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László Pajor10, Árpád Szomor11, Erzsébet Schmidt1 and Hussain Alizadeh11

1 Department of Medical Imaging, Medical School, University of Pécs, Pécs, Hungary, 2 Medical University of Vienna, Center
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Purpose: For the identification of high-risk patients in diffuse large B-cell lymphoma
(DLBCL), we investigated the prognostic significance of in vivo radiomics derived from
baseline [18F]FDG PET/CT and clinical parameters.

Methods: Pre-treatment [18F]FDG PET/CT scans of 85 patients diagnosed with DLBCL
were assessed. The scans were carried out in two clinical centers. Two-year event-free
survival (EFS) was defined. After delineation of lymphoma lesions, conventional PET
parameters and in vivo radiomics were extracted. For 2-year EFS prognosis assessment,
the Center 1 dataset was utilized as the training set and underwent automated machine
learning analysis. The dataset of Center 2 was utilized as an independent test set to
validate the established predictive model built by the dataset of Center 1.

Results: The automated machine learning analysis of the Center 1 dataset revealed that
the most important features for building 2-year EFS are as follows: max diameter,
neighbor gray tone difference matrix (NGTDM) busyness, total lesion glycolysis, total
metabolic tumor volume, and NGTDM coarseness. The predictive model built on the
Center 1 dataset yielded 79% sensitivity, 83% specificity, 69% positive predictive value,
89% negative predictive value, and 0.85 AUC by evaluating the Center 2 dataset.

Conclusion: Based on our dual-center retrospective analysis, predicting 2-year EFS built
on imaging features is feasible by utilizing high-performance automated machine learning.
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INTRODUCTION

Non-Hodgkin lymphoma (NHL) is globally the most common
hematological malignancy, accounting for nearly 3% of cancer
diagnoses and deaths (1). The NHLs are a diverse group of
malignancies, about 80% of which are of B-cell origin (B-NHL)
in the Western hemisphere. The most common histologic
subtype in adults worldwide is diffuse large B-cell lymphoma
(DLBCL), comprising about 30%–40% of NHLs diagnosed each
year (2, 3). DLBCL comprises a heterogeneous group of diseases
with different biology, clinical presentations, and response to
treatment (4, 5). DLBCL is potentially curable with standard
treatment in 50%–60% of cases. About 25%–30% of patients are
resistant to standard chemo-immunotherapy; therefore, other
therapeutic approaches are utilized, namely, 20% of patients are
treated with salvage therapy including high-dose therapy and
autologous hematopoietic stem cell transplantation (4, 6, 7).

Advances on the understanding of the genetic landscape and
molecular features of DLBCL have identified high-risk groups
with poor response to chemo-immunotherapy. There is an
unmet clinical need to identify these high-risk patients as early
as possible in order to apply targeted and more intensive therapy
on individualized basis, as the majority of refractory or relapsed
patients will eventually die from their disease. The initial
evaluation of DLBCL patients is aimed at determining the
stage of the disease and assessing for end-organ damage either
by the disease and/or preexisting comorbid conditions. The
workup in a patient with suspected lymphoma usually starts
with comprehensive chemistry panel including complete blood
counts with differentials, hemostasis parameters, renal function,
hepatic function, lactate dehydrogenase enzyme (LDH), beta-2-
microglobulin (B2M), hepatitis B and C, Epstein–Barr Virus
(EBV), and human immunodeficiency viral serology. Lymph
node biopsy is required to establish a definitive diagnosis of
lymphoma; this should be an excisional biopsy rather than a
needle biopsy, because nodal architecture is often difficult to
assess when small amounts of tissue are used (8–10).

After the histologic confirmation of DLBCL, imaging study is
requested to assess the extent and stage of disease. The preferred
imaging modality is functional imaging with 2-deoxy-2-[18F]
fluoro-D-glucose [(18F)(FDG)] positron emission tomography/
x-ray computed tomography (PET/CT) (hereinafter referred to
as [18F]FDG PET/CT). This modality is the mostly used at
baseline, prior to the start of treatment and for monitoring the
efficacy of therapy (11–13).

