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Abstract: Several studies have established that pseudogene mRNAs can work as competing
endogenous RNAs and, when deregulated, play a key role in the onset of human neoplasias.
Recently, we have isolated two HMGA1 pseudogenes, HMGA1P6 and HMGA1P7. These pseudogenes
have a critical role in cancer progression, acting as micro RNA (miRNA) sponges for HMGA1 and
other cancer-related genes. HMGA1 pseudogenes were found overexpressed in several human
carcinomas, and their expression levels positively correlate with an advanced cancer stage and a
poor prognosis. In order to investigate the molecular alterations following HMGA1 pseudogene
7 overexpression, we carried out miRNA sequencing analysis on HMGA1P7 overexpressing mouse
embryonic fibroblasts. Intriguingly, the most upregulated miRNAs were miR-483 and miR-675
that have been described as key regulators in cancer progression. Here, we report that HMGA1P7
upregulates miR-483 and miR-675 through a competing endogenous RNA mechanism with Egr1,
a transcriptional factor that positively regulates miR-483 and miR-675 expression.
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1. Introduction

Pseudogenes are classified into two major groups: processed and unprocessed pseudogenes [1,2].
Unprocessed pseudogenes are duplicated pseudogenes that take in introns and, occasionally, upstream
regulatory elements since they are generated by gene duplication [1,2]. Indeed, a small subclass
of unprocessed pseudogenes, called unitary pseudogenes, take place when protein-coding genes
acquire mutations and lose their coding potential [1,2]. The other main group is represented by the
processed pseudogenes, which are derived from an ancestral retrotransposition of a parental gene
mRNA. They, therefore, are limited in structure to a single exon [1,2]. Generally, the distribution of
pseudogenes is entirely random, in fact, duplicated and processed pseudogenes are found in the same
or on different chromosome of their parental genes [1,2].

Pseudogenes have been thought for long time as relict copies of protein-coding genes unable to
yield a functional protein product as their parental genes because of gene truncation or mutation [1,2].

However, it has recently emerged that several pseudogenes are functional since they are
transcribed and some of them are translated into proteins, which frequently play their function
on parental genes by competing for RNA-binding proteins or the translation machinery [3–5].
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More recently, many studies have established alternative ways by which pseudogene transcripts
can regulate gene expression.

For example, pseudogenes can strongly alter the expression of their parental and other genes by
acting as a microRNA (miRNA) sponges [6,7]. Moreover, when a pseudogene is transcribed in antisense
orientation with respect to its parental gene, pseudogene transcript can negatively regulate parental
gene by hybridizing to its transcript or epigenetically targeting its promoter [8]. Indeed, siRNA can
be produced by processing pseudogene mRNAs, which can silence genes by interfering with their
transcription [9].

We have recently described HMGA1P6 and HMGA1P7 pseudogenes, likely derived from the
retrotransposition of HMGA1 oncogene. HMGA1 belongs to the High Mobility Group A protein family,
architectural proteins that are overexpressed in all the malignant tumours and their overexpression
is correlated with a poor patient survival [10,11]. Indeed, its overexpression induces in vitro cell
transformation [12,13] and benign and malignant neoplasias in mice [11]. HMGA1 non-coding
pseudogenes (HMGA1Ps), HMGA1P6 and HMGA1P7, are two processed pseudogenes that show
conserved seed matches for miRNAs targeting the HMGA1 gene and other cancer-associated
genes [1,14–16]. Following their overexpression, HMGA1Ps act as competitive endogenous RNAs
(ceRNAs) and enhance HMGA1 protein levels, thereby inhibiting the repression of HMGA1 protein
synthesis exerted by miRNAs [1,14–16]. Furthermore, HMGA1Ps overexpression equally upregulates
the expression of other cancer-related genes, since the HMGA1Ps transcripts take in additional
seed sequences for miRNAs capable of targeting many oncogenes [1,14–16]. Finally, a direct
correlation among HMGA1, HMGA1P6, and HMGA1P7 expression in a group of human thyroid,
ovary, endometrial, and pituitary tumours has been shown [1,14–17].

