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Sex hormone dependence is associated with tumor progression and prognosis. Here, we explored the molecular basis of luminal
A-like phenotype in sex hormone-dependent cancers. RNA-sequencing data from 8 cancer types were obtained from The Cancer
Genome Atlas (TCGA). We investigated the enrichment function of differentially expressed genes (DEGs) in luminal A breast
cancer (BRCA). Weighted coexpression network analysis (WGCNA) was used to identify gene modules associated with the
luminal A-like phenotype, and we calculated the module’s preservation in 8 cancer types. Module hub genes screened using least
absolute shrinkage and selection operator (LASSO) were used to construct a gene signature model for the luminal A-like
phenotype, and we assessed the model’s relationship with prognosis, enriched pathways, and immune infiltration using
bioinformatics approaches. Compared to other BRCA subtypes, the enrichment functions of upregulated genes in luminal A
BRCA were related to hormone biological processes and receptor activity, and the downregulated genes were associated with the
cell cycle and nuclear division. A gene module significantly associated with luminal A BRCA was shared by uterine corpus
endometrial carcinoma (UCEC), leading to a similar phenotype. Fifteen hub genes were used to construct a gene signature
model for the assessment of the luminal A-like phenotype, and the corrected C-statistics and Brier scores were 0.986 and 0.023,
respectively. Calibration plots showed good performance, and decision curve analysis indicated a high net benefit of the model.
The 15-gene signature model was associated with better overall survival in BRCA and UCEC and was characterized by
downregulation of DNA replication, cell cycle and activated CD4 T cells. In conclusion, our study elucidated that BRCA and
UCEC share a similar sex hormone-dependent phenotype and constructed a 15-gene signature model for use as a prognostic
tool to quantify the probability of the phenotype.

1. Introduction

Sex steroids can directly regulate tumor progression and
prognosis in a receptor-dependent manner, and these
tumors are generally considered to have a sex hormone-
dependent phenotype. Due to the existence of abundant
sex hormone receptors, this phenotype is prominent in
sex-specific cancer types originating from traditional hor-
mone target organs, such as breast cancer (BRCA) in women
or prostate adenocarcinoma (PRAD) in men [1, 2]. In addi-
tion, sex hormone-mediated actions also occur in malignan-
cies derived from nontraditional hormone target organs,

which are implicated in tumorigenesis, treatment response,
and clinical outcome [2, 3]. These cancer types generally
manifest significant sex-biased disparities with respect to
their incidence and clinical characteristics [4], and thus,
some researchers have proposed that these cancer types, at
least in part, possess a sex hormone-dependent phenotype
[1, 5]. A previous study investigated the influence of sex fac-
tors on these cancer types and characterized some of them as
the strong sex-effect type based on their sex-affected molec-
ular signatures [6]. However, the similarities and differences
in sex hormone-dependent phenotypes among these cancer
types remain poorly understood.
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BRCA is a typical female sex hormone-dependent
cancer, and previous studies confirmed that female sex hor-
mones modulate tumor progression via estrogen receptors
(ERs) and progesterone receptors (PRs) [7, 8]. Based on
clinicopathological characteristics and immunohistochemis-
try for ER, PR, and human epidermal growth factor receptor
2 (HER2), BRCA is classified into four subtypes, including
luminal A, luminal B, HER2-overexpressing, and triple-
negative BRCA [9]. Among these subtypes, luminal A repre-
sents the sex hormone-dependent phenotype and exhibits an
ideal response to endocrine therapies with a good prognosis,
while the latter two subtypes have a weak relationship with
sex hormones [10, 11]. Given that the gene module can be
considered a relevant indication of the biological phenotype
and its preservation could represent a similar phenotype
[12, 13], we explored whether a gene module related to the
luminal A-like phenotype exists in BRCA and assessed its
preservation in other sex hormone-dependent types of
cancer.