Taking into consideration that about 20%–25% of patients are
primarily resistant to the current 1st-line treatment with
rituximab-based chemo-immunotherapy (14), identifying the
high-risk group that does not respond has very high priority.
One of these modalities could be the use of conventional and
textural parameters derived from the baseline [18F]FDG PET/
CT. Methods to individualize treatment choices are being
increasingly employed in different clinical trials, yielding
favorable correlations with improved response rates (5, 15).
Studies in the field of cancer imaging research have been
actively engaged with radiomics in combination with machine
Frontiers in Oncology | www.frontiersin.org 2
learning (16). However, radiomics has been reported to be
sensitive to various factors such as individual biology,
acquisition protocols, choice of delineation, binning and
resolution, as well as calculation methods, which challenge
prior studies to repeat (17). Nevertheless, standardization
proposals such as the Imaging Biomarker Standardization
Initiative (IBSI) (18) support the endeavor to report findings in
a repeatable way.

In DLBCL patients, disease characteristics and outcomes vary
widely, pointing to the importance of patient’s classification
through identification of sensitive prognostic features especially
prior to the start of therapy. For this purpose, we have tried to
elucidate the prognostic significance of metabolic heterogeneity
(19). We have highlighted metabolically active tumor volume
and standardized uptake value (SUV)-based parameters such as
SUV-max, SUV-min, total metabolic tumor volume (TMTV),
and total lesion glycolysis (TLG) and compared their
applicability with other radiomic parameters as well as clinical
and pathological data.

We hypothesize that 2-year event-free survival (EFS)
prediction models built on these features are feasible by
utilizing automated machine learning in a multi-center
environment. Hence, the objectives of this study were (a) to
collect a dual-center dataset including conventional PET,
radiomics, and clinical parameters of DLBCL patients; (b) to
build a 2-year EFS prediction model by using one center data;
and (c) to validate the established model by an independent
dataset coming from another center.
MATERIALS AND METHODS

Patient’s Data
The baseline pretreatment [18F]FDG PET/CT scans of 85
patients diagnosed with DLBCL performed in the period
between January 2014 and December 2019 were assessed. The
[18F]FDG PET/CT scans were carried out in two centers: at
University of Pécs, Department of Medical Imaging—Center 1
including 41 patients, and at University of Kaposvár, Hungary—
Center 2 including 44 patients. The median age of patients in this
study population was 59 years (range: 23–81 years) with 48.20%
(n = 41) of patients older than 60. In this cohort, 40 (47%)
patients were male, and 45 (53%) were female. The patients with
incomplete medical records and those who received non-
standard treatments were excluded from the final analysis. The
Eastern Cooperative Oncology Group (ECOG) performance
status >2 was reported in 27 (31.80%) cases (in 2 cases, the
ECOG status was unknown) with ECOG status unknown in 2
patients. All patients were treated with standard R-CHOP-21
treatment regimen for at least 4 full cycles. The patients were
classified to germinal center B-cell-like (GCB) or activated B-cell
(non-GCB) type using the Hans algorithm (20). The data
regarding the cell of origin (COO) (based on the Hans
algorithm) were available in 82 patients; 29 (37.60%) were
GCB and 53 (62.40%) were non-GCB. The clinical stage was
evaluated by the modified Ann Arbor and Lugano classification.
June 2022 | Volume 12 | Article 820136
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The pathological and clinical data and the Revised
International Prognostic Index (R-IPI) were also determined
before the initiation of the therapy (R-IPI: 0: 8, 1: 15, 2: 23, 3: 27,
4: 12 patients).

EFS was defined as the time from registration date to disease
relapse, progression, or death related to the lymphoma.
Complete response (CR), partial response (PR), progression
(PD), refractory disease, and relapse were defined according to
the International Working Group response criteria for
lymphoma (11, 21).