To investigate new mechanisms by which HMGA1Ps act as oncogenes, we studied the miRNAs
profile expression in mouse embryonic fibroblasts (MEFs) deriving from HMGA1P7 transgenic
mice in comparison with the wild-type (WT) ones, using a miRNA sequencing (miRNA-seq)
technique. Thanks to this analysis, we obtained a set of miRNAs up- or down-regulated in HMGA1P7
overexpressing MEFs compared with WT cells. Among them, we focused our attention on two
of the most overexpressed miRNAs: miR-483 and miR-675. Intriguingly, it has been extensively
demonstrated that miR-483 and miR-675 are two oncomiRs since they have been found overexpressed
in many tumours such as prostate [18], gastric [19], Wilms’ [20], adrenocortical [21], esophageal [22],
breast [23], colon [24], and lung tumours [25]. Here, we demonstrate that HMGA1P7 upregulates
miR-483 and miR-675 through the activation of Egr1 by a ceRNA mechanism.

2. Materials and Methods

2.1. Cell Culture and Transfections

MEFs and NIH3T3 were cultivated in DMEM complemented respectively with 10% foetal calf
serum (Thermo Fisher Scientific Inc., Waltham, MA, USA) and calf serum (Thermo Fisher Scientific
Inc., Waltham, MA, USA), glutamine, and antibiotics. MycoAlert (Lonza, Walkersville, MD, USA)
was regularly used to check that cells were not infected by mycoplasma. Lipofectamine plus reagent
was used to transfect the cells (Thermo Fisher Scientific Inc., Waltham, MA, USA) according to the
manufacturer’s instructions. Medium containing Geneticin (Sigma, St. Louis, MO, USA) was used
to select transfected cells. GFP signal was used to assess transfection efficiency for each experiment.
To inhibit Dicer expression, short interfering RNAs and corresponding scramble short interfering
RNAs were used as suggested by the manufacturer (RIBOXX, Radebeul, Germany).

2.2. Bioinformatic Analysis Procedure for MicroRNA Analysis

Reads (sequence and quality) obtained with the SOLiD sequencing have been mapped in Color
Space using the Lifescope ver. 2.5.1 software “small RNA” pipeline. Target databases were the
reference genome GRCm38/mm10 (Dec 2011) and the dataset of mature sequences + precursors
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miRbase version 20 (June 2013). Matches with repetitive regions of the human genome such as short
interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs), small nucleolar
RNAs (snoRNAs), piwi-interacting RNAs (piRNAs), tRNAs, rRNAs were eliminated by the mapping
results using an “ad hoc” created database starting from Rfam sequences and the “small RNA” pipeline.

The known miRNA count has been analysed with the Bioconductor statistical library edgeR for
R 64 bit version, version 3.02, and Genomnia (Bresso, Italy) proprietary analytical parameters.

P-value, uncorrected or corrected (“adj.P.Val”) for multiple comparisons with the Benjamini and
Hochberg method to control the False Discovery Rate (FDR), was used. The significance threshold
considered for the FDR in these comparisons was 0.05. The data were deposited in European Nucleotide
Archive with the Project ID PRJEB23361.

2.3. Mouse Embryo and Tissue Samples

The experiments performed on mouse embryos and tissues were carried out in accordance with
the project “Ruolo degli pseudogene di HMGA1 nel cancro” Cod. 893/2013 approved by Italian
Health Ministry on 13/05/2013; the methods and experiments were carried out in accordance with the
approved guidelines by the Ministero della Salute.

2.4. RNA Extraction and Quantitative Reverse Transcription PCR

Total RNA was isolated from cells or tissues with TRIsure (Bioline, London, UK) according
to the manufacturer’s instructions. For quantitative mRNA detection, we reverse transcribed
total RNA from samples by utilizing QuantiTect Reverse Transcription Kit (Qiagen, Hilden,
Germany), and then Real-time PCR was performed by using Power SYBR Green PCR Master
Mix (Bio-Rad) and the following primers: mG6pd-Fw5′ -cagcggcaactaaactcaga-3′, mG6pd-Rev 5′