Using RNA sequencing (RNA-seq) data from The Can-
cer Genome Atlas (TCGA), the present study performed a
pancancer analysis. The pipeline is illustrated in Figure 1.
We performed weighted gene coexpression network analysis
(WGCNA) [14] to identify the target gene module related to
the luminal A-like phenotype and investigated its applicabil-
ity to several sex hormone-dependent cancer types. The
present study identified a 15-gene signature model that
works as a prognostic tool in sex hormone-dependent can-
cers by quantifying the luminal A-like phenotype.

2. Materials and Methods

2.1. Data Acquisition. All mRNA expression data were
obtained from TCGA (http://cancergenome.nih.gov) by uti-
lizing cBioPortal [15]. Normalized TCGA RNA-RNA-seq v2
data (RNA-seq by expectation-maximization [16]) of BRCA
(n = 1093), lung adenocarcinoma (LUAD, n = 515), lung
squamous cell carcinoma (LUSC, n = 484), ovarian serous
cystadenocarcinoma (OV, n = 303), uterine corpus endome-
trial carcinoma (UCEC, n = 527), bladder carcinoma (BLCA,
n = 407), thyroid carcinoma (THCA, n = 501), and PRAD
(n = 493) were used in bioinformatics and statistical analysis.
We screened 261 BRCA samples with different sex
hormone-dependent phenotypes: 129 samples of the luminal
A subtype (ER-positive, PR-positive > 20%) and 132 samples
of other BRCA subtypes (HER2 overexpressing with ER-
and PR-negative or triple-negative BRCA) and acquired
the preprocessing count data.

2.2. Identification of Differentially Expressed Genes (DEGs)
and Gene Ontology (GO) Analysis. DEGs ð∣Log2‐fold
change ∣ <1, P value < 0.05) between luminal A and other
BRCA subtypes were identified using package R “DESeq2”
[17]. According to the DESeq2 tutorial, we used preprocess-
ing count data as input data for the statistical mode of
“DESeq2” and extracted the top 400 genes (according to
|Log2-fold change|) to create a heatmap. The R package
“Clusterprofiler” [18] was applied to perform GO analysis

for DEGs and visualizing outcomes. Upregulated and down-
regulated genes were analyzed.

2.3. Weighted Gene Coexpression Network Analysis
(WGCNA). We performed WGCNA for 261 BRCA samples
using the R package “WGCNA” [14]. Modules identified
by WGCNA were labeled using different colors to display
genes sharing a similar connectivity pattern. Gene expression
profiles within each module are summarized as a summary
expression, also called the first principal component or
module eigengene. The biological functions of the target
module that were significantly associated with luminal A
BRCA were explored using GO analysis, and hub genes
were key elements in the module and comprised the cen-
tral point of the network architecture. Gene significance
(GS) is the correlation between the expression profile
and clinical traits. Module membership (MM) is the rele-
vance of the expression profile to each module eigengene.
Module hub genes were defined as those with GS > 0:2
and MM> 0:8.

2.4. Assessing the Preservation of Network Modules. Module
preservation analysis is used to quantify the replication of
target module, and the outcome could be interpreted as an
indicator of biological relevance [12, 13].We used the R
package “NetRep” for statistically testing replication and
preservation of the target module, which computes module
preservation from seven statistics [19]. We used WGCNA
to obtain the soft-thresholding power as input data for
‘NetRep’ to obtain matrix containing the network edge
weights encoding the interaction strength between each pair
of genes. Another 832 BRCA samples were used as valida-
tion cohort to assess the preservation of the target module
in BRCA. According to the tutorial, a module was consid-
ered strongly preserved if the P value was <0.01 for all seven
preservation statistics, weakly preserved if one or more, but
not all, test statistics were P < 0:01, and no evidence if no test
statistics were P < 0:01.

