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ABSTRACT: Information on design principles governing
transcriptome changes upon transition from safe to hazardous
drug concentrations or from tolerated to cytotoxic drug levels
are important for the application of toxicogenomics data in
developmental toxicology. Here, we tested the effect of eight
concentrations of valproic acid (VPA; 25−1000 μM) in an
assay that recapitulates the development of human embryonic
stem cells to neuroectoderm. Cells were exposed to the drug
during the entire differentiation process, and the number of
differentially regulated genes increased continuously over the
concentration range from zero to about 3000. We identified
overrepresented transcription factor binding sites (TFBS) as
well as superordinate cell biological processes, and we
developed a gene ontology (GO) activation profiler, as well
as a two-dimensional teratogenicity index. Analysis of the transcriptome data set by the above biostatistical and systems biology
approaches yielded the following insights: (i) tolerated (≤25 μM), deregulated/teratogenic (150−550 μM), and cytotoxic (≥800
μM) concentrations could be differentiated. (ii) Biological signatures related to the mode of action of VPA, such as protein
acetylation, developmental changes, and cell migration, emerged from the teratogenic concentrations range. (iii) Cytotoxicity was
not accompanied by signatures of newly emerging canonical cell death/stress indicators, but by catabolism and decreased
expression of cell cycle associated genes. (iv) Most, but not all of the GO groups and TFBS seen at the highest concentrations
were already overrepresented at 350−450 μM. (v) The teratogenicity index reflected this behavior, and thus differed strongly
from cytotoxicity. Our findings suggest the use of the highest noncytotoxic drug concentration for gene array toxicogenomics
studies, as higher concentrations possibly yield wrong information on the mode of action, and lower drug levels result in
decreased gene expression changes and thus a reduced power of the study.

■ INTRODUCTION

Many new test systems for neurodevelopmental disturbances
are currently being developed.1−4 In addition to classical
endpoints, toxicogenomics methods have been used to
characterize the assays and to classify toxicants. For regulatory
purposes, the descriptive data from, e.g., transcriptomics or
metabolomics approaches need to be converted to quantifiable
measures allowing one to compare and predict the hazard of
chemicals and drugs.1,3,5 First attempts to determine bench-
mark concentrations on the basis of transcriptomics data have
already been undertaken in vivo.6,7 Their application to in vitro

test systems is expected to yield important information about
low-dose toxicant effects.
The developing central nervous system is one of the most

frequent targets of systemic toxicity.8,9 Moreover, testing of
nervous system development and possible long-term effects is
particularly challenging. Animal testing for example according
to OECD guidelines 414 (2-generation reproduction) or 426
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(developmental neurotoxicity) is time-consuming and labor
intensive. The testing capacities are by far not sufficient to test
all compounds in vivo that should be studied for reproductive
toxicity or developmental neurotoxicity (DNT) in the context
of REACH. Moreover, toxicological risk assessment needs to be
adapted to the modern needs of the pharmaceutical as well as
the chemical industry.10 Between 1999 and 2011, 19% of the
279 new approved drugs in Europe were reported to have
postapproval safety-issues, and 5 drugs were withdrawn from
the market.11 The chemical industry, however, is confronted
with the REACH initiative asking them to provide more
detailed toxicological data regarding new compounds as well as
on chemicals already on the market. Consequently the National
Research Council of the USA has published their vision of
Toxicology for the 21st century in 200712−14 in which they
favor the development of mostly human based in vitro test
systems, which can be used for high-throughput screening and
for high content endpoints such as for transcriptomics
approaches.
Cultures of differentiating pluripotent stem cells, such as

human embryonic stem cells (hESC) or human induced
pluripotent stem cells,15 offer unique possibilities of studying
the very early steps of human development that lead to the
formation of germ layers and primordial tissues. This
opportunity was seized by the European Commission-funded
research consortium for the use of embryonic stem cell-based
novel alternative tests (ESNATS) for the prediction of toxicity
of drug candidates (www.esnats.eu). Within this context,
several tests have been established that recapitulate critical
processes of early neuronal development in vitro.4,16−23

Recently, two positive control compounds of developmental
neurotoxicity, valproic acid (VPA) and methylmercury, have
been tested in four test systems. Both test compounds induced
characteristic gene expression alterations.24 The use of two
compound concentrations indicated that the number of altered
genes and the extent of deregulation strongly depend on the
concentration of the test compound. The highest concentration
used in this previous study was a benchmark concentration
(BMC) that reduced overall cell viability by not more than
10%. This procedure was chosen to avoid testing of cytotoxic
concentrations that might generate unspecific gene expression
patterns due to cell death. However, our previous study also
showed that exposure to a concentration that reduces viability
by exactly 10% is difficult to perform. Reduction of viability
slightly differs from experiment to experiment. In principle, this
may cause unspecific cell death associated gene expression
signatures. However, it has not yet been tested if cytotoxic
concentrations really cause a death associated expression
signature and how the transcriptome changes are affected
qualitatively by concentrations deviating from the BMC.
Comparisons between test systems and test compounds in

this earlier study24 suggested that different toxicants may
regulate the same master transcription factors. As such factors
define cell identity25 and they show coordinated regulation in
different pathologies,26,27 it may be assumed that they also play
a role in developmental toxicity, and the threshold of their
activation may determine the threshold of teratogenicity.
To address the above issues, we used the UKN1 test system