-ttccctcaggatcccacac-3′, mEgr1 Fw 5′ -cctatgagcacctgaccaca-3′, mEgr1 Rev 5′ -tcgtttggctgggataactc-3′,
mDicer Fw 5′ -ggtccgatggttctggaag-3′, mDicer Rev 5′ -gcaaagcagggcttttca-3′. For miRNA detection,
total RNA from cells or tissues was reverse-transcribed using miScript Reverse Transcription Kit
(Qiagen, Hilden, Germany). Real-Time PCR was performed following miScript System Kits (Qiagen,
Hilden, Germany) instructions [26]. Real-Time PCR reactions contained miScript Primer Sets (Qiagen,
Hilden, Germany), specific for Mm-mir-483-5p 5′-aagacgggagaagagaagggag -3′, Mm-mir-483-3p
5′-ucacuccuccccucccgucuu-3′, Mm-mir-675-5p 5′-uggugcggaaagggcccacagu-3′, Mm-mir-21-3p
5′-caacagcagucgaugggcuguc-3′, Mm-mir-187-3p 5′-ucgugucuuguguugcagccgg-3′, Mm-mir-214
5′-acagcaggcacagacaggcagu-3′, Mm-mir-761 5′-gcagcagggugaaacugacaca-3′. U6 (cod. MS00033740)
(used to normalize RNA levels). The 2−∆∆CT formula was used to calculate the differential gene
expression and is described elsewhere [27].

2.5. miRNA Oligonucleotides and Transfection

The transfections of miRNA oligonucleotides were performed by transfecting the cells with
50 nmol/ml of miRNA precursors or with a control no-targeting scrambled oligonucleotides
(Thermo Fisher Scientific Inc., Waltham, MA, USA) using siPORT neoFX Transfection Agent
(Thermo Fisher Scientific Inc., Waltham, MA, USA).

2.6. Protein Extraction, Western Blotting and Antibodies

Protein extraction and Western blotting were performed as previously described [28,29].
The primary antibodies used were anti-Egr1 (ab191441) from Abcam (Cambridge, UK); anti-Gapdh
(sc-32233) and anti-Vinculin (sc-7649) from Santa Cruz Biotechnology (Dallas, TX, USA); anti-α-Tubulin
(t6074) from Sigma (St. Louis, MO, USA). Blots were visualized by using the Western blotting detection
reagents (Thermo Fisher Scientific Inc., Waltham, MA, USA).
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2.7. Statistical Analysis

Statistical analyses were performed using GraphPad Prism, GraphPad Software, Inc. (La Jolla,
CA, USA). The comparison between two groups of experiments was carried out using Student’s t test.
Results are reported as means± SD and differences were considered to be significant with p < 0.05.

3. Results

3.1. miRNA-seq on HMGA1P7 Transgenic MEFs

First, we evaluated the whole miRNome of WT and HMGA1P7 transgenic MEFs, obtained
from mice modified to overexpress HMGA1 pseudogene 7, by miRNA-seq analyses to identify the
effects of HMGA1P7 upregulation on miRNAs expression. To this purpose, the total population
of miRNAs isolated from WT- and HMGA1P7-MEFs was sequenced. Then, through biostatistical
analysis, we acquired a list of miRNAs that were differentially expressed (FDR adjusted p-value of
0.05) between WT and HMGA1P7 transgenic MEFs (Supplementary Table S1). The next step was
to confirm the results obtained by miRNA-seq analyses, investigating five deregulated miRNAs by
qRT-PCR. The results reported in Figure 1 confirm the overexpression of miR-483-5p, miR-483-3p,
miR-675-5p, miR-21-3p, and the downregulation of miR-187-3p in HMGA1P7 overexpressing MEFs in
comparison with the WT ones. Interestingly, these miRNAs have been associated to human cancers
(such as colon, adrenocortical, oral, lung, hepatocellular, prostate, ovarian) and could be considered
possible therapeutic targets [24,30–39].
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3.2. miR-483-5p and miR-675-5p are Upregulated in HMGA1P7 Mouse Tissues 

Then, we converged our studies on the miR-483-5p and miR-675-5p, which showed the most 
upregulated fold-change in HMGA1P7 overexpressing MEFs by miRNA-seq analyses. Moreover, 
their expression has been recurrently found deregulated in human cancer [24,30,31,34]. As expected 
from previous data, qRT-PCR analysis showed that miR-483-5p and miR-675-5p were also 
upregulated in heart and spleen from HMGA1P7 adult transgenic mice (Figure 2). 

Figure 1. Validation of miRNA-seq data by qRT-PCR. qRT-PCR analysis of miR-483, miR-483-3p,
miR-675-5p, miR-21-3p, and miR-187-3p in mouse embryonic fibroblasts (MEFs) from HMGA1P7
transgenic mice compared to wild-type (WT), set equal to 1. The results are reported as the mean of
values. The error bars represent mean ± SD; *: p < 0.05, **: p < 0.01 (t test).