2.5. Development and Validation of a Gene Signature Model.
We regarded hub genes that were also DEGs as candidate
variables for the least absolute shrinkage and selection
operator (LASSO) [20] and used screened hub genes to
construct a gene signature model using multiple logistic
regression. The model can transform the predictive value
for the luminal A-like phenotype into a continuous vari-
able, which provides an advantage during subsequent sta-
tistical analyses. Brier scores were used to calculate the
performance of the gene signature model, and lower scores
indicated increased predictive accuracy. Predictive power
was measured by the area under the receiver operating char-
acteristic curve, also called the concordance index (namely,
the C-statistic), and bootstrapping validation using 100
resamples was conducted to calculate the corrected value
[21]. The calibration curve provided a comparison between
the expected and observed conversion probabilities. To assess
the clinical utility of the nomogram developed in the present
study, decision curve analysis (DCA) [22] was conducted.
The DCA plot displays the net benefit of model-based
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decisions at different threshold probabilities, and three DCA
curves present cases with model predicting outcome, all cases
with the outcome, and no cases with the outcome. The
“glmnet,” “rms,” “pROC,” and “dca” packages in R were used
in the process.

2.6. Gene Set Variation Analysis (GSVA). We utilized the R
package “GSVA” to perform GSVA, which implements a

nonparametric unsupervised method and quantifies the
enrichment of gene sets. The 50-gene analysis of microarrays
for risk of recurrence (PAM50-ROR) is a well-validated
gene-based signature assay available for assessing the lumi-
nal A-like phenotype [23]. We customized the 50-gene set
as input object for GSVA to assess its enrichment score in
luminal A BRCA. According to the predicted probabilities
of the gene signature model, samples were separated into
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luminal A-like phenotype
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Figure 1: The workflow of this study. First, the gene module related to the luminal A-like phenotype was identified, and its applicability
to other sex hormone-dependent cancer types was assessed. Next, module hub genes screened using LASSO were used to construct a
gene signature model for the assessment of the luminal A-like phenotype. Finally, the model’s relationship with prognosis, enriched
pathways, and immune infiltration was investigated using bioinformatics approaches.
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high (>50%) and low luminal A-like phenotype groups
(≤50%), and GSVA was further used to calculate the enrich-
ment score of pathways in different groups [24]. P < 0:05
was regarded as statistically significant. The gene set
“c2.cp.kegg.v7.0.entrez.gmt,” downloaded from the Molecu-
lar Signature Database (MSigDB), was regarded as the refer-
ence gene set for pathway analysis.

2.7. Validating Prognostic Value of Model. The R packages
“survminer” and “survival” were used to evaluate the prog-
nostic value of the gene signature model for patient overall
survival (OS). Patients were divided into two groups based
on the predicted probabilities of the gene signature model
to plot the Kaplan-Meier survival curves.

2.8. Immune Microenvironment Characterization. Several
bioinformatics tools were used to identify the immune char-
acteristics of the luminal A-like phenotype. The R package
“ImmuneSubtypeClassifier” was used to characterize
immune subtypes in cancer types, including wound healing,
IFN-γ dominant, inflammatory, lymphocyte depleted,
immunologically quiet, and TGF-β dominant, which are
associated with tumor prognosis and clinicopathological
features [25]. In addition, the R package “ESTIMATE”
was used to reflect the number of tumor-infiltrating
immune cells [26]. Moreover, we used the R package
“GSVA” to perform a single-sample gene set enrichment
analysis (ssGSEA) to identify the significant immune cells
related to the luminal A-like phenotype based on meta-
genes of 28 immune cells related to adaptive and innate
immune systems, whose expression has been shown to
accurately predict the infiltration of immune cell popula-
tions [27].

2.9. Statistical Analysis. R statistical software (v.3.6.1) was
used for statistical analysis and graphical visualization.
The null hypotheses were rejected at P values lower than
0.05. Analysis was performed on log2-transformed gene
expression. A Spearman correlation analysis was used to
estimate the correlation between the linear predictors of
the gene signature model (probabilities on logit scale) and
the enrichment score of the PAM50-gene signature. The
Wilcoxon test was used to compare the distributions of
two sets of any continuous variable. The influence of the
immune cell on survival was calculated using the Cox
regression model.

