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Abstract

Purpose: In patients with type 2 diabetes mellitus (T2DM), Roux-en-Y gastric bypass 
(RYGB) leads to beneficial metabolic adaptations, including enhanced incretin secretion, 
beta-cell function, and systemic insulin sensitivity. We explored the impact of RYGB on 
pituitary, pancreatic, gut hormones, and cortisol responses to parenteral and enteral 
nutrient stimulation in patients with obesity and T2DM with repeated sampling up to 2 
years after intervention.
Methods: We performed exploratory post hoc analyses in a previously reported 
randomized trial. Levels of adrenocorticotropic hormone (ACTH), cortisol, growth 
hormone (GH), glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic peptide 
(GIP), peptide YY (PYY), ACTH, insulin, and glucagon were measured in 13 patients with 
T2DM and obesity at four different visits: before and 4, 24, and 104 weeks after RYGB; 
and in three sequential conditions on the same day: fasting, intravenous arginine 
challenge, and OGTT.
Results: RYGB surprisingly induced a rise in ACTH, cortisol, and GH levels upon an oral 
glucose load, together with enhanced GLP-1 and PYY responses. Fasting and post-
arginine GH levels were higher after RYGB, whereas insulin, glucagon, GLP-1, GIP, and 
cortisol were lower. These endocrine adaptations were seen as early as 4 weeks after 
surgery and were maintained for up to 2 years.
Conclusion: These findings indicate adaptations of glucose sensing mechanisms and 
responses in multiple endocrine organs after RYGB, involving the gut, pancreatic islets, the 
pituitary gland, the adrenals, and the brain.

Introduction

Besides inducing significant and durable weight loss, Roux-
en-Y gastric bypass (RYGB) improves glycemic control in 
insulin-resistant patients and can prevent or reverse type 
2 diabetes mellitus (T2DM) (1, 2, 3). This metabolic shift 
is partly independent of weight loss, and the underlying 
mechanisms are not completely understood (3, 4, 5, 6). 
Shortly after RYGB, a greater incretin response occurs 
post-prandially, which enhances insulin secretion, 
reduces food intake, and contributes to improved systemic 

insulin sensitivity (7, 8). This is related to the rearranged 
gastrointestinal anatomy resulting in rapid transport of 
ingested nutrients to the small intestine (3). However, 
CNS and neuroendocrine pathways have been suggested 
to play a role in mediating the effects of RYGB on glucose 
homeostasis (9, 10).

Intravenous administration of an l-arginine bolus is a 
well-established technique for assessing beta-cell secretion 
capacity (11). It also has potent secretagogue effects on 
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pancreatic alpha-cells, gut L-cells, and anterior pituitary 
somatotrope cells (12, 13, 14, 15, 16), but not on ACTH-
producing anterior pituitary cells (17). Notably, little is 
known about whether RYGB affects endocrine responses to 
this aminoacidic stimulus (18).

The oral glucose tolerance test (OGTT) is a standardized 
technique to assess the metabolic and overall hormonal 
response to an oral glucose load and is a validated diagnostic 
tool for impaired glucose tolerance, T2DM, and gestational 
diabetes mellitus (19).

We have recently reported rapid effects on 
neuroendocrine regulation following RYGB (8) as well 
as early and late adipose tissue effects in patients with 
obesity and T2DM (9, 20). We have now performed 
additional exploratory analyses in the same cohort, and 
the current work aimed to explore the changes in the 
dynamic endocrine response induced by RYGB in patients 
with T2DM using two different nutrient challenges, 
namely intravenous arginine challenge and OGTT. RYGB-
induced neuroendocrine adaptations might be different 
during nutrient challenges as compared to fasting, and 
we hypothesize that RYGB may not only alter nutrient-
induced secretion of hormones secreted by the gut and 
pancreatic islets but also of others produced by the 
pituitary and adrenal glands. Therefore, in this study, we 
assess growth hormone (GH), ACTH, and cortisol levels, 
which are largely unexplored in this context. Herein, we 
report exploratory post hoc analyses of multiple hormones 
in patients with obesity and T2DM followed up for  
2 years after RYGB. We highlight the novel findings on 
the responses of GH and the hypothalamus–pituitary–
adrenal (HPA) axis to oral glucose following RYGB. For the 
first time in this context, we also characterize responses to 
intravenous arginine stimulation.

