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Abstract

The seasonal influenza vaccine is only effective in half of the vacci-
nated population. To identify determinants of vaccine efficacy, we
used data from > 1,300 vaccination events to predict the response
to vaccination measured as seroconversion as well as hemaggluti-
nation inhibition (HAI) titer levels one year after. We evaluated the
predictive capabilities of age, body mass index (BMI), sex, race,
comorbidities, vaccination history, and baseline HAI titers, as well
as vaccination month and vaccine dose in multiple linear regres-
sion models. The models predicted the categorical response for
> 75% of the cases in all subsets with one exception. Prior vaccina-
tion, baseline titer level, and age were the major determinants of
seroconversion, all of which had negative effects. Further, we iden-
tified a gender effect in older participants and an effect of vaccina-
tion month. BMI had a surprisingly small effect, likely due to its
correlation with age. Comorbidities, vaccine dose, and race had
negligible effects. Our models can generate a new seroconversion
score that is corrected for the impact of these factors which can
facilitate future biomarker identification.
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Introduction

Influenza virus infections represent a continuous threat to public

health, as vaccine effectiveness is typically low, ranging from 19 to

60% during the 2009 to 2018 seasons in the United States, according

to the Center for Disease Control (https://www.cdc.gov/flu). The

widely used split-inactivated influenza vaccine is typically quadriva-

lent with an antigen for all four virus subtypes, H1N1 and H3N2

(Influenza A) subtypes, and Yamagata and Victoria lineages (Influ-

enza B). Understanding predictors of vaccine efficacy is an ongoing

public health challenge.

While antigenic drift and shift caused by frequent mutations in cir-

culating viral strains are long-known influencers of vaccine efficacy,

there is increasing recognition of other factors intrinsic to the human

host which impact vaccine efficacy and/or severity of an influenza

infection. These factors can be genetic (Franco et al, 2013; Orr�u et al,

2013; Brodin et al, 2015), epigenetic (Zimmermann et al, 2016), or

represent pre-existing immunity (Voth et al, 1966; Beyer et al, 1996;

Henn et al, 2013; HIPC-CHI Signatures Project Team & HIPC-I Consor-

tium, 2017) as caused by prior infection or vaccination (Zost et al,

2017; Gouma et al, 2020; Sung et al, 2021). Further, demographic fac-

tors such as age (Goodwin et al, 2006; Henry et al, 2019; Henry et al,

2019), obesity (Honce & Schultz-Cherry, 2019; Honce et al, 2020),

and sex (Klein & Flanagan, 2016; Fink et al, 2018; Voigt et al, 2019)

are thought to play a role. In addition, recent studies have shown that

vaccination time during a flu season can also affect the response to

the vaccine (Penkert et al, 2021). However, many of these factors are

intercorrelated, for example, prior vaccination and baseline antibody

titer level as well as age, obesity, and other comorbidities. Most

existing studies examined the effect of one or a few of these factors

(Goodwin et al, 2006; Gouma et al, 2020; Penkert et al, 2021; Sung

et al, 2021) without comprehensive integration.

Here, we addressed this gap in knowledge by using a large cohort

dataset to construct multiple linear regression models that predicted

the response to the split-inactivated influenza vaccine based on nine

variables known for participants. We performed the prediction sepa-

rately in three different age groups for both seroconversion after

3–4 weeks and antibody titer levels in the subsequent year. We

evaluated the impact of each individual factor adjusting for the

effects of the remaining factors.
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Results

Mining a large cohort study with > 1,300 vaccination events

We used one of the largest cohort studies available, involving ~ 700

participants monitored over five flu seasons (cohorts), producing

1,368 vaccination events (Fig 1A). A vaccination event is defined as

a participant receiving the flu vaccine in a specific season, with HAI

(hemagglutination inhibition) titer levels against the vaccine strains

being assessed on day 0 and day 21/28. We predicted both serocon-

version (Seroconversion), measured as the log2 ratio between HAI

titer levels against the four vaccine strains 3 or 4 weeks post-

vaccination (D21 or D28, respectively) and HAI titer at D0, and

the baseline (BL, D0) HAI titer levels in the subsequent year

(BaselineSY) (Fig 1B). In addition to demographic factors, such as

age, body mass index (BMI), sex, race, comorbidities, and vaccina-

tion history of participants, we included month of vaccination (Sep-

tember to February) and vaccine dose (for participants ≥ 65 years

old) in the prediction. Based on the long-lasting effect of vaccination

(Appendix Fig S1), we defined participants as prevaccinated if they

had received the vaccine in the year prior to joining the study, and

as naive if they had had no vaccine within the last 3 years prior to

joining the study, removing cases with a mixed vaccination history.

We then separated participants into three subpopulations: Chil-

dren (< 18 years), Adult1 (18–64 years), and Adult2 (≥ 65 years).

Fig 2 shows the distributions of variables across these three groups.