for more detailed experiments.24,28 In this assay, hESC
differentiate to neuroepithelial precursor cells (NEP) within 6
days, and they were exposed to VPA during the entire period of
differentiation. We used in this study eight concentrations of
VPA covering a range from completely nontoxic to strongly

cytotoxic and analyzed genome wide expression patterns. VPA
was chosen as a well-studied positive control compound of
developmental neurotoxicity.29,30 The data were analyzed by
classical biostatistical approaches, but we also developed
quantitative measures of developmental disturbance, based on
systems biology considerations. For instance, we quantified not
only alterations of individual gene ontologies (GO), as
pioneered by the Piersma lab,29,31 but we also addressed
superordinate cell biological processes to gain overall insight.
We report that concentrations at the uppermost limit of the
noncytotoxic range may be a reasonable compromise for gene
array classification studies because with such concentrations, (i)
the genes that indicate a teratogenic mode of action are
sufficiently deregulated, and (ii) dilution by unspecific
cytotoxicity associated genes only start to emerge.

■ MATERIALS AND METHODS
Materials. Gelatin, putrescine, selenium, progesterone, apotransfer-

in, glucose, insulin, and valproic acid were obtained from Sigma
(Steinheim, Germany). Accutase was from PAA (Pasching, Austria).
FGF-2 (basic fibroblast growth factor) and noggin were obtained from
R&D Systems (Minneapolis, MN, USA). Y-27632, SB-43154, and
dorsomorphine dihydrochloride were from Tocris Bioscience (Bristol,
UK). MatrigelTM was from BD Biosciences (Massachusetts, USA). All
cell culture reagents were from Gibco/Invitrogen (Darmstadt,
Germany) unless otherwise specified.

Neuroepithelial Differentiation. Human embryonic stem cells
(hESC) (H9 from WiCells, Madison, Wi, USA) were differentiated
according to the protocol published by Chambers and colleagues32

with the following modifications. Instead of using 500 μM noggin, we
used the combination of 35 μM noggin and 600 nM dorsomorphine
together with 10 μM SB-431642 for dual SMAD inhibition as
described earlier.28,33 This was used to prevent BMP and TGF
signaling, and thus to achieve a highly selective neuroectodermal
lineage commitment. For handling details, see Supporting Information
of.28 All differentiations were performed in 6-well plates containing 2
mL of medium each.

Experimental Exposure and Resazurin Viability Assay.
Treatment with valproic acid (VPA) was done with the indicated
concentrations from 25 μM to 1000 μM VPA dissolved in PBS. DoD0
medium was prepared as indicated in ref 28 and supplemented with
the indicated concentrations of VPA. All concentrations were prepared
from a 1 M stock solution (water). Medium supplemented with VPA
was changed to DoD1, 2, and 4. In order to determine cytotoxicity, a
resazurin assay was performed on DoD6 exactly as described
previously.17,24

Affymetrix Gene Chip Analysis. After the resazurin assay, the
medium was removed, and the cells were lysed in RNA protect
solution (Quiagen). Affymetrix chip-based DNA microarray analysis
(Human Genome U133 plus 2.0 arrays) was performed exactly as
described earlier. 24

Biostatistics. The following analyses were performed using the
statistical programming language R-version 3.0.1. For the normal-
ization of the entire set of 30 Affymetrix gene expression arrays, the
extrapolation strategy (RMA+) algorithm34 was used that applies
background correction, log2 transformation, quantile normalization,
and a linear model fit to the normalized data in order to obtain a value
for each probe set (PS) on each array. As reference, the normalization
parameters obtained in earlier analyses24 were used. After normal-
ization, at each concentration the difference between gene expression
and corresponding controls was calculated (paired design). Replicates
of controls were averaged before subtracting from corresponding
exposed samples.

Differential expression was calculated using the R package limma.35

Here, the combined information of the complete set of genes is used
by an empirical Bayes adjustment of the variance estimates of single
genes. This form of a moderated t test is abbreviated here as the limma
t test. The resulting p-values were multiplicity-adjusted to control the
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false discovery rate (FDR) by the Benjamini−Yekutieli procedure.36
As a result, for each concentration, a gene list was obtained, with
corresponding estimates for log fold change and p-values of the limma
t test (unadjusted and FDR-adjusted).
Data Display Algorithms. Heat maps were used to visualize

matrices of gene expression values. Color encodes the magnitude of
the values, ranging from blue (low) to yellow (high). Principal
component analysis (PCA) plots were used to visualize expression
data in two dimensions, representing the first two principal
components, that is, the two orthogonal directions of the data with
highest variance. The percentages of the variances covered are
indicated in the figures. The software R, version 3.0.1, was used for all
calculations and display of PCA and heat maps (R_Development_-
Core_Team 2012).37 The calculation and display of toxicity curves
was done using GraphPad Prism 5.0 (Graphpad Software, La Jolla,
USA). The Venn diagrams for the comparison of gene expression,
gene ontology (GO) terms, and transcription factor binding sites
(TFBS) between test systems were constructed according to Chow
and Rodgers.38 The size of circles and areas was chosen proportional
to the number of elements included if possible, i.e., if there is no empty
section (zero in Venn diagram).
k-Means Clustering. Before clustering, we applied some adjust-

ments to the data. First, we filtered out all of the PS with too small

variation. For this, we used a standard deviation cutoff of 0.25. Second,
we standardized the expression measurements for each PS, by
subtracting its mean and dividing with its standard deviation.
Standardization was required to capture better the temporal patterns
of the genes. The clustering itself was performed using the k-means
function from R.

