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Plasmodium parasites have extensive needs from their host hepatocytes during the obligate

liver stage of infection, yet there remains sparse knowledge of specific host regulators. Here

we assess 34 host-targeted kinase inhibitors for their capacity to eliminate Plasmodium yoelii-

infected hepatocytes. Using pre-existing activity profiles of each inhibitor, we generate a

predictive computational model that identifies host kinases, which facilitate Plasmodium yoelii

liver stage infection. We predict 47 kinases, including novel and previously described kinases

that impact infection. The impact of a subset of kinases is experimentally validated, including

Receptor Tyrosine Kinases, members of the MAP Kinase cascade, and WEE1. Our approach

also predicts host-targeted kinase inhibitors of infection, including compounds already used

in humans. Three of these compounds, VX-680, Roscovitine and Sunitinib, each eliminate

>85% of infection. Our approach is well-suited to uncover key host determinants of infection

in difficult model systems, including field-isolated parasites and/or emerging pathogens.
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P lasmodium parasites, the causative agents of malaria, inflict
tremendous mortality and morbidity worldwide. Yet, the
details of how these parasites interact with their host

remain largely unexplored. This is particularly true during the
first several days of mammalian infection, when the parasite
infects and then resides within a single hepatocyte in the liver.
While clinically asymptomatic, the liver stage (LS) of develop-
ment is obligatory for malaria life cycle progression and also
houses hypnozoite forms, which are the origin of relapsing
malaria1–4. The LS is a prime target for therapeutic intervention
because parasites are present in very small numbers compared to
other stages of infection, which are the typical targets of anti-
malarial drugs5. The identification of essential host-parasite
interactions during this stage could serve as critical points of
intervention in preventing blood stage infection and subsequent
transmission to mosquitoes.

As for many difficult-to-culture pathogens, systems-level
approaches are often incompatible with the challenges of study-
ing LS infection. More robust but experimentally straightforward
approaches to identifying host-pathogen interactions and the
ability to translate these insights to intervention are desperately
needed. Transcriptomic, proteomic and other global approaches
have made major strides in recent years (reviewed in ref. 6).
Moreover, new technologies such as genome-wide screens can
facilitate the identification of host factors7–9 involved in the
infection. However, many of these approaches require large
numbers of infected cells, which are difficult to generate in
laboratory strains of malaria and virtually impossible to obtain
when pathogens are isolated from the field or other medically
relevant settings. Consequently, nearly all drug and vaccine dis-
covery efforts have been performed in laboratory strains of the

malaria parasite. Unfortunately, recent studies have demonstrated
that these platforms do not always succeed in predicting efficacy
in the field due to differences between field and lab strains10.

Recent work has partially overcome these hurdles and provided
initial insights into host factors that mediate LS infection. These
findings indicate a role for post-translational regulation of host
factors involved in infection11. In addition to the direct assess-
ment of post-translational modifications, the transcriptome of
infected hepatocytes suggests changes in signal transduction
cascades and stress responses, which are classically associated
with kinase driven phosphosignaling12. Phosphorylation of host
molecules Akt, p53 and Bcl-211 occurs during LS infection. At
least some of these changes, including alterations of the p5311,13

and Bcl-2 pathways11,13, have been demonstrated to play a
functional role in infection. Inhibition of host cell mitogen-
activated protein kinase kinases (MAPKKs) in both Plasmodium-
infected erythrocytes and hepatocytes can also curtail infection14.
Despite these insights, the host kinases that regulate these and
other required phosphorylation events during Plasmodium
infection remain unknown.