Most participants across all groups were prevaccinated which sub-

stantially affects baseline HAI levels (Fig 2H). However, vaccination

in the previous year was not the only determinant of the baseline

HAI titer level (as discussed below), emphasizing the need for pre-

dictive modeling of both factors. For example, despite prior vaccina-

tion of most participants, the average baseline HAI level was lower

in the Adult2 group compared to the other two groups (Fig 2A),

illustrating the need for continuous vaccination in this age group as

well as an improved understanding of factors that impact successful

response to vaccination. In addition, despite the substantial age dif-

ferences, seroconversion was on average similar across three age

groups (Fig 2B and C), further supporting the hypothesis that fac-

tors other than age determine the serological response.

Fig 2D–J show the distributions of other variables in the three

subpopulations. Adult1 and Adult2 had on average higher BMIs

than Children, and most Adult2 participants had one or more

comorbidities (Fig 2D and G). The three subpopulations were simi-

lar with respect to distributions of the remaining demographic fac-

tors, that is, sex and race (Fig 2E and F). Most of the participants

were white. Only Adult2 participants had been offered the high dose

of the vaccine (Fig 2I). Finally, Children and Adult2 participants had

primarily been vaccinated in the first three months of a flu season

while Adult1 participants were vaccinated relatively evenly through-

out the season (Fig 2J). For these reasons, dose and vaccination

month were only useful predictors in the Adult2 and Adult1 subpop-

ulations, respectively (see below).

Predicting the vaccine response

Several variables showed some correlation with each other,

highlighting the need to model the effect of each variable while con-

trolling for the impact of the other variables. For example,

prevaccinated participants had higher baseline titer levels than

naive participants, as mentioned above (Fig 3A), and age and BMI

are also positively correlated (Fig 3B). However, Fig 3A also shows

that prior vaccination only partially predicts the baseline titer level

due to the impact of additional factors which our study aimed to

identify.

We predicted Seroconversion and BaselineSY for both the four

vaccine strains individually and the composite value calculated as

the sum of the values across four strains (Fig 4). For each predic-

tion, we trained the model on four cohorts (three for BaselineSY)

and evaluated it on an independent fifth cohort (fourth cohort for

BaselineSY), as detailed in the Materials and Methods. The evalua-

tion cohort was not used in the model training and was chosen

based on appropriate data distributions (Materials and Methods).

The models obtained from the training sets are listed in Dataset

EV1. Appendix Fig S3A and B show the results when evaluating the

models across the entire dataset.

We evaluated the models in two ways: (i) using the correlation

(R) between predicted and observed values; and (ii) using the frac-

tion of cases for which we correctly predicted the category of the

response, that is, high vs. low Seroconversion; seropositive vs. nega-

tive BaselineSY, denoted as accuracy in Fig 5A and B. We predicted

Seroconversion and BaselineSY accurately at 74% or higher in inde-

pendent test sets for all three subpopulations. The models performed

best with respect to prediction of BaselineSY for the Adult2 subpopu-

lation (≥65 years old) (94% accuracy). The models performed worst

for prediction of Seroconversion and BaselineSY for the Adult1 sub-

population (18–64 years old), indicating that for these participants,

additional factors which were not considered in the model impacted

the response to vaccination, such as specific comorbidities. As

Appendix Table S3 shows, available data are currently too small to

model the impact of specific comorbidities. Appendix Fig S5B shows

the results for training and testing when evaluating on a randomly

chosen test set which was left out from training. The correlation (R)

between predicted and observed values was higher in all three sub-

populations and the accuracy is also higher in Children and Adult1

for the randomly chosen test set than what we observed when evalu-

ating with one of the cohorts. The result suggests that evaluation

with the independent cohort is a conservative approach.

Next, we explored the ability to predict Seroconversion without

knowing the baseline titer level, to mimic a more practical scenario

in which a vaccine recipient’s response is predicted without the

need to draw blood and measure HAI titer levels. When repeating

the modeling as before with all priors but baseline titer levels, the

prediction accuracy was very similar across all three subpopulations

compared to the original prediction (Appendix Fig S4), implying that

we can still predict the overall response (high vs. low/none) for

most participants. However, the models’ ability to predict actual

Seroconversion level (i.e. R with the observed values) dropped.

Further, we tested if a participant being evaluated in the study

over several seasons biased our results. We did not observe such

bias, based on the following results. First, when comparing predic-

tion outcomes between the set of one-time participants and a set of

randomly chosen vaccination events, we observed similar predic-

tion accuracy (Appendix Fig S5A and B). Second, prediction results

were also similar for the subset of entries evaluating the first time a

person participated in the study versus the second time the person

participated (subsequent season) (Appendix Fig S6A and B). The

2 of 14 Molecular Systems Biology 18: e10724 | 2022 ª 2022 The Authors

Molecular Systems Biology Shaohuan Wu et al



Cohort

Flu season

UGA1 UGA2 UGA3 UGA4 UGA5

2016-17 2017-18 2018-19 2019-20 2020-21

Participants

#1

#2

#3

#688

#689

#690

...