Definition of Quantification Indices. For the index of
overrepresented GOs, the significantly regulated genes were identified
for each drug concentration. Then, the sum of oGO among up-
regulated PS (at a given drug concentration), of oGO among down-
regulated PS, and among all regulated PS was calculated. This sum was
divided by 2 (to account for redundancies in this sum) to arrive at the
used index number. For the gene regulation index, all genes were
sorted according to their fold change relative to untreated controls.
Then, for each condition, the top 100 genes were selected (highest
fold changes, irrespective of the direction of regulation). For each of
these genes, the negative log of the FDR corrected p-value was
determined, and then, the sum of these 100 values was formed. The
teratogenicity index is expressed by two coordinates in the plane
formed by the index of oGOs and the gene regulation index.

Gene Set Enrichment Analysis. The gene ontology group
enrichment was performed using R-version 3.0.1 with the topGO
package,39 and only results from the biological process ontology were

Figure 1. Transcriptome changes of neurally differentiating stem cells induced by increasing VPA concentrations. (A) Differentiation scheme of the
cell model used in this study. Embryonic stem cells (hESC) were converted in six days of differentiation (DoD6) to a pure population of
neuroepithelial precursors (NEP). Adapted from ref 24. (B) Viability assay using resazurin reduction. The cells were differentiated and treated as
indicated in A. On DoD6, resazurin reduction was measured, and viability is given as a percentage of untreated controls. Data are the means ± SD of
three experiments. (C) Cells as treated in B were used for whole transcriptome analysis. The result is displayed in the form of a two-dimensional
principal component (PC) analysis diagram. Each point represents one experiment (= data from one microarray), and the color coding indicates the
concentration of VPA (in μM) used in the experiment. (D) Heat map of differentially regulated genes from 3 independent experiments. All data sets
(columns) were sorted by similarity clustering. The absolute gene expression levels (log2-scaling) of the 1000 transcripts with highest variance were
color-coded for display.
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kept. The category was considered only if it was annotated with more
than 100 genes, and the minimal enrichment p-value across all
concentrations was below 0.001.
A new biostatistical method for measuring activation profiles of GO

groups across all concentrations (up- or down-regulation) was applied.
The method uses a segmentation test40 to identify significant
enrichment with up- or down-regulated genes (restricted by p-value
<0.05), comparing each concentration with the controls. The large
number of enrichment tests is FDR-adjusted according to the two-step

procedure by Benjamini et al.41 to limit the FDR to 1%. Each GO
group obtains a corresponding activation profile. The profile 0++++++
means that the corresponding gene set is significantly enriched with
up-regulated genes at the second lowest concentration and for all
higher concentrations. Analogously, a gene set with profile 00000-- is
enriched with down-regulated genes only at the two highest
concentrations.

Transcription factor binding site enrichment (TFBS) was
performed using the PRIMA algorithm (http://acgt.cs.tau.ac.il/

Figure 2. Concentration-dependence of expression changes and biological grouping of probe sets after exposure to VPA. (A) Number of
differentially expressed probe sets (PS) compared to the untreated control (p < 0.05, BY-corrected; fold change (FC) >2). Left panel (red)
represents the amount of up-regulated PS and the right panel (green) the amount of down-regulated PS. (B) The PS identified in A to be regulated
by 450 μM VPA (up, n = 554; down, n = 110) were examined for their regulation at all drug concentrations. The average FC of this set of up-
regulated PS is shown in the left panel for different VPA concentrations; the data for the down-regulated PS are in the right panel. (C) Significantly
up- and down-regulated PS and their potential upstream regulators were identified by bioinformatic approaches. The numbers of oGOs (left panel)
and TFBS (right panel) are displayed for 350, 550, and 1000 μM VPA. Red represents the GO (left panel) and TFBS (right panel) overrepresented
among up-regulated PS and green from down-regulated PS. (D) The oGOs determined in C were classified in superordinate cell biological processes
by expert knowledge. The identified processes are given in the middle; the left panel refers to up- and the right panel down-regulated PS.
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prima/)42 provided in the Expander software suite (version 6.04;43

http://acgt.cs.tau.ac.il/expander/) as described in ref 24. A tran-
scription factor was included in heat maps or Venn diagrams only if
the minimal enrichment p-value across all concentrations was below
0.001.

■ RESULTS
Establishment of a Concentration Dependent Gene

Expression Database for Valproic Acid. In order to
investigate concentration dependent gene expression changes
induced by VPA, a recently established hESC-based in vitro
system, UKN1, was applied. This test system recapitulates the
stage of human neuroectodermal induction leading to the
formation of neural ectodermal progenitor cells (NEP).28,32