[18F]FDG PET/CT Studies
Pretreatment whole-body [18F]FDG PET/CT scans were
performed using a Mediso AnyScan 16 PET/CT scanner in 41
patients (Center 1) and a Siemens Biograph Truepoint 64 PET/
CT scanner in 44 patients (Center 2). All patients in the study
were subjected to full history and complete clinical examination
including the clinical stage of the disease. The patients were
instructed to fast for 6 h before the scan. Blood glucose level was
ensured to be below <8 mmol/L in all patients before the
injection of radiotracer. Intravenous (i.v.) injection of [18F]
FDG through an i.v. line with a dose of 3–4 MBq/kg was
administered. After tracer injection, the patient was asked to
stay for at least 60 min in a dark room covered by warm blankets.
No speaking, chewing, or reading was allowed.

During a PET-CT examination in Center 1, we execute a low-
dose CT scan first with the following parameters: x-ray tube
voltage: 120 kVp (depending on the patient’s size, 140 kVp is
used in bariatric patients), x-ray tube current: 24–26 mAs (also
depending on the patient’s size, a higher tube current can be
applied in bariatric patients), pitch: 1.5, and slice thickness:
2.5 mm. In order to achieve attenuation correction and
accurate body mapping, the CT series has to cover the whole
PET range of patients from skull to mid-thighs. After this step,
the PET acquisition follows the CT series without delay. We have
applied the 3D acquisition method for PET data collection with a
3 min frame time. Usually, between 7 and 10 bed positions can
cover a general scan range, by axial FOV: 15.12 cm (longitudinal
FOV in the patient’s z-axis). According to the manufacturer’s
recommendations, the PET images were iteratively reconstructed
using the Tera-Tomo™ 3D image reconstruction algorithm in a
167 × 167 × 234 matrix, which resulted in an isotropic voxel size
of 4 mm.

In the Center 2 PET-CT examination, we execute a low-dose
CT scan first with the following parameters: x-ray tube voltage:
120 kVp (depending on the patient’s size, 140 kVp is used in
bariatric patients), x-ray tube current: reference effective mAs: 60
using CareDose, pitch: 1.5, and slice thickness: 5 mm. In order to
achieve attenuation correction and accurate body mapping, the
CT series shall cover the whole PET range of patients from skull
to mid-thigs. After this step, the PET acquisition follows the CT
series without delay. We apply 3Dmode acquisition for PET data
collection with 3 min frame time. Usually, between 7 and 9 bed
positions can cover a general scan range, by axial FOV: 16.2 cm
(longitudinal FOV in the patient’s z-axis). PET images were
iteratively reconstructed using the 2D OSEM (3i8s, 5 mm
Frontiers in Oncology | www.frontiersin.org 3
Gaussian filtering) image reconstruction algorithm in a 168 ×
168 matrix.

Delineation and Feature Extraction
Lymphoma lesions were detected by InterView FUSION ver.
3.10 (Mediso Medical Imaging Systems Ltd., Budapest, Hungary)
clinical evaluation software. The average SUV-max value of the
liver (3.5–5.5) served as a reference threshold for the semi-
automated algorithm (22). This approach was selected to
minimize the effects of patient-specific radiotracer distributions
(23). The average of three randomly placed volumes of interest
(VOIs) from the unaffected liver regions was used. After the
execution of the algorithm with the selected parameters from the
automatically segmented regions, the non-affected regions, such
as regions with physiological activity (urine in kidneys or in the
bladder, or brain activity) or radiotracer accumulations, which
are not related to the lymphoma (such as bowel uptake caused by
metformin intake), were manually excluded. TLG, TMTV, and
SUV-max were automatically calculated across all delineated
lesions. Furthermore, SUV-peak values were segmented from the
VOI with the highest activity. For further radiomic feature
extraction, the largest VOI was selected in each patient. From
each of these VOIs, IBSI radiomic features including intensity,
histogram, morphological, neighborhood gray-tone difference
matrix (NGTDM), gray-level co-occurrence matrix (GLCM),
gray-level run length matrix, (GLRLM), and gray-level size
zone matrix (GLSZM) features were extracted. For the IBSI-
conform reporting details of the radiomic analysis, see
Supplementary Table 1.