3. Results

3.1. Identification Enrichment Functions of DEGs. A total of
3543 genes were identified as DEGs between luminal A
and other BRCA subtypes (HER2 overexpressing with ER-
and PR-negative or triple-negative BRCA), including 1324
upregulated and 2219 downregulated DEGs. The heatmap
of the top 400 genes (according to |Log2-fold change|) is
shown in Figure 2, revealing the different patterns of geno-
mic expression profiles between luminal A BRCA and other
subtypes. GO analysis for the upregulated and downregu-
lated DEGs was performed (Figure 3). For upregulated
genes, signal release, hormone-related biological process,

and receptor activity were primarily enriched (Figures 3(a)
and 3(b)), and for downregulated genes, cell cycle and
nuclear division were primarily enriched (Figures 3(c) and
3(d)).

3.2. Assessment of the Preservation of Gene Modules Related
to the Luminal A-Like Phenotype. The weighted gene coex-
pression network of BRCA was identified into 27 gene
modules, and Figure 4(a) summarizes the correlation
between gene modules and luminal A BRCA. The turquoise
module was significantly associated with luminal A BRCA
(Figure 4(b)). GO analysis revealed that the module is
related to multiple metabolic and secretory processes involv-
ing hormones (Figure 4(c)). The preservation analysis
revealed that the gene module is strong preserved in BRCA
and UCEC but weakly preserved in other cancer types,
including OV, PRCA, LUAD, LUSC, THCA, and BLCA
(Figure 4(d)).

3.3. Developing and Validating a 15-Gene Signature Model.
A total of 704 common genes existed in the turquoise
module and DEGs, and 56 genes were defined as hub
genes. Fifteen hub genes were screened using LASSO:
EFCAB12, AGR3, ANXA9, CFAP61, DEGS2, ESR1, FSIP1,
C5AR2, KCNJ11, KDM4B, PGR, SCUBE2, SLC7A8,
THSD4, and TTC8 (Figure 5(a)). To make subsequent
evaluation of the luminal A phenotype more convenient,
a 15-gene signature model was established, and detailed
information on the model can be found in Supplementary
Material Table S1. In the 261 BRCA cohort, the corrected
C-statistic and the Brier scores were 0.986 and 0.023,
respectively, suggesting that the model had good discrimina-
tive ability. The calibration plots of the 15-gene signature
model showed that the agreement between the predicted
and observed situations was optimal (Figure 5(b)), and
DCA demonstrated that the model conveys a significant
net benefit (Figure 5(c)), demonstrating the potential
application value of the 15-gene signature model in the
assessment of the luminal A-like phenotype. Compared to
the predictive value of the PAM50-gene signature, both the
15-gene signature model and turquoise module summary
expression exhibited better performance in the assessment
of the luminal A-like phenotype (Figure 5(d)). Although
the 15-gene signature model had a nearly identical area
under the curve as the turquoise module’s summary expres-
sion, it was simpler to use for calculating the luminal A-like
phenotype.

We then tested the correlation between the linear predic-
tors of the 15-gene signature model and the enrichment
score of the PAM50-gene signature, and the PAM50-gene
signature exhibited a significant negative correlation with
the linear predictors in BRCA (Figure 5(e)). A consistent
correlation was observed between the module’s summary
expression and the enrichment score of the PAM50-gene
signature (Figure 5(f)).