These developmental steps take place during a six days process,
which is covered by exposure to the test compound (Figure
1A). In order to define a concentration range for gene array
analysis, viability was tested in a concentration range from 25 to
1000 μM VPA. To this end, differentiating cells were treated
with the indicated concentrations of VPA, and a resazurin
viability assay was performed. Concentrations up to 550 μM
VPA appeared to be noncytotoxic, whereas viability was
decreased by 20−30% with 800 and 1000 μM (Figure 1B).
Higher concentrations could not be used, as otherwise mRNA
extractions were not feasible anymore. On the basis of the
cytotoxicity tests, these eight concentrations (25, 150, 350, 450,
550, 650, 800, and 1000 μM) of VPA and untreated controls
were analyzed by DNA microarray (DMA) analyses (Affyme-

trix). Exposure conditions exactly the same as those for the
cytotoxicity experiments were used (Figure 1A).
Principal component analysis (PCA) illustrates a convincing

concentration progression model (Figure 1C). The data of
three independent experiments per concentration clustered
closely together and moved into the direction of the first
principal component with increasing concentrations. An
exception was the concentration of 650 μM VPA, which
showed a high degree of variability (Figure 1C). This
concentration was in the range of beginning cytotoxicity.
Accordingly, we observed high variability in the resazurin assay
between the different experiments (Figure 1B). Therefore, this
concentration was excluded from the further analysis shown in
the main figures, but evaluations with 650 μM are available in
the Supporting Information (Table S1). Further, we generated
heat maps based on z-scores and corresponding dendrograms
(Figure S1, Supporting Information) calculated by hierarchical
clustering (Figure 1D). This analysis confirmed the results from
the PCA (Figure 1C) that the different experimental replicates
cluster closely together, apart from 650 μM that was already
identified as an outlier.
For the following analysis of differential gene expression, the

Benjamini-Yekutieli false discovery rate adjustment (BY-FDR)
of the p-values was performed independently for each data set
of a given drug concentration. This method has the advantage
that the results do not vary if one concentration is added to or
left out from the analysis. However, this approach can

Figure 3. Overlap of differentially expressed PS and TFBS at increasing VPA concentrations. (A) The number of significantly up (upper panel)- and
down-regulated (lower panel) PS (cut off: p-value <0.05, BY corrected and FC > 2) for each concentration were compared to the PS of the next
higher concentration. The overlap between the concentrations is displayed as Venn diagrams. (B) Comparison of up- and down-regulated PS (and of
TFBS overrepresented among these PS) between the indicated concentrations. Overlaps are displayed as Venn diagrams with absolute numbers of
altered elements in the circles, and the number of nonaltered elements in the lower right corner. The percentage number refers to elements affected
by 1000 μM only, relative to all affected elements.
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introduce a bias since BY-FDR is more liberal in the case of
large numbers of differentially expressed genes. To get an
overview over the extent of the bias, the number of
differentially up-regulated and down-regulated genes was
calculated for three types of adjustment (no adjustment, per-
concentration FDR adjustment, and overall FDR adjustment)
(Figure S2, Supporting Information). As the differences
between per-concentration and overall adjustment were not
substantial, the analysis throughout the manuscript is based on
per concentration adjustment. One reason for the small
differences is that genes were selected not only based on p-
value cut-offs but also required a >2-fold change.
After FDR correction, no significantly altered PS were found

for the two lowest tested VPA concentrations of 25 and 150
μM (Figure 2A). Between 350 and 1000 μM VPA, the numbers
of up- or down-regulated probe sets (PS) gradually increased
(Figure 2A and Table S1, Supporting Information). From these
data, it is not clear, whether genes regulated, e.g., at 450 μM,
were not at all regulated at lower concentrations or whether
they were regulated but did not pass our stringent selection
threshold (p < 0.05 and fold change > 2). Therefore, we
selected the PS that were regulated by 450 μM VPA and
determined their average fold change (FC). Therefore, we
determined the FC of the same set of PS at lower and higher
concentrations (Figure 2B). As a complementary approach, we
selected all PS regulated significantly (p < 0.05) at 450 μM,
with or without a 2-fold cutoff of the FC. Then, we examined

the distribution of the p-values of all these PS at lower drug
concentrations (Figure S3, Supporting Information). From
these additional statistical analyses, we conclude that a
subgroup of PS is only regulated at higher drug concentrations
and not at all at low exposure; another subgroup is regulated
concentration dependently, i.e., to a lower extent at low drug
concentrations and to a higher extent at high concentrations of
VPA.
Next, we analyzed the significantly (p-value <0.05 after FDR

correction) regulated PS for overrepresented gene ontologies
terms (oGO). For this, we used the differentially regulated PS
of 350 (low), 550 (medium), and 1000 (high) μM VPA. This
GO enrichment analysis and comparison across drug
concentrations revealed that also on the level of oGOs the
number increased with increasing VPA concentrations (Figure
2C and Table S2, Supporting Information). Next, the identified
oGOs were further assigned to superordinate cell biological
processes as detailed in Supporting Information (Table S2).
For the up-regulated PS, it became clear that all identified
processes were already changed with low VPA concentration.
In addition, only a few more oGOs were identified additionally
with higher concentrations (Figure 2C), and these additional
oGOs all fell into the same superordinate cell biological
processes (Figure 2D). Surprisingly, this finding applies also to
stress pathways and the process apoptosis/death. For example,
cell death processes were overrepresented already at low
concentrations, and there was no new oGO emerging in this

