.30 to 2.07) , .0001 1.89 (1.42 to 2.50) , .0001

R-ISS

R-ISS II v R-ISS I 1.63 (1.33 to 2.00) , .0001 2.28 (1.64 to 3.17) , .0001

R-ISS III v R-ISS I 2.67 (2.03 to 3.52) , .0001 5.50 (3.75 to 8.04) , .0001

Age: # 65 years v . 65 years 0.70 (0.55 to 0.91) .007 0.44 (0.30 to 0.65) , .0001

Prognostic Factor

PFS OS

HR (95% CI) P HR (95% CI) P

PCL-like classifier: PCL-like MM v i-MM 1.78 (1.51 to 2.11) , .0001 1.86 (1.53 to 2.26) , .0001

ISS

ISS II v ISS I 1.49 (1.30 to 1.70) , .0001 1.64 (1.36 to 1.97) , .0001

ISS III v ISS I 1.83 (1.59 to 2.11) , .0001 2.65 (2.20 to 3.18) , .0001

Age: # 65 years v . 65 years 0.83 (0.71 to 0.97) .02 0.73 (0.59 to 0.90) .003

Prognostic Factor

PFS OS

HR (95% CI) P HR (95% CI) P

PCL-like classifier: PCL-like MM v i-MM 1.64 (1.33 to 2.01) , .0001 1.89 (1.48 to 2.41) , .0001

FISH: high-risk v standard-risk 1.37 (1.18 to 1.59) , .0001 1.67 (1.39 to 2.01) , .0001

Age: # 65 years v . 65 years 0.72 (0.59 to 0.87) .0008 0.55 (0.42 to 0.71) , .0001

Prognostic Factor

PFS OS

HR (95% CI) P HR (95% CI) P

PCL-like classifier: PCL-like MM v i-MM 1.49 (1.26 to 1.77) , .0001 1.52 (1.25 to 1.85) , .0001

SKY92 classifier: high-risk v standard-risk 2.10 (1.85 to 2.38) , .0001 2.79 (2.40 to 3.24) , .0001

Age: # 65 years v . 65 years 0.76 (0.65 to 0.89) .0005 0.65 (0.53 to 0.80) , .0001

Prognostic Factor

PFS OS

HR (95% CI) P HR (95% CI) P

PCL-like classifier: PCL-like MM v i-MM 1.63 (1.38 to 1.93) , .0001 1.62 (1.33 to 1.98) , .0001

UAMS70 classifier: high-risk v standard-risk 2.17 (1.87 to 2.53) , .0001 3.05 (2.57 to 3.63) , .0001

Age: # 65 years v . 65 years 0.75 (0.65 to 0.88) .0003 0.65 (0.53 to 0.80) , .0001

Abbreviations: FISH, fluorescence in situ hybridization; HR, hazard ratio; i-MM, intramedullary multiple myeloma; ISS, International Staging System;
NDMM, newly diagnosed multiple myeloma; OS, overall survival; PCL-like MM, plasma cell leukemia-like multiple myeloma; PFS, progression-free survival;
R-ISS, Revised International Staging System.
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In the conducted meta-analyses, PCL-like status conferred
high-risk disease irrespective of received treatment. Its as-
sociation with an inferior PFS in 7 of 8 trial cohorts and an
inferior OS in 6 of 8 trial cohorts underlines the unmet need
to develop effective treatment strategies for PCL-like
disease.7,94-96 Although preliminary reports suggest that
novel agents including daratumumab and venetoclax are
effective in pPCL, this study has identified additional po-
tential therapeutic vulnerabilities in PCL-like tumors, which
warrants further translational efforts.97-99 Examples include
high expression of the nuclear export gene XPO1 in PCL-like

tumors, which is associated with sensitivity to selinexor,
increased PHF19 expression, and PRC2 pathway activity,
which can be targeted by PRC2 inhibitors, and high levels of
phosphorylating enzyme gene DCK, which has been found
to confer a good response to nucleoside analogs.100-102

In conclusion, in this study a transcriptomic classifier for PCL-
like disease was constructed and validated, which enables the
identification of NDMM tumors with a similar molecular
composition to pPCL and improves prognostic accuracy in
NDMM in combination with conventional risk markers.
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Ospedaliero-Universitaria Città della Salute e della Scienza di Torino,
Torino, Italy
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