3.4. Validation of the Model’s Prognostic Value. We inves-
tigated the distribution of the luminal A-like phenotype in
multiple cancer types based on the model and found that
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up to 69.9% of BRCA samples were characterized as the
high luminal A-like phenotype group, and the proportion
of the high luminal A-like phenotype gradually shrank in
PRAD, UCEC, and OV samples, while few samples of
LUAD, THCA, LUSC, and BLCA were judged as having
a high luminal A-like phenotype (Figure 6). Given the lim-
ited samples of LUAD, THCA, LUSC, and BLCA, we fur-
ther explored the prognostic value of the 15-gene signature
model in the BRCA, UCEC, PRAD, and OV cohorts and
investigated the difference between cancer types with the
weak or strong preserved target module. Compared to
the low luminal A-like phenotype group, the high luminal
A-like phenotype group displayed a longer OS in BRCA
patients (Figure 7(a)), and the same result was observed
in UCEC patients (Figure 7(b)). However, the luminal A-
like phenotype was not associated with a survival benefit
for PRCA or OV patients (Figures 7(c) and 7(d)). We
further explored the potential molecular mechanism
behind this outcome, and GSVA revealed that signaling
pathways involved in the cell cycle and DNA replication
were significantly downregulated in the high luminal A-
like phenotype group in both BRCA and UECE, while the
same result was observed in PRAD and OV (Figures 7(e)
and 7(f)).

3.5. Immune Characterization of the Luminal A-Like
Phenotype. Immune cells influence tumor growth and clini-
cal outcome via cytotoxicity and cytokines, and thus, we
assessed the relationship between the luminal A-like pheno-
type and immune infiltration. We found that 4 main
immune subtypes comprise these cancer types: the wound
healing and the IFN-γ dominant types, which possesses a
high proliferation rate; the inflammatory type conveys a
low to moderate tumor cell proliferation and has the best
prognosis; and the lymphocyte-depleted type is character-
ized as having the least favorable outcome. We found that
the wound healing type was the dominant immune subtype
in both BRCA and UCEC. Compared to samples defined as
having a low luminal A-like phenotype, the proportion of
inflammatory subtype increases, while the IFN-γ dominant
type decreases in the group with a high luminal A-like phe-
notype. Different patterns of immune subtypes exist in
PRAD and OV, and the inflammatory type or lymphocyte-
depleted type dominates their high luminal A-like group
(Figure 8(a)). ESTIMATE immune scores revealed a differ-
ent status of infiltrating immune cells between high or low
luminal A-like samples in these 4 types of cancer
(Figure 8(b)). Further analysis demonstrated that a majority
of immune cells exhibit a varying infiltration pattern, while

Group
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15

10

5

0

Group
LuminalA
Other type

Figure 2: Heatmap of the top 400 differentially expressed genes between luminal A and other subtypes of BRCA (HER2 overexpressing with
ER- and PR-negative or triple-negative BRCA).
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activated CD4 T cells are an intriguing exception and were
consistently decreased in tumor samples with a high luminal
A-like phenotype (Figure 8(c), Supplementary Material
Figure S1). Correlation analysis revealed a significant negative
correlation between activated CD4 T cell enrichment and the
predicted probabilities of the luminal A-like phenotype
(Figures 8(d)–8(g)): Spearman’s correlation coefficients were
-0.58, -0.51, and -0.45 in BRCA, UCEC, and OV, respectively,
and -0.2 in PRAD. A univariate Cox regression model
revealed that activated CD4 T cells did not influence overall
survival (Supplementary Material Table S2).

4. Discussion

In this study, we applied bioinformatics approaches to iden-
tify a gene module associated with the luminal A-like pheno-
type and assessed its replication in several sex hormone-
dependent types of cancer [6]. We identified a common gene
module between BRCA and UCEC and constructed a 15-
gene signature model that could quantify the probabilities
of a luminal A-like phenotype and work as a prognostic tool.

The obvious distinctions in the phenotype of BRCA sub-
types provide a clue to investigate the molecular basis of sex
hormone dependence. Compared to other BRCA subtypes, a
different gene expression pattern exists in luminal A BRCA,
which is related to the downregulation of the cell cycle and
nuclear division. This could explain the low proliferation