Figure 4. Overlap of GOs affected by low, medium and high VPA concentrations. (A) Up-regulated and (B) down-regulated PS were analyzed for
oGO, and then the identified oGO were compared between drug concentrations. The overlaps of oGO at VPA concentrations of 350 μM (low), 550
μM (medium), and 1000 μM are displayed as Venn diagrams. Right: The oGOs from specified areas of the diagrams (see legend; 550 ∧ 1000 means
overlap area of 550 μM and 1000 μM circles) were grouped according to superordinate cell biological processes, and the absolute numbers within
these groups are displayed.
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category at very high concentrations. For the down-regulated
PS, few superordinate cell biological processes were identified,
and these processes only start to be down-regulated with
medium VPA concentration. They remained changed up to the
highest concentrations (Figure 2D). Especially, neuronal
pathways were down-regulated from 550 μM on. In summary,
these data suggest that key biological processes start to be
altered already at low and medium drug concentrations, and
hardly any further processes are changed at high (cytotoxic)
concentrations.
To investigate this finding by a different approach, we

generated Venn diagrams from the data on concentration
progression. This data display illustrated that most genes
altered at lower concentrations are also altered at higher
concentrations (Figure 3A and Table S3, Supporting
Information). More details on the concentration progression
are shown in dendrograms of up- and down-regulated genes
(Figure S1, Supporting Information): at higher concentrations,
additional genes were deregulated, and many of the genes
deregulated at low concentrations to a small extent show lower
p-values (stronger deregulation) at higher concentrations. Over
50% of the differentially expressed PS were induced with high
drug concentrations only (Figure 3B and Table S4, Supporting

Information). This situation was different for overrepresented
transcription factor binding sites (TFBS) (Figure 3B and Table
S4, Supporting Information). A relatively large fraction of all
TFBS found in this study at any concentration was already
overrepresented at low drug levels of 350 μM. This was
particularly obvious for the overrepresented TFBS of down-
regulated genes, illustrated in Figure 3B. In summary, the
regulation of PS and TFBS showed a characteristically different
behavior: while many PS were regulated at high VPA
concentrations only, the corresponding TFBS were already
changed at low concentrations.
Also, oGO between different VPA concentrations were

compared in a Venn diagram to visualize the degree of overlap.
This analysis showed that oGO groups behave more similarly
to TFBS than to PS (Figure 4 and Table S5, Supporting
Information): For up- and down-regulated genes, most oGO
groups started to be overrepresented at 350 μM, and relatively
few oGO groups are added at higher concentrations. These
findings are illustrated at higher detail in dendrograms (Figure
S1, Supporting Information). A relatively large fraction of oGO
groups overrepresented at 350 μM overlaps with oGO groups
overrepresented at 550 and 1000 μM (n = 55). For down-
regulated genes, oGO groups began to emerge at slightly higher

Figure 5. Unbiased k-means clustering of concentration−response curves. (A) Display of the 10 clusters generated from different VPA
concentration−response curves of the gene expression data sets. (B) The number of PS in each cluster (solid bars) and oGOs within each cluster
(hatched bars) are displayed. Red, up-regulated; green, down-regulated; gray, nonmonotonic. (C, D) All oGOs containing less than 1000 genes are
displayed for clusters 5 and 10.
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concentrations, with only 6 oGO groups being overrepresented
at 350 μM. The overall features remained the same: 22 of the
25 GO overrepresented at 1000 μM were already over-
represented at 550 μM (Figure 4B). Again, we also classified
the oGOs in superordinate cell biological processes. Also, on
these higher levels, the results were confirmed. Taken together,
these analyses illustrate different progression models for genes
on the one side and oGO groups and TFBS on the other.
Increasing VPA concentrations lead to substantial numbers of
additionally up- or down-regulated genes. However, most oGO
groups and TFBS were already overrepresented at 350 or 450
μM with relatively little added at higher concentrations.
Unbiased k-Means Clustering of PS Concentration−

Response Profiles. The previous analysis focused on the

differentially expressed PS for each concentration compared to
the control. This informs only to a limited extent on the
concentration−response behavior of the individual PS. There-
fore, we performed an unbiased k-means clustering of the
concentration−response data sets for each gene. Using this
method, we grouped the responses into clusters of 5 different
up-regulation responses and 5 types of down-regulations
(Figure 5A and Table S6, Supporting Information). The
number of PS falling into each cluster and the number of oGOs
among these PS are given in Figure 5B. Most concentration−
response courses showed a monotonic pattern, but clusters 1, 5,
and 6 contained PS with nonmonotonic regulation patterns.
Together, the latter clusters comprised 6.8% of all PS (n =
9624) considered in the cluster analysis.