Reference Standard
During the follow up, 2-year EFS was chosen as a clinically
relevant cutoff point (24). Based on this criterion, patients were
selected into two groups. In Group 0, the patients had no events
during the 2-year follow up, and in group 1, the patients had
primary refractory disease or relapsed during the 2-year period.

Statistical Analysis
A chi-square test was used for the assessment of binary variables
via SPSS (SPSS statistical software 27). First, data from both
centers were evaluated together based on 2-year EFS. A
significant association was sought between the two groups,
defined above and the following clinical data: sex, stage, R-IPI,
and COO. Data were also separated by the two centers, where the
[18F]FDG PET/CT scans were performed. A significant
relationship was sought between the two centers and the two
clinical outcomes, stages, R-IPI values, and COO. The test results
were considered statistically significant if the p-value was
under 0.05.

Automated Machine Learning Analysis and
Biomarker Identification
The Center 1 dataset was utilized as a training set, given that it
had more balanced remission–progression subgroups compared
to Center 2 (Table 2). The dataset underwent automated
machine learning analysis from the Dedicaid AutoML
June 2022 | Volume 12 | Article 820136
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Research package (Dedicaid GmbH, Vienna, Austria). This step
included automated data preprocessing for redundancy
reduction, class imbalance reduction, as well as feature
engineering, ranking, and selection (25). The data were split
Frontiers in Oncology | www.frontiersin.org 4
into 100-fold via random subsampling (26), and mixed ensemble
learning was applied in each fold to generate a model predicting
the final 2-year EFS. For quality control, the AutoML approach
also performed a single-center cross-validation across the 100-
A

B

C

FIGURE 1 | Comparison of clinical outcomes based on maximum intensity projection (MIP) images in three patients (A–C). By each patient, the first image shows primary
staging, the second shows interim PET scan, and the third shows post-treatment restaging scan. The red arrows indicate FDG avid lymphoma foci. (A) Patient in complete
remission to treatment. The increased FDG uptake in all three images was a sign of thyroiditis. (B) Patient without complete remission during and after the therapy. The interim
scan showed Deauville score 4. (C) Patient had an interim scan with Deauville score 3 but relapsed after the treatment.
June 2022 | Volume 12 | Article 820136
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fold of Center 1. Lastly, the final feature ranking was generated
by averaging the 100-fold feature importance and normalizing
them to the sum of 1.0. Features higher than half of the highest
feature rank were considered high-ranking and were analyzed for
imaging biomarker identifications.

For details of the automated machine learning process,
including all methodological steps and their parameters, see
the Supplemental Material.

Independent Validation of the
Prediction Model
The dataset of Center 2 was utilized as an independent test set to
validate the established predictive model built by the dataset of
Center 1. Confusion matrix analytics were utilized to calculate
Frontiers in Oncology | www.frontiersin.org 5
the number of true-positive, true-negative, false-positive, and
false-negative prediction occurrences of each Center 2 case.
Sensitivity, specificity, positive predictive value, accuracy, and
area under the receiver operator characteristic (ROC) curve
(AUC) were calculated across the validation cases.
RESULTS

Patient Data
At the end of the standard induction therapy, 55 patients
achieved complete metabolic remission. During the 2-year
follow-up, 14 patients had primary refractory disease, 14
patients relapsed within 12 months, and 2 patients had
TABLE 1 | Comparison of clinical outcome of the patients and their clinical data.