Time point D0 D21 D0 D21 D0 D28 D0 D28 D0 D28

# vaccination events 119 250 228 440 331

Seroconversion (SC) = log2 (    /    ) for each vaccine strain

Composite seroconversion =       +            +           +

Composite baseline        =        log2 (   )H1N1      +     log2 (    )H3N2     +     log2 (   )Yamagata     +     log2 (    )Victoria

Vaccine strainsV                    A/H1N1              A/H3N2      B/Yamagata       B/Victoria

A

B

2013-14 2014-15 2015-16

   and   , self-reported pre-vaccination statuses, categorized as non-vaccinated and vaccinated respectively;

, a vaccination event, which contains the HAI titer levels immedietely before-, and 21/28 days post-vaccination; 

Note that one participant may participate in multiple vaccination events across different flu seasons (like #2, #3, etc). 

log2 (    /    ) H1N1 log2 (    /    ) H3N2 log2 (    /    ) Yamagata log2 (    /    ) Victoria

Vaccine strains

A/H1N1
A/H3N2
B/Yamagata
B/Victoria

California/09

Hong Kong/14

Phuket/13

Brisbane/08

Michigan/15

Hong Kong/14

Phuket/13

Brisbane/08

Michigan/15

Singapore/16

Phuket/13

Colorado/17

Brisbane/18

Kansas/17

Phuket/13

Colorado/17

Guangdong/19

Hong Kong/19

Phuket/13

Washington/19

Figure 1. Illustration of the UGA cohort study.

A Graphical illustration of the 1,368 vaccination events recorded for the 690 participants, with the self-reported vaccination history for three years prior to joining the
study. Many participants returned for several years. The table also lists the vaccine strains used as well as the cohort label (UGA1-UGA5). Titer levels measured at Day
0 (D0) are referred to as baseline for the respective season. Data recorded as vaccination events from cohorts UGA1-3 and UGA5 were used for model training; data
from UGA4 were used for evaluation of the predictions.

B Graphical definitions of seroconversion, composite seroconversion, and composite baseline used in the study. Seroconversion is unitless. Baseline titer levels refer to
HAI titer levels.
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Figure 2. Overview of the datasets for three subpopulations.

A Distribution of composite D0 and D28 HAI titer levels in different subpopulations: Children (< 18 years old), Adult1 (18-64 years old), and Adult2 (≥ 65 years old)
which comprise 358, 770, and 240 total data points (vaccination events) across all five cohorts UGA1-5, respectively. Similar to the definition of composite serocon-
version, composite D0 and D28 titer levels are defined as the sum of log2(D0 titer level) or sum of log2(D28 titer level) across 4 vaccine strains, respectively. Seropos-
itivity cutoff is the composite titer level at a titer larger than 40 in all 4 strains (4*log2(40)). HAI, hemagglutination inhibition assay.

B–D Distribution of composite seroconversion, age, and BMI in three subpopulations across all five cohorts UGA1-5. BMI, body mass index.
E–I Distribution of categorical variables in three subpopulations across all five cohorts UGA1-5. For the comorbidities prior, yes indicates having at least one of the

comorbidities that are surveyed and no indicates having none. (G). For vaccine dose, high dose is offered as an option only to Adult2 subpopulation (I).
J Fraction of participants that are vaccinated in each month in a flu season across all 5 cohorts UGA1-5, in Children (left), Adult1 (middle), and Adult2 (right)

subpopulations.

In the box and whiskers plots in (A–D), the central band represents the median, the lower and upper hinges represent 25th and 75th quantiles respectively, the lower and
upper flat arrows represent extreme values that are within 1.5*IQR (internal-quantile range) from the lower and upper hinges respectively, and the empty circles repre-
sent outliers, for example, extreme values that are beyond 1.5*IQR from the hinges. There are 358, 770, and 240 vaccination events (data points) in Children, Adult1, and
Adult2 subpopulations, respectively.
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results indicate that the use of vaccination events as units in our

model was valid.

Identifying major predictors of Seroconversion and BaselineSY

Next, we estimated the relative importance of each variable in

predicting Seroconversion and BaselineSY for both composite scores

(Fig 6) and individual strains (Fig 7). Importantly, even though sev-

eral variables are intercorrelated (Appendix Fig S2), our results

show the independent effect of each variable. Appendix Tables S2

and S3 contain the data underlying Figs 6 and 7, respectively.

As expected, prior vaccination and high HAI baseline levels

explained the majority of variation in Seroconversion in each sub-

population (Figs 6 and 7). Conversely, HAI titer levels at Day 21 or

28, but not vaccination history, predicted the baseline titer level in

the subsequent year (BaselineSY). The exception was Children in

which prior vaccination had a modestly positive impact on the vac-

cine longevity.

One exception was baseline HAI levels against the H3N2 strain

which exhibited less predictive value for Seroconversion for the

Adult2 subpopulation (Fig 7). This might partially be explained by

the type of A/H3N2 vaccine strain used in the UGA4 cohort, which

served as the test set, compared to the other cohorts, which served as

training sets (Fig 1A). The A/H3N2 vaccine strain in UGA4 originated

from a different clade (3C.3a) compared to those used in previous

years and therefore may have led to low baseline HAI titer levels.