Figure 6. Concentration-dependent regulation of GOs and of superordinate cell biological processes. The test system was exposed to various
concentrations of VPA for 6 days. Then, transcriptome analysis was performed, and differentially expressed genes were identified as in Figure 1. The
data sets were examined for overrepresentation of any GO, and GO-based concentration−response profiles were generated as detailed in Table S8
(Supporting Information). Examples for transcriptome activation responses on the level of GO are shown. (A) Quantitative GO activation score was
calculated by multiplying the percentage of genes within the GO that was found to be significantly regulated with the average fold change of these
regulations. Positive values reflect oGO among up-regulated genes, and negative values indicate oGO among down-regulated genes. The names of
the example GOs are indicated in the figures. Note the different concentrations at which a GO is first turned on and the different types of
concentration−response behavior at high concentrations. (B). All GO profiles among up- and down-regulated genes were sorted, and the following
three groups were selected for further analysis: low (GO found to be up-regulated at all VPA concentrations starting from 150 μM, clusters 0+++++
+ and 00+++++); intermediate (GO found to be up-regulated at all VPA concentrations higher than 350 μM, clusters 000++++ and 0000+++); and
high (GO found to be up-regulated only at 800 and 1000 μM, clusters 00000++ and 000000+). Then, the GO were assigned to superordinate cell
biological processes (e.g., migration and adhesion), and we calculated how many of all oGO in the low−medium−high groups belonged to the
biological processes. For easier overview, a color code was applied with no color for values <10%, yellow for 10−20%, orange for 20−30%, and red
for >30%.
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Clusters 5 and 10 were chosen for further investigation, as
they contained the genes that were regulated at high drug
concentrations (800 and 1000 μM) only. The two clusters
contained a low number of differentially regulated PS.
Nevertheless, a relatively high number of GO terms was
overrepresented among these genes (Figure 5B and Table S7,
Supporting Information). The oGO identified were relatively
heterogeneous, and no dominant superordinate cell biological
process was identified. In particular, there was no over-
representation of genes relating to cell death, cell stress, or
degeneration (Figure 5C,D). This result was well in line with
our earlier data. To further follow up on this, and to investigate
which types of responses were triggered at which drug
concentration, we chose in the following analyses a more
targeted approach to specifically investigate the concentration
dependency of the regulation of biological processes.
Gene Ontology Activation Profiles to Identify Bio-

logical Processes Related to Cytotoxic Drug Concen-
trations. All analyses in the previous paragraphs (Figure 2 to
Figure 5) are driven by single gene results. First, genes were
combined to clusters with respect to similar expression
trajectories across the whole concentration range. Then
functional gene groups (e.g., GO groups) were analyzed for
overrepresentation with genes from these identified clusters. A
meaningful alternative is to use a GO group (or any other
functional gene group representing, e.g., a biological process) as
the starting point for the analysis. Therefore, we applied a new
biostatistical method that analyzes the activity (up- or down-
regulation) of genes annotated to a GO group across all
concentrations. The method uses a segmentation test40 to
identify significant enrichment with up- or down-regulated
genes (restricted by p-value <0.05), comparing each concen-
tration with the controls. Each GO group obtains its own single
characteristic activation profile. For example, the profile 0++++
++ means that the corresponding gene set is significantly
enriched with up-regulated genes at the second lowest
concentration and for all higher concentrations but not at the
lowest concentration. Analogously, a gene set with profile
00000-- is enriched with down-regulated genes only at the two
highest concentrations but not at the five lower concentrations.
The result of all GO activation profiles is given in Supporting
Information (Table S8). For visualization of the GO activation
profiles, we calculated a quantitative GO activation score and
plotted the concentration−response profiles for some exem-
plary GOs (Figure 6A). Next, we classified the oGOs identified
with this method in superordinate biological processes as
described before.
The concentration dependence of the regulation of super-

ordinate biological processes indicated three major groups:
those mainly affected at high concentrations (00000++ and
000000+), those activated already at medium concentrations
and then being maintained (000++++ and 0000+++), and
finally those represented already among low concentrations and
remaining up-regulated at higher concentrations (0++++++
and 00+++++) (Figure 6B). These findings agreed well with
those obtained by other analytical approaches, such as unbiased
k-means clustering (Figure 5) or comparison of the
concentration dependence of oGO and PS (Figures 2 and 4).
Application of the GO profiler analysis to the concentration
data illustrates that only two key biological processes
(catabolism and cell division) were overrepresented exclusively
at cytotoxic concentrations (800 and 1000 μM) without being
enriched in the noncytotoxic range (Figure 6B and Table S8,

Supporting Information). GO groups involved in catabolism of
DNA and proteins were overrepresented for the up- and down-
regulated genes at cytotoxic concentrations. Moreover, cell
division associated genes were overrepresented for the down-
regulated genes only at 800 and 1000 μm VPA. The
superordinate biological processes representing best the
known mechanism of action of VPA, protein acetylation and
epigenetic processes, were found (as expected) to start at
noncytotoxic concentrations (Figure 6B and Table S8,
Supporting Information). Another process clearly activated at
noncytotoxic concentrations is migration and adhesion (Figure
6B and Table S8, Supporting Information). Other biological
processes that are of interest for the mechanism of action of
VPA are development and differentiation, metabolism, signal
transduction, and response to external compound. GO groups
belonging to these processes were overrepresented in the
noncytotoxic but also the cytotoxic concentration range.

Development of a Measure of Teratogenicity to
Quantitatively Compare Drug Concentrations. The
distinct concentration−response behavior of the regulation of
genes vs GO and superordinate cell biological processes
suggested that these features may be used to develop a
quantitative measure of teratogenic activity. For this purpose,
the effect of each drug concentration was defined by two
measures, the gene regulation index and the GO over-
representation index. When these values were plotted onto a
coordinate system formed by the two indices, it became evident
that the distance from the origin was a useful measure of
teratogenicity (Figure 7A). This way of data presentation also
clearly revealed that VPA concentrations between 125 and 450
μM resulted in a progressive deviation of normal differentiation
(increasing numbers of oGO among deregulated PS). At higher
concentrations, the extent of gene deregulation increased, but
oGOs remained fairly constant. The concentrations marking
the distinct increase of teratogenicity according to this
presentation correlate well with the VPA plasma concentrations
associated with human or animal birth defects. The curve
formed by the teratogenicity index data (Figure 7A) differed
fundamentally from the cytotoxicity curve (Figure 1B). The
latter showed strong and progressive changes at high drug
concentrations, while the former did not change at high VPA
levels but rather at medium levels. Thus, it seems feasible to
define a specific teratogenicity measure that yields clearly
different information from plain cytotoxicity in the same assay.