Variables No Progression or Remission Progression within 24 months p-value

Sex, n = 85 (n = 55) (n = 30) 0.611
Male (n, %) 28 (32.9%) 17 (20%)
Female (n, %) 27 (31.8%) 13 (15.3%)
ECOG, n = 83 (n = 55) (n = 28) 0.113
0 (n, %) 16 (19.3%) 6 (7.2%)
1 (n, %) 26 (31.3%) 8 (9.6%)
2 (n, %) 11 (13.3%) 12 (14.5%)
3 (n, %) 2 (2.4%) 2 (2.4%)
Stage, n = 85 (n = 55) (n = 30) 0.017
1 (n, %) 10 (11.8%) 0
2 (n, %) 17 (20%) 5 (5.9%)
3 (n, %) 9 (10.6%) 8 (9.4%)
4 (n, %) 19 (22.6%) 17 (20%)
R-IPI, n = 85 (n = 55) (n = 30) 0.015
0 (n, %) 7 (8.2%) 1 (1.2%)
1 (n, %) 29 (34.1%) 9 (10.6%)
2 (n, %) 19 (22.6%) 20 (23.5%)
COO, n = 82 (n = 53) (n = 29) 0.018
GC (n, %) 27 (32.9%) 7 (8.5%)
N-GC (n, %) 26 (31.7%) 22 (26.8%)
June 2022 | Volume 12 | Article
Chi-square test was performed in order to find the association between the outcome and the specified clinical status of the patients suffering from DLBCL.
TABLE 2 | Comparison of patients regarding to the two clinical centers where the FDG PET/CT examinations were performed.

Variables Center 1(Pécs) Center 2 (Kaposvár) p-value
(n = 41) (n = 44)

Clinical outcome, n = 85 0.487
No Progression or Remission (n, %) 25 (29.4%) 30 (35.3%)
Progression within 24 months (n, %) 16 (18.8%) 14 (16.5%)
Lymphoma stage, n = 85 0.877
1 (n, %) 6 (7%) 4 (4.7%)

2 (n, %) 11 (12.9%) 11 (12.9%)

3 (n, %) 10 (11.8%) 7 (8.2%)

4 (n, %) 14 (16.5%) 22 (25.9%)

R-IPI, n = 85 0.988
0 (n, %) 4 (4.7%) 4 (4.7%)

1 (n, %) 18 (21.2%) 20 (23.5%)

2 (n, %) 19 (22.6%) 20 (23.5%)

COO, n = 82 (n = 41) (n = 41) 0.654
GC (n, %) 18 (22%) 16 (19.5%)

N-GC (n, %) 23 (28%) 25 (30.5%)
820136
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relapsed within 24 months. In summary, after the end of therapy,
30 patients had detectable metabolically active tumor tissue and
relapsed within 24 months (Figure 1).

Statistical Analysis
Using the data of the chi-square test, a significant association
between COO, R-IPI, or stages and the specified groups was
identified. There were significantly more patients in group 1 with
non-GCB subtype, who had higher R-IPI values and stages.
There was no significant difference between the sexes and
between the groups. The clinicopathological features of
patients are described in Table 1. In addition, patients were
divided on the basis of the center where the [18F]FDG PET/CT
scan was performed. No association between the two above-
specified clinical outcomes (based on 2-year EFS), R-IPI, stages,
or COO and the center where the examinations were performed
was identified (Table 2).
Frontiers in Oncology | www.frontiersin.org 6
Automated Machine Learning Analysis and
Biomarker Identification
Automated machine learning yielded 66% sensitivity, 77%
specificity, 78% positive predictive value, 70% negative
predictive value, 71% accuracy, and 0.74 AUC single-center
cross-validation performance in Center 1.