3.2. miR-483-5p and miR-675-5p Are Upregulated in HMGA1P7 Mouse Tissues

Then, we converged our studies on the miR-483-5p and miR-675-5p, which showed the
most upregulated fold-change in HMGA1P7 overexpressing MEFs by miRNA-seq analyses.
Moreover, their expression has been recurrently found deregulated in human cancer [24,30,31,34].
As expected from previous data, qRT-PCR analysis showed that miR-483-5p and miR-675-5p were also
upregulated in heart and spleen from HMGA1P7 adult transgenic mice (Figure 2).
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upregulates miR-483-5p and miR-675-5p. 

Figure 2. mir-483-5p and mir-675-5p are overexpressed in HMGA1P7 transgenic mouse tissues.
qRT-PCR analysis of mir-483-5p and mir-675-5p from hearts (upper panel) and spleens (lower panel)
explanted from WT and HMGA1P7 transgenic mice. The results are reported as the mean of values.
The error bars represent mean ± SD; *: p < 0.05, **: p < 0.01, ***: p < 0.001 (t test).

3.3. HMGA1P7 Pseudogene Sustains miR-483-5p and miR-675-5p Expression via a ceRNA Mechanism
with Egr1

It has been reported that early growth response protein 1 (Egr1) controls the expression of H19 [40]
and Igf2 [41] and that, intriguingly, miR-483 is located within the second intron of Igf2 gene [42]
and miR-675 is encoded by the first exon of H19 gene [40]. These results suggest that Egr1 could
regulate miR-483 and miR-675 expression by upregulating H19 and Igf2 genes. Since we found the
upregulation of Egr1 in HMGA1P7 overexpressing MEFs performing RNA-seq analysis [1], we tested
whether it could be responsible for the miR-483-5p and miR-675-5p upregulation. As shown in Figure 3,
we found Egr1 overexpressed in HMGA1P7 transgenic MEFs and tissues analyzed by qRT-PCR and
western blot analyses. Moreover, as expected from previous results, qRT-PCR showed upregulation
of miR-483-5p and miR-675-5p following HMGA1P7 pseudogene overexpression in NIH3T3 cells
(Figure 4A). Further analyses exhibited again the associated Egr1 upregulation, at mRNA and protein
levels, in HMGA1P7-transfected NIH3T3 cells (Figure 4B). Taken together, these data deeply endorse
the assumption that HMGA1P7 could act as ceRNA for Egr1, which in turn upregulates miR-483-5p
and miR-675-5p.
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Figure 3. Egr1 is overexpressed in HMGA1P7 transgenic mouse tissues. qRT-PCR and Western Blot
analyses of Egr1 levels in MEFs (A), hearts (B), and spleens (C) derived from WT and HMGA1P7
transgenic mice. The results are reported as the mean of values. The error bars represent mean ± SD;
*: p < 0.05, **: p < 0.01 (t test).

3.4. HMGA1P7 Works as Decoy for Egr1 Targeting miRNAs

To check whether the influence of the HMGA1P7 pseudogene on Egr1 expression is related to
sharing targeting-miRNAs, we tested the ability of HMGA1P7-targeting miRNAs to bind to Egr1.
To this intention, we transfected miR-214 and miR-761 (already demonstrated to target HMGA1P7 [1])
into NIH3T3 cells, and evaluated Egr1 mRNA and protein levels. As presented in Figure 4C, lower
panel, the transfection of the HMGA1P7-targeting miRNAs produced a significant reduction of Egr1
protein levels. qRT-PCR analysis showed that the Egr1 downregulation occurs only at translational
level after the transfection of the HMGA1P7-targeting miRNAs (Figure 4C, upper panel). Finally, we
demonstrated that the overexpression of Egr1, generated by upregulation of HMGA1P7, was reduced
in Dicer-knockdown cells (Figure 4D) then supporting the idea that HMGA1P7 and Egr1 are modulated
by the same miRNA-mediated post-transcriptional regulation. Indeed, the knocking down of the
miRNA-processing enzyme Dicer abolished the effects of miRNAs on their target genes, reducing the
levels of mature miRNAs. These evidences are coherent with the conclusion that HMGA1P7 requires
mature miRNAs to regulate Egr1 levels and then upregulates miR-483-5p and miR-675-5p.
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483-3p overcomes miR-145/TP53 pro-apoptotic loop in hepatocellular carcinoma and that it mediates 
its oncofunction by suppressing DLC-1 in colorectal cancer [32,33]. Furthermore, miR-675-5p has 
been found overexpressed in metastatic colon cancer cells and it is able to induce resistance to 
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of mir-483-5p and mir-675-3p from control and overexpressing NIH3T3 cells. (B) Left panel, qRT-PCR
analysis of Egr1 from control and HMGA1P7 overexpressing NIH3T3 cells. Right Panel, Western blot
analysis of Egr1 from control and HMGA1P7 overexpressing NIH3T3 cells. (C) Upper panel, qRT-PCR
analysis of Egr1 mRNA from the NIH3T3 cells transfected with scrambled-oligonucleotide, miR-214,
miR-761. Lower panel, a representative Western blot analysis of Egr1 in the same samples as in the
upper panel. Densitometric analysis of Western blot assays for Egr1 is also reported. (D) Upper panel,
Egr1 and Dicer mRNA levels 24 h after the transfection of scrambled oligonucleotide or siRNA-Dicer
in HMGA1P7 NIH3T3 overexpressing cells. Lower Panel, Western blot analysis of Egr1 in the same
samples as in the upper panels. The results are reported as the mean of values. The error bars represent
mean ± SD; *: p < 0.05, **: p < 0.01, ***: p < 0.001 (t test).