■ DISCUSSION
In this study, we used a stem cell based test system that
recapitulates neural differentiation of hESC. In order to
elucidate the optimal concentration for toxicogenomics, we
challenged this test system with increasing concentration of the
well-known neurodevelopmental toxicants VPA. We found that
the number of differentially regulated PS continuously
increased but that up-targets like TFBS and functional gene
ontologies reach saturation already at the lower border of
intermediate concentrations. In addition, we show that with
clearly cytotoxic concentrations only few more superordinate
biological processes occur. Therefore, we conclude that the
most sensitive concentration for DNT toxicogenomic testing
would be the highest nontoxic concentration of a compound.
However, small deviations from this concentration will not
disrupt the results on the basis of oGO and TFBS. We present
here the development of the transcriptomics-based teratoge-
nicity index that exactly reflects this behavior for the
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comparison of deregulated PS and oGOs (Figure 7A).
Although transcriptomics is frequently applied in toxicology,
it has remained unclear how it is best used for toxicological
statements and predictions. Basic issues, such as the question of
appropriate concentrations, timing of exposure, and timing of
sampling, have not been addressed in a systematic and
quantitative manner. Only very few studies, mainly in the
field of carcinogenesis, have attempted to correlate the extent
or type of overall transcriptome changes with toxicological
predictions in a quantitative manner. For instance, Thomas and

colleagues6,7 have correlated benchmark doses based on GO
terms and classical pathology with cancer development. We are
not aware of any such study in developmental toxicology, and
our study is a first attempt in this direction, even though only a
single model compound, VPA,18,24,28 has been studied. Given
the astonishing dearth of data in the field, we feel that our study
is an important beginning but should not be overinterpreted.
Further data are required to see whether the response features
observed here are representative of a larger group of
developmental toxicants.
Not every cell system is equally suited for studies on design

principles of gene regulation.44 Our test system provided the
required homogeneity and synchronicity to perform such
analysis. Previously others and we have shown that the
differentiation protocol delivers a >90% cell population of the
same cell type.28,32 Moreover, genome wide mRNA analysis
demonstrated a monotonic progression model of deregulated
genes. A very high fraction of genes deregulated at a lower
concentration were also deregulated at the next higher
concentration. Moreover, the next higher concentration usually
yielded additional genes that have not yet been deregulated at
the lower concentration. These are good conditions to study
the control mechanisms and principles of the cellular response
to increasing concentrations. To examine whether all gene
regulation was monotonic, we took several approaches.
Unsupervised clustering indicated that there is a smaller
subfraction of PS that behaved differently. To follow up on
this, we selected the PS that were regulated by an intermediate
drug concentration (450 μM) and determined their average
fold change (FC). Then, we determined the FC of the same set
of PS at lower and higher concentrations. At the lowest
concentration (25 μM), there was no FC at all. This could
indicate that the genes were not regulated in any consistent
way. The FC-curves showed overall a sigmoid shape. The linear
middle part supports the suggestion that the selected PS were
regulated increasingly more with increasing concentration, and
this may have affected the number that was detected after
filtering for significance and FC. The flattening of the curve on
the lower and upper ends suggests that most likely additional
mechanisms are involved, i.e., regulation of different genes at
different concentrations, as observed here by other methods. As
a complementary approach, we selected the PS that were
significantly regulated at 450 μM (p < 0.05) and calculated the
p-values for the same PS at low concentrations. Most of the PS
lost significance at 150 μM and nearly all at 25 μM. The
situation was somewhat different, when the initial selection of
PS included a FC cutoff of 2. Under this condition, all PS
selected at 450 μM still reached a p < 0.05 significance level at
350 μM, and most of them still did so at 150 μM. At 25 μM,
still about 10% of the PS were significant. This suggests, that
some PS that we considered here as regulated only at high drug
concentrations but not at low drug exposure were indeed
already affected at low concentrations but that the change was
too small to be picked up as significant. This feature may have
to be considered for future systems biology based quantitative
models of gene regulation.
Comprehensive biostatistical analyses including the establish-

ment of a novel gene ontology activation profiler (GOAP)
suggest the following concept of three concentration ranges. A
range of tolerance is observed up to 25 μm VPA. At 25 μM, not a
single up- or down-regulated gene with p < 0.05 and a fold
change higher than two was obtained. This observation is in
agreement with the general concept that toxicity based on, e.g.,