rate and favorable prognosis of luminal A BRCA. In addi-
tion, we demonstrated that the target gene module was
strongly preserved in UCEC, a female sex hormone-
dependent cancer, and patients can benefit from antifemale
sex hormone therapies [1]. Other types of cancer possess a
weakly preserved module. Similar to BRCA and UCEC,
OV is a female-specific cancer, and the specificity of tissue
might make a difference in the female sex hormone-
dependent phenotype. PRAD and BLCA are primarily
related to the regulation of androgens and their receptors
[28–30], and inhibiting androgen receptor signaling and
androgen deprivation therapy are well established to restrain
tumor cell biological behaviors and provide patients with
benefits in prolonging the recurrence period [31, 32]. We
presumed that the distinct molecular differences between
male and female sex hormone dependence made the differ-
ence. THCA and LUAD occur more frequently in women,
but the role of sex hormones is still controversial, and studies
have demonstrated that female sex hormones have little
impact on outcome [33, 34]. In LUSC, smoking and expo-
sure to secondhand smoke rather than sex hormones play
a major role in the etiology [35, 36]. In these cancer types,
female sex hormones are inferior influencing factors.

Genomic expression profiles can determine the molecu-
lar phenotype [37], so it is reasonable that UCEC might
share a similar phenotype with BRCA. We constructed a
15-gene signature model using selected hub genes in the
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Figure 4: Weighted gene coexpression network analysis of luminal A versus other subtypes of BRCA (HER2 overexpressing with ER- and
PR-negative or triple-negative BRCA). (a) The correlation between gene modules and luminal A BRCA. (b) The correlation between module
membership and gene significance in the turquoise module. (c) Enriched gene ontology functions of the turquoise module. (d) Assessment
of the preservation of the turquoise module. The statistical significance of seven module preservation statistics for 8 types of cancer. The
module is considered to be preserved if all statistics had a permutation test P value < 0.01.

9BioMed Research International



DEGs

Intersection of genes

Module_gene

1086 2823

704

15

Hub_gene_set

(a)

0.0 0.2

Ac
tu

al
 p

ro
ba

bi
lit

y

0.4 0.6 0.8

Apparent
Bias-corrected
Ideal

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b)

0.0 0.2

N
et

 b
en

ef
it

0.4 0.6
Threshold probability

0.8 1.0

0.0

0.1

0.2

0.3

None
All
Mode

0.4

0.5

(c)

Hub_gene_model
PAM50ROR
Summary_expression

0.00

0.25

0.50

0.75

1.00

0.000.250.50
False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.751.00

(d)

Figure 5: Continued.

10 BioMed Research International



target module, and this model exhibited good performance
in qualifying the probabilities of a luminal A-like phenotype
in BRCA. We confirmed that both the module’s summary
expression and the linear predictors of the 15-gene signature
model were negatively correlated with the PAM50-gene sig-
nature, a well-validated prognostic tool for BRCA, and a low
PAM50-ROR for luminal A subtype was confirmed [23, 38].
We found that BRCA and UCEC patients with a high lumi-
nal A-like phenotype had a longer OS. This result is consis-
tent with the fact that the luminal A-like phenotype has a
better prognosis. The outcome supports the gene signature
model, which is derived from the replicated gene module,
be used as a predictive tool for calculating the luminal A-
like phenotype. In addition, the 15-gene signature model
had a larger area under the curve than the PAM50-gene sig-
nature, suggesting improved efficacy for predicting outcome.
Regarding PRAD and OV, the high luminal A-like pheno-
type conveyed no survival benefit. However, downregulated
pathways related to the cell cycle and DNA replication were
observed in BRCA, UCEC, PRAD, and OV samples with a
high luminal A-like phenotype, and this is more suggestive
of other factors influencing the clinical outcome of the lumi-
nal A-like phenotype. The tumor immune microenviron-
ment, which has a relationship with patient prognosis [39],
has come into focus.