While including such strain-specific effects might improve future

modeling results, we also showed that overall the “generic” strain

information we used was a valid simplification: HAI titer levels against

the UGA4 A/H3N2 strain (A/Kansas/2017) correlated well with those

against the A/H3N2 vaccine strains used in UGA1-3 (A/Hong Kong/

2014 and A/Singapore/2016) (Appendix Fig S7B); HAI titer levels

against the A/H1N1 vaccine strain used in UGA 4 (A/Brisbane/2018)

also correlated well with the A/H1N1 strains used in UGA1-3 (A/Cali-

fornia/2009 and A/Michigan/2015) (Appendix Fig S7A)—indicating

substantial cross-reactivity of antibodies formed.
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Figure 3. Relationships between some of the priors.

A Correlation between vaccination history and baseline across three subpopulations across all five cohorts UGA1-5. The central band represents the median, the lower
and upper hinges represent 25th and 75th quantiles respectively, the lower and upper flat arrows represent extreme values that are within 1.5*IQR (internal-quantile
range) from the lower and upper hinges respectively, and the empty circles represent outliers, for example, extreme values that are beyond 1.5*IQR from the hinges.
N is the number of vaccination events. P value is calculated from a T test.

B Correlation between age and BMI across three subpopulations across all five cohorts UGA1-5. R is calculated from Pearson’s correlation. BMI, body mass index.
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Unexpectedly, we observed an age effect among Children similar

to that amongst the Adult1 subpopulation (Figs 6 and 7): Older chil-

dren had lower Seroconversion than younger children, in particular

driven by the effect of the H1N1 strain. This negative relationship

was weak, but statistically significant, as illustrated in Fig 8A which

depicts the relationship between the variable and the predicted

           Demographic factors 
         + month of vaccination
   + vaccine dose (if applicable)

++

D0 HAI titer D28 HAI titer

N = 1368 N = 672

Seroconversion prediction BaselineSY prediction
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Figure 4.
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value removing the effects of all other variables. The relationship

implies that immunosenescence starts before adulthood. In compari-

son, participant age did not predict longevity of the antibodies with

respect to BaselineSY.

Another major predictor was the month of vaccination: the

later children and adults < 65 years received the vaccine during

the season (September to February), the higher the Seroconversion

(Figs 6 and 8C). For the Adult1 subpopulation, this positive effect

might have been mostly driven by the effect of the IBV Yamagata

strain (Fig 7). To examine whether this result was caused by the

widespread circulation of the IBV Yamagata lineage viruses in

2017–2018, we examined information on circulating strains in the

five flu seasons. We found that, indeed, B/Yamagata was the

dominant lineage in 2017–2018 flu season, albeit still less preva-

lent than A subtypes. In three of the other four seasons, B/Yama-

gata was less prevalent than B/Victoria. Therefore, the types of

circulating strains could not explain the significant effect of vacci-

nation month observed for B/Yamagata in Adult1 subpopulation.

◀ Figure 4. The computational framework used to predict the serological response to flu vaccination.
Variables for Seroconversion prediction and BaselineSY prediction, respectively, in each of the three subpopulations, and machine learning strategy used to predict
Seroconversion and BaselineSY. We used two metrics to evaluate the performance of the models: correlation coefficient (R) and accuracy (%) of values observed in the
test dataset (UGA4) compared to values predicted for the test dataset (UGA4) using the models trained on UGA1-3 and UGA5. Accuracy describes the extent to which we
correctly predicted the category. Cutoffs for high seroconversion and seropositivity are the same as those in Fig 2. Dashed lines mark the cutoff for high seroconversion
(≥ 8) or seropositivity (≥ 4*log2(40)), respectively. White and grey quadrants show areas of correct and incorrect predictions respectively, used to calculate accuracy. All
modeling, predicting, and evaluation have been done for the three subpopulations separately using UGA1-⅗ for training and UGA4 for testing. Percentages listed in blue
denote correct predictions (accuracy). MLR, multiple linear regression.
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Figure 5. Prediction accuracies for Seroconversion and BaselineSY in three subpopulations.

A Observed vs. predicted values for Seroconversion. Predicted values are obtained for the independent test set only (UGA4, see Fig 1), not the entire dataset. Results for
the entire subpopulations are shown in Appendix Fig S3; results for a randomly chosen test dataset are shown in Appendix Fig S5B. Dashed lines mark the cutoff for
high seroconversion (≥ 8). White and grey quadrants show areas of correct and incorrect prediction of high and low/no seroconversion, respectively. Percentages
listed in blue denote correct predictions.

B Observed vs. predicted values for BaselineSY. Predicted values are obtained for the independent test set only (predicting the baseline in the subsequent year for
participants in the UGA3 cohort). Dashed lines mark the cutoff for seropositivity (≥ 4*log2(40)). White and grey quadrants show areas of correct and incorrect
predictions respectively. Percentages listed in blue denote correct categorical predictions (accuracy). R is calculated from Pearson’s correlation.
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The model could not evaluate this variable for the Adult2 subpop-

ulation due to the above-mentioned bias with respect to vaccina-

tion month (Fig 2J). Similarly, the later adults younger than

65 years received the vaccine during the season, the better the

long-term response was, that is, with respect to antibody titers a

year later (Fig 8D).