Materials and methods

Study design and ethics

This exploratory post hoc analysis is part of a previously 
described randomized controlled trial (8, 9, 20) carried out 
in 19 patients (18–65 years, BMI: 30–45 kg/m2) with T2DM, 
diagnosed less than 10 years before the study entry and 
treated with oral antidiabetic medication (Supplementary 
Table 2, see section on supplementary materials given 
at the end of this article). The subjects were randomly 
assigned 2:1 to RYGB or standard-of-care medical 
treatment without any other weight-lowering treatment. 
Further characteristics of this cohort are presented in 

Supplementary Table 1 and have been reported previously 
(8, 9, 20). Data on other neuroendocrine responses from 
this cohort in a shorter follow-up have been previously 
reported, together with fasting data (8, 9).

The study (clinicaltrials.gov NCT02729246) was 
conducted in accordance with the Declaration of Helsinki 
and approved by the Regional Ethics Review Board in 
Uppsala (Dnr 2014/255). All participants had given their 
written informed consent before enrolment.

Study procedures

The 13 patients who underwent RYGB were studied at 
four-time points: (i) before surgical intervention (pre-
surgery visit); (ii) 4 weeks; (iii) 24 weeks; (iv) 104 weeks 
after intervention. Data from the six patients belonging 
to the control group were obtained only at the first visit 
(baseline) and at 24 weeks. Anthropometric measurements 
(weight, waist/hip circumference, and bioimpedance 
for body fat measurement), subcutaneous adipose tissue 
biopsies, OGTT, and arginine challenge were performed in 
1-day visits after an overnight fast. Individuals randomized 
to surgery followed a low-calorie diet (LCD, 3350–4600 
kJ/day) for 4 weeks after the pre-surgery visit before 
undergoing surgical intervention, according to clinical 
routine. After RYGB, antidiabetic medications were 
reduced or withdrawn, and other medication changes were 
made as clinically appropriate (9).

Blood samples were collected for hormonal 
measurements in the morning starting at 08:00 h 
under the following conditions and in this sequence: 
(i) after overnight fast; (ii) 3 min after administrating 
an intravenous bolus dose of arginine 5 g (infused over 
15–20 s); (iii) during a 3 h OGTT (75 g) with sampling at 
0, 15, 30, 60, 90, 120, and 180 min, starting 30 min after 
arginine administration. The arginine challenge was first 
used to assess functional beta-cell reserve. According to the 
original protocol, samples were obtained 3 min after 5 g 
arginine bolus administration to assess beta-cell secretion 
capacity (11). The Homeostatic Model Assessment for 
Insulin Resistance (HOMA-IR), Matsuda insulin sensitivity 
index, and the insulinogenic indices were calculated.

Biochemical measurements

Assays and materials have been described previously (20). 
Plasma and serum samples for all assessments, except those 
immediately performed, were frozen and stored at −80°C. 
For analyses, commercially available ELISA or multiplex 
kits were used: glucagon and glicentin (Mercodia, Uppsala, 
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Sweden); total glucagon-like peptide (GLP)-1 (7-36 and 
9-36) and total glucose-dependent insulinotropic peptide 
(GIP) (Merck Millipore, Darmstadt, Germany); peptide YY 
(PYY) and GH (Meso Scale Discovery, Rockville, USA); or 
with routine methods at the Uppsala University Hospital 
chemical laboratory (ACTH, cortisol). All protocols were 
followed according to the manufacturers’ instructions. 
The glucagon measurements were performed both 
with the previously used simultaneous assay protocol 
(n  = 13) (21) and with the improved-specificity sequential 
protocol, as reported by Roberts et  al. (n  = 7) (22). 
The glicentin assay was performed on OGTT samples  
only taken before surgery and at 4 and 104 weeks after 
RYGB (n  = 5).