Feature ranking revealed that the most important features for
building 2-year EFS prediction are as follows: max diameter
(9%), NGTDM busyness (9%), TLG (8%), TMTV (8%), and
NGTDM coarseness (5%). The distributions of these parameters
are plotted on violin plots (Figure 2).
Independent Validation of
Prediction Model
The predictive model built on the Center 1 dataset yielded 79%
sensitivity, 83% specificity, 69% positive predictive value, 89%
FIGURE 2 | The violin plot (R: A Language and Environment for Statistical Computing, version 4.04., using package ggplot2, version 3.3.3) shows the values of the
prominent features to predict 2-year event-free survival.
June 2022 | Volume 12 | Article 820136
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negative predictive value, 82% accuracy, and 0.85 AUC by
evaluating the Center 2 dataset. See Figure 3 for the ROC
curve of the independent validation performance over Center 2
cases. See Figure 4 for the Kaplan–Meier curve of the machine
learning prediction vs. EFS over samples of Center 2.
DISCUSSION

DLBCL is a heterogeneous disease at many levels with diverse
genetic features and variable clinical outcomes (2, 7, 27).
Although DLBCL is potentially curable with standard
treatment, there is an urgent need for new therapies since most
Frontiers in Oncology | www.frontiersin.org 7
refractory or relapsed patients will eventually die from the
disease. Based on available data, about 40% of patients either
will be resistant to the initial line of therapy or will relapse after
the initial response. The majority of these patients cannot be
salvaged by high-dose chemotherapy followed by ASCT and
eventually will succumb to their disease. A better understanding
of the pathogenesis of disease could help us understand the
unique characteristics and the course of different subtypes of
disease. Tremendous progress has been made over the past
20 years to identify the subtypes of DLBCL based on the COO,
which carry significant impact on the prognosis of patients. In
2000, Alizadeh et al. (28) performed gene expression profiling
with cDNA microarrays to explore the molecular heterogeneity
in DLBCL. They described at least two distinct groups within
FIGURE 4 | Kaplan–Meier curve of the machine learning (ML) model prediction vs. 2-year event-free survival in Center 2 cases. The ML model was trained with
Center 1 cases.
FIGURE 3 | Receiver operator characteristic (ROC) curve of the independent validation performance of the machine learning model trained over Center 1 cases to
predict 2-year event-free survival over Center 2 cases with an area under the ROC (AUC) of 0.85.
June 2022 | Volume 12 | Article 820136
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DLBCL: the GCB group and the activated B-cell-like (ABC) or
non-GCB group. This method has been widely recognized as the
first COO-based classification of DLBCL. In several randomized
clinical trials following the establishment of COO classification
by Alizadeh et al., DLBCL patients with the ABC subtype showed
significantly poorer outcome compared with those with the GCB
subtype, even when immune chemotherapy was used. In recent
years, COO classification has been not only established as a
prognostic factor but also used to target therapies for DLBCL
patients. The World Health Organization (WHO) Classification
for Lymphoid Malignancies requires the determination of COO
for every newly diagnosed DLBCL case. In recent years, next-
generation sequencing provides the possibility of more accurate
classification of DLBCL. New DLBCL subgroups have been
identified based on detailed molecular analysis, which may
provide a more accurate prognosis prediction and pave the
way for personalized target therapy (5, 7, 29).

In connection with these recent advances in the molecular
classification of lymphoma, several international trials have
examined whether pretreatment baseline PET or interim PET
imaging can separate poor-responder patients requiring
intensification of therapy from good responders to the
standard treatment (30–33).

The prognostic classification of DLBCL patients was
originally based on immunohistochemical and molecular
genetic differences and laboratory and anamnestic data. In
addition to these parameters, the results of [18F]FDG PET/CT
have a strong and crucial prognostic significance. For the
prognosis, the current evaluation of lymphoma and therapeutic
efficacy in patients relies on Deauville scoring, using hepatic [18F]
FDG uptake and mediastinal blood pool as reference value
(11, 34).

To optimize therapy for outcomes, many recently published
papers propose that in addition to the Deauville scoring and delta
SUV-max, other semi-quantitative metabolic functional
parameters from pretreatment functional imaging studies could
be used including TMTV and TLG, which have been mostly
studied in DLBCL (35–37).