The result is consistent with a recent finding on the link to natu-

ral influenza infections that occur more frequently later in the sea-

son (Penkert et al, 2021). Such infections could cause false-positive

seroconversion (i.e., unrelated to vaccination) if they occur during

or shortly after the participant is vaccinated. However, when

restricting the data for the Adult1 subpopulation to only those
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Figure 6. Contributions of individual priors to the response prediction.
Relative importance of each variable for prediction. The intensity of the color in each cell denotes the importance of the variable, measured as percentage of drop in
prediction accuracy measured as squared correlation (R2) between observed and predicted values when leaving the variable (prior) out compared to the complete model
(see Materials and Methods). Grey denotes variables not selected for modeling. The color denotes the direction of the correlation between the variable and the predicted
value, that is, red and blue values denote positive and negative correlation, respectively, between the variable and Seroconversion or BaselineSY. For example,
prevaccination status predicts both Seroconversion and BaselineSY; prevaccinated participants show lower (blue) Seroconversion (all subpopulations) and higher (red)
BaselineSY (Children only). White denotes variables with importance ≤ 3% or with a coefficient ≤ 0.1 in absolute value. HAI, hemagglutination inhibition assay; vacc.,
vaccination. Appendix Table S1 contains the data underlying this figure.
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vaccination events from the first three months of the flu season, that

is, mimicking the distributions for Children and Adult2, we did not

observe improvement in prediction accuracy (Appendix Fig S8).

Therefore, the wider range of vaccination months could not explain

the decreased prediction ability in the Adult1 subpopulation com-

pared to that in Children and Adult2 subpopulations. Other factors

not considered in the model likely have an effect on the vaccine

response in Adult1.

Surprisingly, BMI had only a minor influence on Seroconversion

and no impact on BaselineSY: Only in the Adult1 subpopulation, we

observed a slightly positive effect (Figs 6 and 8B). Among individual

strains, BMI had a positive impact on the response to the H3N2

component in the Adult2 subpopulation. These results appear to

contrast the known negative impact of obesity on influenza severity

(Honce & Schultz-Cherry, 2019; Honce et al, 2020). We speculate

that the strong age effect masks the effect of BMI on Seroconversion

in this study since BMI and age are positively correlated (Fig 3B). In

other words, most of the potential BMI effect on vaccine efficacy in

the models is already accounted for by the age effect; once age is

considered, there is little to no additional contribution by knowing

the BMI of a vaccine recipient. Future work might explore the addi-

tional, weaker non-linear relationship between BMI and age

(Fig 3B) which our models did not capture. In addition, future work

might include measures of metabolic health other than BMI which

were used in the related studies mentioned above and might con-

tribute to the different results observed here.

Further, we found that women had higher Seroconversion than

men in the Adult2 subpopulation, largely driven by the IBV Victoria

strain (Figs 6 and 7). Race had no effect on both Seroconversion and

BaselineSY. Similarly, use of the high-dose vaccine over the stan-

dard dose in the Adult2 subpopulation had very little effect on vac-

cine efficacy.

We also observed a surprising lack of impact of comorbidities on

Seroconversion. This result might be because our models considered
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comorbidities only as present or absent which provided little resolu-

tion of specific illnesses or most of the effect of comorbidities was

accounted for by the age effect. Indeed, when we explored the contri-

butions of individual comorbidities on Seroconversion (Appendix

Table S3), we observed some differences in predictability. The

results suggested independent effects of specific comorbidities on

Seroconversion, compared to the effects of other comorbidities and

participants without comorbidities. The most frequent comorbidities

were neurological disorders in younger participants, while they were

related to metabolism in older participants. We found that depression

had a significant effect on Seroconversion in Adult1: adults diagnosed

with depression had a lower seroconversion than those without any

comorbidities. Similarly, high cholesterol levels had a significant

effect on Seroconversion in Adult2. This result is consistent with the

findings above: while high BMI had no predictive value for Serocon-

version in the Adult2 subpopulation, accounting for high cholesterol

levels improved the modeling outcomes (Appendix Table S3).

While these results are intriguing, depression and high choles-

terol accounted for only small fractions of comorbidity occurrences

(3 and 10% of Adult1 and Adult2 subpopulations, respectively;

Appendix Table S3). While these small numbers forced us to use a

simplification in our model, that is, accounting for comorbidities
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only as present/absent, future cohort studies might focus on partici-

pants with specific health backgrounds to explore these intriguing

relationships further.