Figure 7. Toxicological implications of transcriptomics responses at
different drug concentrations. (A) Transcriptome data were obtained
for multiple drug (VPA) concentrations as in Figure 1. To obtain a
measure of the deviation of the transcriptome from normal
(teratogenicity measure), two indices were calculated and used to
define the two dimensions of a developmental toxicity plane. The first
dimension reflects the extent of gene regulation. The index is the sum
of the negative logarithms of the p-values of the 100 most regulated
genes. The second dimension reflects the extent of coordinated
changes in biological processes reflected by GOs. The index is
proportional to the number of overrepresented GOs in the gene sets.
The purple numbers indicate the concentrations of VPA associated
with the data points. (B) Summary of overall findings on
concentration-dependent transcriptome deviations: drug concentra-
tions were chosen in a way to allow either normal neuroectodermal
differentiation of human embryonic stem cells (hESC) or disturbed
differentiation (teratogenic concentration range) or cytotoxicity. Over
this large concentration range (25−1000 μM), the number of
deregulated genes increased continuously, once a certain threshold
concentration was reached (125 μM). In contrast to this, super-
ordinate biological regulations, as indicated by enriched GOs (gene
ontologies) or TFBS (transcription factor binding sites), increased
steeply in the teratogenic range and then more or less reached a
plateau. At cytotoxic concentrations, only few additional GOs and
TFBS were overrepresented. Thus, cytotoxicity, overall gene
regulation, and coordinate regulation of biological processes showed
largely different concentration dependencies. There were clear lower
thresholds, and the extent of transcriptome regulation as such, without
further bioinformatic analysis, did not appear to be a good measure for
teratogenicity.
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enzyme inhibition or induction, or receptor activation, acts by
threshold mechanisms.45,46 In the cytotoxic concentration range
(800 μM and 1000 μM), we expected that an apoptosis
signature may occur, but we observed the induction of
apoptosis, death, and stress associated oGO groups already at
the intermediate concentration range. Also, GO analysis of the
genes that are exclusively up- or down-regulated with the
cytotoxic concentrations revealed no additional death related
oGOs. In addition, GOAP analysis revealed that GO that are
related to catabolism and metabolism are induced with
cytotoxic concentrations. Among the down-regulated PS, cell
division related GOs were induced. A range of deregulations
occurred between 150 and 550 μM VPA. Analysis of GOs
overrepresented among PS in this range gave evidence for
developmental disturbances, cell migration, and the down-
regulation of neuronal pathways. This confirmed massively
disturbed neurodevelopment with these concentrations.28,47

Therefore, we defined the range from 150 μM to 550 μM VPA
as the deregulated/teratogenic concentration range (Figure 7B).
These findings are in good agreement with human data that
indicate that VPA plasma concentrations above 500 μM are
associated with strongly increasing risk for malformations.48,49

The newly established GOAP method revealed additional and
more sensitive answers for this range of teratogenic
concentrations. Between 150 and 550 μM, a number of GO
groups became overrepresented that reflect the specific mode of
action of VPA, namely, protein acetylation and epigenetic
processes. Down-regulated PS comprises genes involved in all
kind of epigenetic processes16 like several histone acetyl
transferases (e.g., KAT2B, KAT6A, KAT5), polycomb proteins
(e.g., SUZ12), lysine methyl transferases (e.g., EHMT2), and
HDACs themselves (e.g., HDAC 2, 5, and 9).
Regarding GO regulation patterns over the concentration

range, we also identified GO groups that showed, e.g., a 00++
+00 nonmonotonic pattern. These GO groups contained some
PS with nonmonotonic behavior. Altogether, they were below
10%. We could verify the main monotonic regulation pattern by
another analysis targeting upstream regulators of transcriptional
changes. Overrepresented TFBS were searched in the
deregulated PS. We found that most TFBS are already induced
with teratogenic concentrations, and only few additional TFBS
were induced with cytotoxic concentrations (Figure 7B). These
comprised AP-2 and Pax5 for up-regulated and IPF1 and PBX
for down-regulated PS.
On the basis of differentially expressed PS and altered

functional processes, we developed a teratogenicity index that
could distinguish between DNT-relevant (the teratogenic
range) and cytotoxic concentrations. For this purpose, the
extent of transcriptome deregulation was captured by measures
for deregulation of individual genes and a measure for
biological processes (oGO). This information was displayed
in a two-dimension plot. This graphical display exactly
represented the situation described in greater detail before.
Although cytotoxicity only starts at 800 μM VPA, the functional
processes were significantly changed already with 350 μM and
the teratogenicity index only slightly changed with 800 μM and
1000 μM. Therefore, we present here an index that
distinguishes between noncytotoxic, teratogenic, and cytotoxic
concentrations and could help in the future to improve the
experimental design of toxicogenomic studies. In particular, our
data support the use of the highest noncytotoxic concentration
of toxicogenomics studies, if no other information on the test
compounds is available. At this concentration, a maximum

power is reached (number of deregulated PS) without
compromising the biological information obtained (e.g., altered
oGO or TFBS). Accidental use of slightly too high
concentrations would be expected to have only minor effects
on the overall outcome.
In conclusion, the data from this concentration progression

study suggest a steady increase of deregulated genes. However,
they mostly belong to the same biological processes and seem
to be controlled by the same TF that are already deregulated at
the intermediate concentrations of 350 and 450 μM VPA
(Figure 7B). This is consistent with the recently identified
superenhancers.26,27 Superenhancers are unusual enhancers,
which are found at genes responsible for cell type identity and
occupied by key transcription factors for this cell type. In ESC,
e.g., these DNA sequences are mainly occupied by the key
stemness factors Oct4, Nanog, and Sox2.27 It was also shown
that these superenhancers play crucial roles in the development
of many diseases.26 Therefore, it is very likely that they are also
disturbed or differentially occupied by a toxic compound and
play a crucial role in the interpretation of our upstream target
analysis. In the future, it will be interesting to investigate
whether deviations from the normal development on the level
of TFBS and superordinate cell biological processes will be
shared by diverse toxicants and whether the time of toxicant
exposure has an effect on such findings.
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