In addition to these parameters, it would be important to
measure tumor heterogeneity in lymphoma, which may also lead
to a better prediction of prognosis. [18F]FDG PET/CT is one of
these non-invasive methods that examine the intratumor
metabolic heterogeneity at a macroscopic scale (19, 38). Many
studies in different tumor types predicted additional prognostic
outcomes from textural parameters describing tumor
heterogeneity (39). Tumor heterogeneity in PET can be
examined generally with the analysis of the histogram or the
spatial arrangement of voxel intensities extracted by
computational postprocessing techniques (40). These
parameters have been intensively studied in DLBCL and in
other tumor types and seem to be also useful to select high-
risk patients, but no definitive clinical metric proposal has been
formed yet (41–46).

We aimed to investigate the potential prognostic significance
of metabolic heterogeneity descriptors derived from primary
PET and compare their diagnostic value with conventional
Frontiers in Oncology | www.frontiersin.org 8
PET metrics, such as TMTV, TLG, and SUV-max, and clinical
data using multicenter automated machine learning analysis. We
hypothesized that we could identify and predict poor-responder
patients, who may require additional molecular investigations,
classification, and personalized, molecularly targeted treatment.
For this, we retrospectively assessed the [18F]FDG PET scans of
85 patients, which were performed in 2 clinical centers. The
predictive model built on data from the first center resulted in
79% sensitivity, 83% specificity, 69% positive predictive value,
89% negative predictive value, 82% accuracy, and an AUC of 0.85
on the second center dataset. Thus, based on clinical and imaging
parameters determined before starting treatment, we were able to
predict with high accuracy which patients would progress or
relapse within 2 years of diagnosis. It is also important to point
out that the cross-validation performance was better than within
Center 1 performance, which implies high robustness and
generalizability of the build model. It is important to
emphasize that the independent validation performance was
higher utilizing Center 2 than the within-Center 1 cross-
validation performance. This has multiple reasons: On the one
hand, Center 1 was further split into subsets to conduct the
cross-validation, which also decreases predictability due to lower
number of training subsets. On the other hand, the 100-fold
Monte Carlo cross-validation scheme performs splitting
randomly, which may result in training-validation subsets
being less similar than the similarity of Center 1 and Center 2
that represent reality, instead of a simulated distribution.

Our analysis determined prominent features to predict 2-year
EFS. Based on the applied feature ranking, three volume-based
biomarkers (TMTV, TLG, and max diameter of the largest VOI)
and two metabolic heterogeneity descriptors (NGTDM busyness
and coarseness) had the highest diagnostic significance. Volume-
based parameters refer to the extent of the lymphoma. The
prognostic value of semi-quantitative metrics such as TMTV and
TLG in lymphoma as well as in other tumor types has already
been demonstrated (35–37). In our study, the max diameter of
the largest lymphoma foci appears to be a better prognosis
predictor than TMTV (see Supplementary Material: Feature
importance). While these features may be redundant, their
overall importance compared to each other may be different
per cohort. Therefore, future investigations shall focus on
identifying which of these two features are clinically relevant.
While clinical parameters were included in our ML model
building process, feature ranking did not select them as
relevant for predicting 2-year survival, compared to imaging
features. As such, the highest-ranking clinical feature was R-IPI
with a ranking of 12 and with a relative importance of 2.53%.
This implies that 2-year survival can be predicted with imaging
features, which may act as surrogates of, albeit being superior to
clinical parameters.