Discussion

We systematically examined the effects of nine factors on Serocon-

version in human recipients of the flu vaccine, that is, the response

to the vaccine 3–4 weeks post-vaccination, and BaselineSY, that is,

the HAI titer levels in the subsequent year. To do so, we used a

large cohort study with > 1,300 vaccination events (Fig 1). We

predicted Seroconversion and BaselineSY across three subpopula-

tions based on participant age with an overall high accuracy: Cate-

gorical classifications were correct in > 3/4 of the cases and

numerical values for > 1/3 of the cases across most subpopulations

(Fig 5A and B). The remaining, unexplained variation is due

to additional factors or non-linear effects not considered in the

model—and forms the basis for future investigation.

Further, we evaluated the contributions of the factors to the pre-

diction of Seroconversion and BaselineSY (Figs 6 and 7). Across all

age groups, the most predictive factors were prior vaccination status

and baseline titer level, followed by age and month of vaccination.

In adults, prior vaccination and baseline titer level explained the

majority of Seroconversion; the effect was smaller in Children per-

haps due to a still maturing immune system. Further, the effect of

prior vaccinations was detectable for at least three years post-

vaccination (Appendix Fig S1), indicating that antibody longevity is

essential to consider when evaluating the vaccine response. These

findings underscore the importance of pre-existing immunity when

evaluating vaccine efficacy, that is, high baseline HAI titer levels

against respective strains and longevity of the antibodies formed

during prior infections or vaccinations.

These results are consistent with recent findings (Boyd &

Jackson, 2015; Boyd & Jackson, 2015; HIPC-CHI Signatures Project

Team & HIPC-I Consortium, 2017; Gonzalez-Dias et al, 2020;

Kotliarov et al, 2020; Tsang et al, 2020)—the unique contribution of

our work is the simultaneous and predictive modeling to evaluate

all nine factors in a unified model. As a result, we showed that in all

three subpopulations, prior vaccination and baseline titer level had

independent contributions to Seroconversion, that is, prior vaccina-

tion status and baseline titer level were not fully interchangeable

when making predictions (Figs 3 and 6).

Our work compares well with similar approaches. For example,

after correcting for baseline titer levels, a new score called adjMFC

successfully identified new markers of vaccine efficacy in a tran-

scriptomic dataset (HIPC-CHI Signatures Project Team & HIPC-I

Consortium, 2017; Tsang et al, 2020). However, in contrast to

adjMFC, our models included not only baseline titer levels but a

total of nine confounding variables, providing a highly comprehen-

sive analysis of a large cohort study that robustly controlled for

confounding effects and distentagled the specific, independent effect

sizes of the factors.

Our results are validated by previous findings (Dataset EV2).

For example, two studies on smaller cohorts confirmed the nega-

tive effect of prior vaccination on Seroconversion (Gouma et al,

2020; Sung et al, 2021). Further, a cross-cohort analysis confirmed

the negative effect of age on Seroconversion and seroprotection,

that is, the actual titer levels (Goodwin et al, 2006). While this

analysis used a large dataset, it lost accuracy in the estimation of

the effect size of age, as several continuous variables had been

treated as categorical. Further, our models showed that participant

sex affects Seroconversion in the Adult 2 subpopulation, which is

consistent with previous work (Klein & Flanagan, 2016; Fink et al,

2018; Voigt et al, 2019). In contrast to a previous study (DiazGra-

nados et al, 2013), we did not find a positive effect of the high-

dose vaccine in the Adult2 subpopulation (Fig 6). Consistent with

a recent finding examining the effect of time of vaccination in a flu

season (September to February)(Penkert et al, 2021), we found

that Seroconversion in Children and Adult1 subpopulations was

higher when the vaccine was administered later. As most partici-

pants in the Adult2 subpopulation received the vaccine in Septem-

ber or October of a season, we could not evaluate the effect of

vaccination time in this group. While the consistency with other

findings increases confidence in the validity of our results, the

advance in our work lies in simultaneous modeling of multiple fac-

tors, rather than examination of a single factor on its own as has

been done previously.

Surprisingly, we found that age was not a predictor of the vaccine

response amongst adults older than 65 years (Fig 6), seemingly

conflicting with recent findings on increased flu severity among the

elderly due to immunosenescence (Gounder & Boon, 2019; Huang

et al, 2019). However, this result is not a contradiction but an exten-

sion of these previous findings: we showed that, indeed, participants

older than 65 years have lower Seroconversion compared to younger

participants, but within this group, increased age does not have any

additional negative effect. The result suggests that perhaps, beyond

a specific age, immunosenescence reaches “saturation”.

Our results also contribute to the discussion on the role of obe-

sity in infection and vaccination. While obesity is a strong predictor

of flu severity (Honce & Schultz-Cherry, 2019; Honce et al, 2020),

conflicting findings exist on its effect on the response to vaccination.

In response to an inactivated trivalent influenza vaccine, obese indi-

viduals have higher seroconversion than normal weight individuals,

but their antibodies are shorter lived (Sheridan et al, 2012). In con-

trast, other studies found obesity to impact seroconversion nega-

tively in both young and old individuals (Frasca et al, 2016), or

to have no influence on the response in the elderly or in children

(Talbot et al, 2012; Callahan et al, 2014). We find that BMI has no

or minor contributions to the vaccine response across the age

groups (Figs 6 and 7). We hypothesize that these inconsistencies

arose from possible shortcomings in using BMI as a measure of met-

abolic health (Nuttall, 2015), as well as the mixed effect of

confounding factors, primarily age.