Statistical analyses

Analyses of variance across visits were performed with 
mixed-effect models for glucose and all hormones. Areas 
under the curve for the OGTT (AUCOGTT) were calculated 
using the trapezoidal rule. Values of missing samples at 
the first and last time point of the OGTT were interpolated 
from the mean of the adjacent measured values. Pairwise 
comparisons between follow-up and pre-surgery data 
for the RYGB and the control groups were performed 
with paired t-tests. Hormonal level comparisons between 
control and surgical patients were performed with 
independent t-tests. Correlation analyses were performed 
using Spearman’s test. Data are presented as mean ± s.e. 
unless otherwise indicated. All analyses and calculations 
were performed using GraphPad Prism 9 and Microsoft 
Excel for Mac 16.

Results

Fasting and arginine challenge

Following RYGB, circulating levels of glucose, insulin, 
total glucagon-like peptide 1 (GLP-1), and GIP were 
reduced both in the fasting state and during the arginine 
challenge for the whole follow-up, while cortisol levels 
were reduced only at 4 weeks after surgery. Glucagon levels 
were significantly decreased only during fasting (Fig. 1 and 
Supplementary Table 3). Arginine infusion significantly 
enhanced secretion of insulin, glucagon, and total GLP-1 
during the pre-surgical visit and throughout the follow-up 
compared to fasting. However, the arginine challenge-
fold effect on all hormonal levels was unaffected by RYGB 
(Supplementary Fig. 2).

RYGB induced a significant rise in GH levels both in 
the fasting state and during the arginine challenge, with 
a maximal increase 24 weeks after surgery (Fig. 1 and 
Supplementary Table 3).

The variation of the hormonal levels during the 
arginine challenge 104 weeks after surgery was not 
associated with pre-surgical age, weight, BMI, waist-to-hip 
ratio, total body fat, HbA1c, HOMA-IR, Matsuda index, 
disposition index, or their 2-year post-surgical change 
(data not shown).

Thirty minutes after arginine administration (at 
the beginning of the OGTT), all hormonal values had 
returned to the fasting level; therefore, a carryover effect 
of previous arginine administration during the OGTT is 
unlikely.

The control subjects did not show changes in the level 
of any analyzed hormone (glucagon, GLP-1, GIP, GH, and 
PYY) during either fasting or arginine challenge between 
baseline and 24-week follow-up, with the exception of 
ACTH (P = 0.03 for both conditions). Also, the baseline 
hormonal values of the control patients were similar to 
the pre-surgery levels of the patients who underwent RYGB 
(data not shown).

OGTT

Glucose levels during the OGTT were characterized by an 
earlier peak, a more rapid decrease, and reduced AUC at post-
surgery visits compared to pre-surgery (Supplementary Fig. 
1). Dumping symptoms during the OGTT were experienced 
by seven, five, and two patients at the 4-week, 24-week, and 
2-year follow-up visits, respectively.

We show significantly elevated total and incremental 
AUCOGTT for ACTH and cortisol throughout the follow-up 
(Fig. 2 and Supplementary Fig. 3). This affected all patients 
independently of dumping symptoms (Supplementary 
Table 4). The enhanced HPA-axis responses remained 
stable throughout the 2-year follow-up period, whereas 
dumping episodes were markedly fewer over time. We 
also observed a significant increase in the AUCOGTT for 
total GLP-1 and PYY in all follow-up visits after surgery 
compared to pre-surgery. We observed no correlation 
between GLP-1 and ACTH or cortisol levels in the post-
surgery follow-up visits 30 min after glucose ingestion 
(r = 0.108, P = 0.55; r = 0.131, P = 0.46, respectively). 
Despite the curve shape alteration, the GIP AUCOGTT 
was unchanged, which can be explained by an earlier 
and higher peak followed by a quicker fall of its plasma 
concentration. Furthermore, the total AUCOGTT of GH 
was elevated throughout the follow-up, with the highest 
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Figure 1
Plasma hormonal levels during fasting, 3 min after intravenous arginine administration (AC 3’), and OGTT in patients with obesity and type 2 diabetes 
before and 4, 24, and 104 weeks after RYGB. (A) ACTH, (B) cortisol, (C) GH, (D) total GLP-1, (E) total GIP, (F) PYY, (G) insulin, and (H) glucagon. Data are 
presented as mean. Mixed-effects models for differences in hormone levels or AUCOGTT across visits: *P < 0.05; **P < 0.01; ***P < 0.001. N = 13 (except for 
glucagon, N = 7). ACTH, adrenocorticotropic hormone; GH, growth hormone; GLP-1, glucagon-like peptide 1; GIP, glucose-dependent insulinotropic 
polypeptide; PYY, peptide YY; RYGB, Roux-en-Y gastric bypass.
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value at 4 weeks after surgery (Fig. 2). However, the GH 
incremental AUCOGTT was unchanged, albeit with a 
decreasing trend (Supplementary Fig. 3).