According to the IBSI “Textures with large changes in grey
levels between neighboring voxels are said to be busy” (40). If the
busyness is high, the neighboring uptake change is sudden and
not smooth. The violin plot shows that group 1 with poor
prognosis has higher busyness values. This may be explained
by the fact that lymphoma cells are embedded in a necrotic,
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sometimes hypoxic, periphery, which may be a key point of the
ineffectiveness of therapy, also because the chemotherapeutic
agent may experience difficulty penetrating these regions.
Furthermore, gray-level differences in coarse textures are
generally small due to large-scale patterns. Summing
differences gives an indication of the level of the spatial rate of
change in intensity. This means that high coarseness is associated
with larger regions in the lesions, while low coarseness indicates
that the texture subregions are smaller. The violin plot shows that
group 1 with poor prognosis has lower coarseness values.
Coarseness can be associated with cell diversities within the
volume regarding their different FDG uptake, which can be due
to less proliferative tumor cells, or an inhomogeneous tumor
mass with necrosis and hypoxic area.

In a study predicting 2-year EFS in DLBCL, low gray-level
emphasis provides better prognosis prediction than TMTV, or
coarseness and busyness (41), which we assume is due to
population differences. Therefore, to determine the real
importance of these features, prospective studies with more
patients shall be performed.

In other—mostly solid—tumor types, coarseness was
highlighted in predicting the outcome of locally advanced
rectum cancer (45). In another study, both coarseness and
busyness proved to be more predictive than other SUV-based
parameters in non-small cell lung cancer (47).

Among SUV-based metrics, SUV-max is the most used
parameter in routine diagnostics. With SUV-max, indolent and
aggressive lymphomas could be well-differentiated, and this
metric is also correlated with tumor histology (proliferation
rate) and blood levels of enzymes, for example, KI-67 status
and LDH (48). Several research groups have already
demonstrated the diagnostic value of SUV-max in lymphoma
during primer staging; in one of them, SUV-max proved to be
more prognostic than TMTV or TLG (49). However, in our
study, these parameters were less important features than others.
We hypothesized that the SUV measurements are more
influenced by the instrumentations and environmental factors
than volume-based and textural parameters.

In addition to PET parameters, clinical parameters are also
crucial in the prediction of prognosis, and this fact was
confirmed by our statistical approach even if these parameters
had lower ranks than some PET parameters. Using chi-square
test results, we found a significant relationship between the
DLBCL subtype groups and clinical and pathological
parameters such as R-IPI and COO. Patients with non-GCB or
higher R-IPI values have a significantly worse 2-year prognosis as
reported in many previous studies. The prognostic value and
diagnostic significance of COO and R-IPI have been known for a
very long time (4, 28). The COO can be easily determined in all
patients, mainly according to the Hans algorithm, and its
combination with TMTV has been suggested by some studies
(50). R-IPI proved to be more prognostic than TMTV in another
study (51). However, most of the studies use one or a maximum
of two metrics for prognosis assessment (50, 52). In contrast,
machine learning-built prediction models have the potential to
deliver more in-depth associations among clinical and PET data
(53–55).
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This study had limitations. First, we analyzed only the largest
VOI in each patient with radiomics. Nevertheless, prior studies
routinely analyzed the largest VOIs in DLBCL patients and
yielded promising results (41, 44). In addition, radiomic
analysis is generally discouraged to be performed in small
lesions. Second, our patient counts were relatively low in both
Center 1 and Center 2 cohorts. Nevertheless, they were from
different camera systems, which allowed us to perform an
independent validation scheme of our predictive model.

With our dual-center study, we could demonstrate that
predicting 2-year progression-free survival in DLBCL patients
is feasible with high-precision building on imaging and clinical
parameters. This is in line with prior studies that utilize holistic
datasets to build so-called holomics prediction models with
machine learning (16, 25, 56). Given that our model yielded a
balanced sensitivity and specificity, it could be a viable option to
personalize the patient’s treatment. In the era of personalized
medicine, with more detailed and specialized molecular
diagnostics—especially in DLBCL—this could help clinicians to
manage their patients more adequately and effectively.

CONCLUSION

Based on our dual-center retrospective analysis, predicting 2-
year EFS built on imaging features is feasible by utilizing high-
performance automated machine learning. Subsequent DLBCL
studies shall further evaluate the identified imaging biomarkers
and their predictive performance in other clinical settings.
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