Our results illustrate the complexity of the effects of multiple fac-

tors on the response to vaccination, their non-linear effects and

interactions, which continues to render prediction of vaccine effi-

cacy a challenge. While our work presents a comprehensive analysis

of the factors affecting seroconversion, many additional variables

exist that might affect the outcome. For example, genetic makeup,

pregnancy, and even the microbiome have been shown to affect

severity of a flu infection (Ghedin & Schultz-Cherry, 2017; Kenney

et al, 2017; Borges et al, 2018) and might have to be considered in

future cohort studies.

While it was not the primary goal of our analysis, our findings

have potential implications of clinical relevance. For example, our
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results indicate that the use of the high-dose vaccine in the older

population has little effect, but a “booster shot” later in the season

might promote higher overall and more sustained titer levels in the

vulnerable subpopulation. The same applies to younger individuals

with certain comorbidities, for example, depression or high choles-

terol. However, none of these conclusions should be considered as

recommendations prior to further evaluation, for example with

respect to the confounding impact of concurrent influenza infections

on the effect of vaccination month.

The results of our study also present an opportunity to help the

identification of novel molecular markers of the vaccine response. For

example, one could derive a new score, that is, a Corrected Seroconver-

sion score, as the residual of the observed and predicted Seroconver-

sion, which simultaneously accounts for a number of known factors

that typically confound the response to vaccination, such as vaccina-

tion history, age, BMI, sex, and month of vaccination. Using the

Corrected Seroconversion would allow identifying molecular markers

of the vaccine response independent of what can be explained by the

participant’s specific background, in a highly quantitative manner.

Such score could, therefore, complement the traditional screening

which employs uncorrected Seroconversion or other measures.

Materials and Methods

Data pre-processing

As part of an ongoing study by the University of Georgia, Athens

(UGA), a total of 690 participants had been recruited during five sea-

sons between 2016 and 2020 (UGA1-5). The study procedures,

informed consent, and data collection documents were reviewed

and approved by the Institutional Review Board of the University of

Georgia (IRB #3773)). Participants received the split-inactivated

influenza vaccine Fluzone by Sanofi Pasteur. For the 2016–2017 sea-

son, influenza strains included in the vaccine formulation were as

follows: A/California/09 (H1N1), A/Hong Kong/2014 (H3N2),

B/Phuket/2013 (Yamagata lineage), and B/Brisbane/2008 (Victoria

lineage). For the 2017–2018 season, the strains were A/Michigan/15

(H1N1), A/Hong Kong/2014 (H3N2), B/Phuket/2013 (Yamagata lin-

eage), and B/Brisbane/2008 (Victoria lineage). For the 2018–2019

season, the strains were A/Michigan/15 (H1N1), A/Singapore/16

(H3N2), B/Phuket/2013 (Yamagata lineage), and B/Colorado/2017

(Victoria lineage). For the 2019–2020 season, the strains were

A/Brisbane/2018 (H1N1), A/Kansas/2017 (H3N2), B/Phuket/2013

(Yamagata lineage), and B/Colorado/2017 (Victoria lineage). For

the 2020–2021 season, the strains were A/Guangdong-Maonan/2019

(H1N1), A/Hong Kong/2019 (H3N2), B/Phuket/2013 (Yamagata lin-

eage), and B/Washington/2019 (Victoria lineage). The strains are

briefly listed in Fig 1A. Adults older than 65 years were offered the

High-Dose (HD) option which contained four-fold the amount of

each vaccine strain compared to Standard-Dose (SD). For the first

four seasons (2016–2019), Yamagata lineage was not included in

HD. For the fifth season (2020), all four strains were included in HD.

All vaccines were administered intramuscularly from prefilled

single-dose syringes without preservative or adjuvant. The dose and

HA amounts were as follows: UGA1–4: SD—Quadrivalent, 0.5 ml

dose with 60 lg HA (15 lg/strain); HD—Trivalent, 0.5 ml dose with

180 lg HA (60 lg/strain); UGA5: SD—Quadrivalent, 0.5 ml dose

with 60 lg HA (15 lg/strain); HD—Quadrivalent, 0.7 ml dose with

240 lg HA (60 lg/strain).
Participants provided blood samples on the day of vaccination

(day 0) (sample collected before the vaccination event) and 21/

28 days post-vaccination (day 21/28). Hemagglutination inhibition

assays were performed on the blood samples against each of the

vaccine strains as well as other strains. Demographic data including

age, body mass index (BMI), sex, race, comorbidities, prior vaccina-

tion status, as well as month of vaccination in a flu season, vaccine

dose, and baseline (D0) HAI titer levels or post-vaccination D21/28

titer levels were used for Seroconversion and BaselineSY predictions.