4. Discussion

Pseudogenes are genomic loci that look like protein-encoding genes, but until now have
been considered biologically insignificant because they do not generate working proteins.
However, according to recent studies, pseudogenes are attracting considerable research interest thanks
to their recognized function. To date, very few pseudogenes have been functionally characterized.
Among these, HMGA1P6 and HMGA1P7 pseudogenes have caught our attention. In fact, they work
as sponges for several miRNAs so that their overexpression defends the HMGA gene family and
other oncogenes from miRNAs negative regulation. In the present study, we identified miRNAs
differentially expressed in MEFs overexpressing HMGA1P7 by miRNA-seq analysis. Looking at
the results, we found that the levels of several miRNAs were modulated by HMGA1P7 expression.
Noteworthy, most of them are known as oncomiRs involved in cancer promotion and progression.
For example, miR-483-5p has been identified as predictor of poor prognosis in adrenocortical cancer
and it has been demonstrated to promote invasion and metastasis of lung adenocarcinoma by
targeting RhoGDI1 and ALCAM [30,31]. Moreover, it has been reported that overexpression of
miR-483-3p overcomes miR-145/TP53 pro-apoptotic loop in hepatocellular carcinoma and that it
mediates its oncofunction by suppressing DLC-1 in colorectal cancer [32,33]. Furthermore, miR-675-5p
has been found overexpressed in metastatic colon cancer cells and it is able to induce resistance to
1,25(OH)2D3 by targeting VDR [24,34]. In addition, also miR-21-3p has been described as oncomiR
since it promotes oral cancer metastasis and colorectal cancers [35,36], and its silencing resulted in
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important reduction of ovarian and prostate cancer cell proliferation and invasion [37]. Finally, in the
opposite way, miR-187-3p has been reported as oncosuppressor because of its inhibitory action on
metastasis and epithelial-mesenchymal transition of hepatocellular carcinoma and non-small cell lung
cancer [38,39]. In this study, we focused on miR-483-5p and miR-675-5p since they are involved in
carcinogenesis and they belong to the H19/Igf2 locus, which has been already linked to HMGA1P7
ceRNA network [1,40,42]. Intriguingly, H19/Igf2 locus is under transcriptional control of Egr1 [40,41],
that we have already found upregulated in HMGA1P7 transgenic MEFs by mRNA-seq analysis [1].
Indeed, Egr1 controls the transcription of H19 and Igf2 whose mRNAs maturation generates miR-483-5p
and miR-675-5p [40,41]. Here, we demonstrate that HMGA1P7 overexpression enhances Egr1 levels
suppressing its mRNA inhibition by miRNAs that target HMGA1P7 gene. Consequently, H19 and Igf2
mRNAs increase and, with them, so do miR-483-5p and miR-675-5p amounts. In conclusion, the results
described here reinforce the already known oncogenic role of the HMGA1P7 pseudogene as result of
ceRNA mechanisms that enhance the expression of cancer-related genes. Interestingly, our preliminary
results support the oncogenic role of HMGA1P7 in vivo since malignant haematological neoplasias
develop in HMGA1P7 transgenic mice (manuscript in preparation). Therefore, the results presented
here envisage the possibility of an innovative cancer therapy based on the suppression of HMGA1
pseudogenes expression and/or the overexpression of miRNAs involved in their ceRNA pathways.
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