The glucagon levels measured using the improved-
specificity sequential protocol (see the ‘Materials and 
methods’ section) were slightly decreased during OGTT  
2 years after RYGB vs pre-surgery (Fig. 2). The new 
glucagon assay did not replicate the previous findings that 
showed high glucagon levels after surgery when using the 
simultaneous assay protocol (8, 23). The difference can 
be explained by the previous assay’s cross-reactivity with 
glicentin (24), which was markedly elevated after RYGB 
(Supplementary Fig. 4).

The change in any hormonal AUCOGTT 2 years after 
surgery was not associated with pre-surgery age, weight, 
BMI, waist-to-hip ratio, total body fat, HbA1c, HOMA-IR, 
Matsuda index, disposition index, or their 2-year post-
surgery change (data not shown).

The control patients did not show differences in 
AUCOGTT of total GLP-1, GIP, GH, and PYY between the 
baseline and 24-week follow-up visits (data not shown).

Discussion

We assessed for the first time dynamic and parallel responses 
of pituitary, pancreatic, gut hormones, and cortisol during 
both an arginine challenge test and an OGTT in a cohort 
of patients with T2DM who underwent RYGB and in 
repeated follow-up visits up to 2 years after intervention 
(Table 1). Our results support that many of the endocrine 
changes seen in the first post-operative month are robustly 
sustained up to 2 years after the intervention, both during 
fasting and under nutrient stimulation.

HPA-axis and GH

Fasting cortisol levels were slightly reduced after RYGB, 
suggesting a lower adrenal counterregulatory drive in 
the fasting state after RYGB. We did not observe any 
secretagogue effect of intravenous arginine itself on the 
HPA-axis, as recently reported in healthy individuals (17).

GH secretion is impaired in basal conditions and 
upon stimulation in individuals with obesity (25, 26).  
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Figure 2
AUCOGTT of plasma hormone levels in patients with obesity and type 2 diabetes before and 4, 24, and 104 weeks after RYGB. (A) ACTH, (B) cortisol, (C) GH, 
(D) total GLP-1, (E) total GIP, (F) PYY, (G) insulin, and (H) glucagon. Data presented as mean ± s.e .m . Pairwise comparisons for post-surgery AUCOGTT with 
pre-surgery AUCOGTT with paired t-tests. *P < 0.05; **P < 0.01; ***P < 0.001. N = 13 (except for glucagon, N = 7). ACTH, adrenocorticotropic hormone; GH, 
growth hormone; GLP-1, glucagon-like peptide 1; GIP, glucose-dependent insulinotropic polypeptide; PYY, peptide YY; RYGB, Roux-en-Y gastric bypass.
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We reported higher fasting levels of GH after surgery, 
which is consistent with the higher IGF-1 levels that we 
have previously shown (9). This is in line with previous 
findings in individuals without diabetes (27). The elevation 
in GH could be mediated by higher fasting levels of ghrelin, 
which is known to promote GH secretion (28). However, 
reduced ghrelin levels have been reported up to 3 months 
after RYGB (29), while we showed higher GH levels even 4 
weeks after RYGB. Our data suggest that RYGB can restore 
GH-axis functionality via weight reduction and associated 
changes in body composition in patients with T2DM. 
Even though arginine is known to stimulate pituitary 
somatotrope cells (30), we did not see increased levels of 
GH during the arginine challenge. However, 3 min after 
the bolus might not be sufficient to detect its effect (31, 32). 
Standard protocols for eliciting GH response imply larger 
doses of arginine administrated continuously together 
with GH-releasing hormone for 30 min (31). In addition, 
arginine administration might have affected GH levels 
during OGTT. Indeed, the study procedure was repeated in 
the same manner throughout the follow-up, thus excluding 
biases in the assessment of RYGB on hormonal levels. Also, 
GH, ACTH, and cortisol are secreted in a pulsatile fashion, 
which might interfere with detecting consistent differences 
in their levels with our study design. However, since pulse 
periods are around 2 h (ACTH and cortisol) (32) and 3 h 
(GH) (33), it is unlikely that this variability interfered with 
the effects measured 3 min after arginine administration.