A previous study reported that the wound healing type,
an immune subtype related to proliferation ability, is pre-
dominant in luminal A BRCA [25], which is a consistent
outcome observed in the present study. At the same time,
BRCA and UCEC samples with a high luminal A-like
phenotype evince a decreased proportion of the highly pro-
liferative subtype accompanying a raised proportion of
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Figure 5: Construction and evaluation of the 15-gene signature model. (a) The intersection of genes between the turquoise module and
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lower proliferative subtype, while a different proportion of
immune subtypes was composed of PRAD and OV. In
addition, a varying status of infiltrating immune cells in
these 4 types of cancer was revealed. The result was in
agreement with a previous study, and the heterogeneity
of immune infiltration patterns was identified in solid
tumors, including BRCA, PRAD, UCEC, and OV [40].
Among 28 subpopulations of infiltrating immune cells,
we found that activated CD4 T cells have a significantly
negative correlation with the luminal A-like phenotype,
but they bring no benefits to patient prognosis. A previous
study revealed that ER-positive BRCA without immune
infiltration exhibits a similar clinical outcome to ER-
negative BRCA with high infiltration, irrespective of cell
type, and activated CD4 T cells have no impact on the
clinical outcome of BRCA [39]. Consistent with this study,
Chen et al. found that a high level of infiltrating immune
cells brings luminal A BRCA patients no prognostic bene-
fit but is associated with a shorter disease-free survival in
Western patients [41]. These studies suggest that tumor
molecular subtype and intratumoral immune cell infiltra-
tion have an identical prognostic influence. Teschendorff
et al. proposed that the prognosis of ER-positive BRCA
is related to the status of mitotic cell cycle functions,
whereas the outcome of ER-negative BRCA is associated
with the immune response [42]. Therefore, the survival
benefits of a high luminal A-like phenotype might primar-
ily originate from intrinsic tumor molecular features,
including sex hormone receptors, rather than the extrinsic
factor of immune infiltration [43]. However, the immune

microenvironment might have major implications for the
clinical outcome of PRAD and OV. The inflammatory
subtype has the best prognosis and is the dominant
immune subtype in PRAD, which conveys a prognostic
benefit. The immune subtype of OV is characterized by
increased intratumor heterogeneity and the least favorable
outcome, which might counteract the benefits of the lumi-
nal A-like phenotype [25, 44]. The tumor immunity in
cooperation with molecular subtype exerts fundamental
differences in the patterns of patient prognosis, that is,
the differences in the luminal A-like phenotype among
these types of cancer.

The luminal A-like phenotype might be a specific subtype
in most sex hormone-dependent cancers. We confirmed that
a similar molecular basis between BRCA and UCEC, and the
15-gene signature model is applicable for predicting their
prognosis. Except for PAM50-ROR, the 21-gene recurrence
score is another classical gene signature used as a prognostic
assay for BRCA, and patients with recurrence score < 10were
most likely the luminal A subtype [45], but no research has
shown these 2 gene signatures can be applied in UCEC. Fur-
thermore, as a positive correlation index, the 15-gene signa-
ture model is more convenient to apply.

Some limitations exist in the present study. First, our
study was based on datasets from TCGA, and the batch
effect is evident, although we used log2-transformed
normalized-data to minimize this effect. Second, we lacked
sufficient information to externally validate the 15-gene sig-
nature model in UCEC cohort. The clinical utility of the 15-
gene signature will be explored in future studies.
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Figure 8: Immune subtypes and infiltrating immune cells related to the luminal A-like phenotype. (a) The pie matrix showing 4 immune
subtypes identified in BRCA, UCEC, PRAD, and OV samples with a high or low luminal A-like phenotype. Violin plots showing (b)
immune scores and (c) enrichment scores of activated CD4 T cells in BRCA, OV, PRAD, and UCEC samples with a high or low luminal
A-like phenotype. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗∗P < 0:0001. Scatter plots showing the correlation between the enrichment score of
activated CD4 T cells and the predicted probabilities of a luminal A-like phenotype for (d) BRCA, (e) UCEC, (f) PRAD, and (g) OV
samples. 0 indicates P < 0:01.
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5. Conclusions

In summary, this study elucidated that BRCA and UCEC
share a luminal A-like phenotype. We constructed a 15-
gene signature model to quantify the probability of the sex
hormone-dependent phenotype that can be used as a prog-
nostic tool in BRCA and UCEC patients.
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