We used Seroconversion as log2-transformed ratio of HAI titer

levels at day 21/28 (D21/28) and day 0 (D0) for each strain, and a

composite Seroconversion as the sum of log2-transformed ratios

across the strains, as proposed in a previous study (Abreu et al,

2020). We tested whether the HAI titer levels used here present a

valid measure of protection against subsequent flu infections. For a

very small number of participants (n = 17) in the UGA4 andUGA5

cohorts, we had information on presence or absence of influenza A

infection (3 and 14, respectively) in the 2020–2021 season (UGA5)

after receiving the vaccine in the year prior (UGA4) (Appendix

Table S4). The D28 HAI titer levels against A/H1N1 in the UGA4

season for the 14 influenza A negative participants were signifi-

cantly higher compared with those 3 positive participants

(P-value = 0.002; Appendix Table S4), indicating that high titer

levels provide protection against flu infections.

Further, we log2-transformed age and BMI to account for their

potential non-linear impact. To predict Seroconversion, we used the

log2-transformed baseline D0 HAI titer levels, age, BMI, as well as

the other demographic factors (variables). To predict BaselineSY,

we used the same variables, except that the log2-transformed D0

HAI titer is replaced with log2-transformed D21/28 HAI titer (Fig 4).

We assembled Baseline cohorts consisting of 672 vaccination events

comprising data for participants for whom the study comprised data

in two continuous seasons, that is, between UGA1 and 2, 2 and 3, 3

and 4, and 4 and 5, respectively. The Baseline cohorts were used for

BaselineSY prediction.

We performed predictions in three subpopulations separately:

Children (< 18 years), Adult1 (18–64 years), and Adult2 (≥ 65

years). The subpopulations were defined based on what is common

in this field and on the fact that the high-dose version of the vaccine

was offered as an option only to adults ≥ 65 years—so the effect of

dose can only be modeled among Adult2 participants.

Predictive modeling and evaluation with an independent cohort

We first split each dataset into training and test data sets. To ensure

independent evaluation of the predictions, the test sets were not

used to construct the models. For Seroconversion prediction, we

used UGA cohorts 1–3 and 5 as the training set and cohort 4 as the

test set. Similarly, we used Baseline cohorts 1–2 and 4 as the train-

ing set and cohort 3 as the test set. The decision was made based on

the overall composition of the cohorts. UGA1-3 were biased toward

recruitment of specific subpopulations. UGA5 was biased toward

returning participants and potentially skewed to the overlap with

the SARS-CoV2 pandemic.

We then tested different machine learning methods in WEKA

environment (Ivanciuc, 2008) (https://sourceforge.net/projects/
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weka/), including Random Forest and Neural Network, and

selected multiple linear regression (MLR) as it had the best perfor-

mance. So we applied MLR to model the effect of each variable

and to predict Seroconversion and BaselineSY, for individual

strains as well as the composite score. To reduce redundant vari-

ables and avoid overfitting, we first performed feature selection on

the training set. We used WrapperSubsetEval attribute evaluator

with the internal classifier set to be LinearRegression, and BestFirst

search method, as well as a 10-fold cross-validation setting to do

feature selection. Variables that were selected ≥ 1 time out of 10

times were retained. We then obtained the optimal MLR model

with the selected variables with the training set, with default

settings. Finally, we evaluated the performance of the model

with the test set, by both R2 and the accuracy of predicting

categories (Fig 4).

The strain-specific modeling followed the same procedures as the

modeling for the composite scores, but was performed for the four

vaccine strains separately. This modeling did not account for

changes in the actual vaccine strains used in each season (Fig 1A).

As Appendix Fig S7 shows, this assumption is valid due to cross-

reactivity between antibodies built against different strains of the

same subtype: HAI titer levels for both the A/H1N1 and A/H3N2

strains used in the UGA4 cohort correlate well with the respective

titer levels against the A/H1N1 and A/H3N2 strains used in the

UGA1-3 cohorts.

Estimating the relative importance of variables

We estimated the relative importance of each variable with the

Leave-One-Covariate-Out (LOCO) method as described previously

(Lei et al, 2018). Briefly, we removed one variable out at a time from

the MLR model, obtained a new R2, calculated the decrease in R2 as a

percentage defined as (R2full model � R2reduced model)/R
2
full model), and

used this metric as the relative importance of the variable. Appendix

Tables S2 and S3 show the results of this evaluation.

Power analysis

To evaluate the optimal sample size for this study, we performed

statistical power and sample size analysis using standard parame-

ters and various effect sizes. We used the function pwr.f2.test() in

R package pwr which calculates the power given the following

input: sample size, number of predictors, effect size, and signifi-

cance level. Accounting for sample size in the respective subpopu-

lations, the number of predictors in the individual models, and

effect size of the models, we estimated to have ~ 100, ~ 100, and

97% power in the Seroconversion prediction results, and 99.99999,

~ 100, and ~ 100% power in the BaselineSY prediction results, for

three subpopulations Children, Adult1, and Adult2, respectively

(Appendix Table S5).

Data availability

All scripts and models were deposited on github (https://github.

com/sw5019/Fluvacc-metadata-project).

Expanded View for this article is available online.
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