To the best of our knowledge, this is the first study 
assessing the effect of RYGB on the HPA-axis response to a 
glucose load. Total and incremental AUCOGTT for both ACTH 
and cortisol were significantly increased, although a glucose 
load is known to suppress cortisol secretion, irrespectively 
of obesity or insulin resistance (34, 35, 36). This suggests 
that following RYGB, the HPA-axis became susceptible 

to stimulation by OGTT. A recent review has suggested 
a direct stimulatory effect of GLP-1 on the HPA-axis via 
enhanced secretion of corticotropin-releasing hormone 
(37). Of note, there are no published data on whether other 
hormonal responses are differentially affected by oral or 
intravenous glucose load after RYGB. However, preliminary 
results from an ongoing study of ours (38) indicate that in 
participants with obesity there were no changes in either 
ACTH and cortisol levels during a hyperglycemic clamp, 
and this was also unchanged after RYGB. This would argue 
that the rise in ACTH and cortisol in the present work 
following RYGB is specific to oral glucose administration, 
suggesting the relevance of the glucose–gut interaction 
in regulating the HPA-axis. However, we did not find any 
correlation between GLP-1 levels and ACTH and cortisol 
levels 30 min after glucose load (peak time) in the post-
RYGB visits. Further studies are warranted to investigate 
whether incretins themselves are responsible for these post-
RYGB endocrine adaptations. We cannot exclude that the 
HPA-axis activation was related to early dumping syndrome 
and its hemodynamic implications that activate the stress 
response, since there was a trend for higher ACTH and 
cortisol levels in patients who experienced early dumping 
syndrome symptoms during the glucose challenge.

GH AUCOGTT was increased after RYGB, while GH 
incremental AUCOGTT showed a decreasing trend, 
suggesting that the GH response to glucose was mainly 
dependent on higher fasting GH levels. Our result supports 
that weight reduction following RYGB can restore GH-axis 
responsiveness to various stimuli (38), even though much 
of the response was dependent on higher pre-OGTT fasting 
GH levels. It is possible that changes in ghrelin levels have 
influenced the GH response since ghrelin levels during 
the OGTT are known to be suppressed in post-RYGB 
individuals (39).

Table 1 A comprehensive scheme of hormonal changes induced by RYGB in patients with obesity and T2DM 2 years after 
intervention.

Hormones Fasting 3 min after intravenous arginine administration AUCOGTT

ACTH ⬄ ⬄ ⬆
Cortisol ⬄ ⬄ ⬆
GH ⬆ ⬆ ⬆
Total GLP-1 ⬇ ⬇ ⬆
Total GIP ⇩ ⬇ ⬄
PYY ⬄ ⬄ ⬆
Insulin ⇩ ⇩ ⬇
Glucagon ⬇ ⬄ ⬄

Mixed-effects models for differences across visits. Down arrow: significant (black, P < 0.05) or nearly significant (white, P < 0.10) reduction. Horizontal 
arrow: no significant change (P > 0.10). Up arrow: significant (black, P < 0.05) or nearly significant (white, P < 0.10) increase.
ACTH, adrenocorticotropic hormone; GH, growth hormone; GLP-1, glucagon-like peptide 1; GIP, glucose-dependent insulinotropic polypeptide; PYY, 
peptide YY.
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Incretins

In the fasting condition, we observed reduced levels of total 
GLP-1 and total GIP after surgery, which were maintained 
up to 2 years after the intervention. Accordingly, previous 
findings identified both lower (40, 41, 42) or unchanged 
(43) fasting total GLP-1 levels after RYGB, either in 
individuals with or without diabetes.

Besides its known secretagogue effect on beta- and 
alpha-cells and on somatotrope anterior pituitary cells 
(15, 30), intravenous arginine has been shown to stimulate 
GLP-1 secretion both in euglycemic and dysglycemic 
individuals (44), independently of beta-cell function 
(12). During the arginine challenge, we found increased 
secretion of total GLP-1 and, to a lesser extent, of total 
GIP after RYGB, but the fold effect was not altered. On 
the contrary, arginine administration did not stimulate 
PYY secretion, either before or after surgery. Although 
GLP-1 and PYY are both secreted by L-cells, proximal gut 
cells predominantly secrete GLP-1 and no PYY (45). This, 
together with differential response to different secretory 
stimuli (46), could explain the different behavior of GLP-1 
and PYY observed during arginine stimulation.

RYGB enhances oral glucose-induced secretion of 
GLP-1 and PYY, but not of GIP (47). Also, after RYGB, 
glucose becomes the dominant nutrient in stimulating 
several gut hormones compared to lipids and proteins 
(48). Our results are in line with this evidence and show 
that this occurs as early as 4 weeks after the intervention 
and is sustained for up to 2 years. The role of gut hormones 
in mediating insulin response to hyperglycemia was 
confirmed by studies that showed increased insulin 
secretion during an OGTT but not during an intravenous 
glucose tolerance test or a hyperglycemic clamp (49, 50). 
Moreover, PYY was identified as crucial in rescuing islet 
function after RYGB (51).

Even though the GIP AUCOGTT did not change after 
RYGB, GIP levels rose and fell more rapidly after the 
glucose load. This may partly be explained by altered gut 
anatomy and food transit, boosting incretin secretion and 
subsequently insulin release from beta-cells in the early 
post-prandial phase (52), thus improving post-prandial 
glycemic control.

Islet hormones

Fasting levels of insulin and glucagon were reduced after 
RYGB. The stimulation of insulin and glucagon secretion 
by arginine administration assessed by the fold change 
from the fasting levels was slightly higher after surgery, but 

this was mainly driven by a reduction in the fasting levels 
of these hormones.

Glucagon levels were slightly suppressed during the 
OGTT 2 years after RYGB, probably because of reduced 
alpha-cell insulin resistance (53) and increased circulating 
levels of GLP-1, which is known to inhibit glucagon 
secretion (54). However, we cannot exclude that altered 
circulating amino acid levels after surgery might have 
affected glucagon levels (55). A paradoxical increase of 
glucagon secretion during OGTT after metabolic surgery 
was previously reported in animal (56) and human (49, 57) 
studies, also by our group (8). However, these results were 
obtained using a non-specific glucagon assay that cross-
reacted with glicentin, a receptor-orphan proglucagon 
byproduct released by L-cells and with an unclear biological 
function (58). We also found extremely elevated glicentin 
levels during the OGTT in five subjects after RYGB. These 
findings underscore the importance of using an optimized 
specific glucagon assay protocol in gastric bypass patients 
and the need to reconsider previous evidence of post-
RYGB glucagon levels produced with non-specific assay 
protocols.

Limitations

This study has some limitations. The post hoc design of 
these sub-analyses compelled us to use data and samples 
that were already available, which might have been 
taken for purposes different from the ones presented 
here. Also, the sample size was small, thus some analyses 
might be underpowered, and some results need to be 
validated in larger cohorts. The control group did not 
undergo any weight loss intervention, and the patients 
in the RYGB group underwent a LCD 4 weeks before the 
intervention. This makes it difficult to distinguish the 
strictly RYGB-related outcomes from the LCD at 4 weeks, 
as the combined action of surgery and diet may explain the 
effects found. Also, this study included only patients with 
T2DM, and future studies should address patient groups 
without T2DM. Finally, the study design did not allow 
direct comparisons of the hormonal responses to arginine 
challenge and OGTT with one another.

Conclusion

Our results suggest that RYGB leads to profound changes 
in multiple hormonal responses to OGTT, with more rapid 
or enhanced secretion of GLP-1, PYY, GIP, insulin, and 
surprisingly, also GH, ACTH, and cortisol in patients with 
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obesity and T2DM. This corresponds with altered glucose 
sensing in several organs, including the gut, pancreatic beta-
cells, the brain, and the pituitary gland. These endocrine 
adaptations occur as early as 4 weeks after surgery and 
are maintained up to 2 years after the intervention. This 
might contribute to the observed adaptations of nutrient 
responses and potentially also to the favorable metabolic 
effects of RYGB. However, the underlying mechanisms and 
the possible role for the antidiabetic effects of RYGB are not 
well understood, and further investigations are warranted.
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