There is also evidence suggesting that protein phosphorylation
might directly mediate specific protein-protein interactions
between the parasite and the host. Proteins localized to the
parasitophorous vacuole membrane (PVM) are modified by
phosphorylation in liver15 and blood16 stages, although the extent
of this post-translational regulatory event remains almost entirely
unexplored. While intriguing, existing studies have fallen short of
providing a systematic approach to identifying key phosphor-
ylation regulatory networks that govern the development of
Plasmodium LS infection. Methodology compatible with the
technical challenges of studying LS malaria that can
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Fig. 1 Plasmodium LS development is differentially impacted by host-targeted kinase inhibitors. a Schematic representing work flow to identify host kinases
involved in LS infection by kinase profiling and elastic net regression. b P. falciparum GFP-Luciferase expressing blood stage parasites were cultured at 2%
parasitemia in 5% hematocrit and evaluated for growth in response to 37 kinase inhibitors at 44 h.p.i. Light output was used as a surrogate measurement
for parasite biomass. Values are normalized to the light output of non-treated parasites, which is indicated by a solid line. Kinase inhibitors that exhibited
toxicity against blood stage parasites were removed for subsequent study (depicted in red). Data is the average of three independent experiments. c
150,000 Hepa 1–6 cells were infected with 50,000 P. yoelii parasites and then treated with kinase inhibitors at 500 nM 1.5 h.p.i. P. yoelii LS development in
the presence of kinase inhibitors was evaluated by microscopy at 24 h.p.i. All values are normalized to vehicle-treated control (indicated by a solid line).
Kinase inhibitors that exhibited high variability in parasite clearance were excluded from downstream analysis (depicted in green). Data shown is the
average of 3–4 independent experiments. Error bars represent standard deviation of independent experiments. Individual data points are provided in
Supplementary Table 1
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systematically identify key host regulatory phosphosignaling
networks is needed. Furthermore, methodology that links these
host factors to potent inhibitors of infection is required. Towards
this end, we have applied an approach that simultaneously pre-
dicts key host kinase regulators of Plasmodium yoelii LS infection
and host-targeted drugs that can eliminate parasite burden in the
liver.

Recent approaches have used the combination of experimental
data and machine learning algorithms to identify key kinase
regulators of a given phenotype17–19. For example, Kinase
Regression (KiR) aims to identify the kinases that most sig-
nificantly contribute to a biological phenotype by integrating a
straightforward, small-scale kinase inhibitor screen with the tools
of computational biology17. This approach takes advantage of
measurements of polypharmacology, the property of kinase
inhibitors to have multiple targets, to identify key kinase reg-
ulators of the cellular phenotype of interest. KiR has previously
been used in purely mammalian systems, including the identifi-
cation of novel kinases that regulate cell migration17 and sub-
sequent metastasis20. Related approaches have been used to
identify regulators of angiogenesis and proliferation18,19. KiR
utilizes pre-existing, in vitro activity profiles of 300 commonly
studied kinases in response to a collection of 178 kinase inhibi-
tors, including FDA-approved drugs21. A small subset of these
kinase inhibitors are administered and quantitative phenotypic
data is collected.

Here, we take a similar computational approach and integrate
experimental phenotypic data with kinase activity profiles by
using elastic net regularized regression to predict the most sig-
nificant host kinase regulators of LS malaria infection as well as

the most inhibitory compounds. A subset of these predictions are
then experimentally tested. Taken together, we identify key bio-
logical regulators of Plasmodium yoelii LS infection and translate
these insights into potent host-targeted intervention strategies.

Results
Host-targeted inhibitors impact Plasmodium LS development.
Here, we adapt an approach that combines experimental data
with a machine learning algorithm to identify host kinase reg-
ulators of Plasmodium yoelii LS infection (Fig. 1a). Thirty-seven
kinase inhibitors have previously been described to capture as
much of the variability in the inhibitor-kinase activity space as
possible using only a modest number of inhibitors17 (Supple-
mentary Table 1). In this case, the chosen drugs account for
>80% variability in the measured kinase activities17,21. Plasmo-
dium, like its mammalian host, has a diverse repertoire of kinases.
Since this approach only incorporates kinase inhibition data on
mammalian kinases, any activity that kinase inhibitors have
directly on Plasmodium kinases has the potential to mislead the
computational algorithm. As a surrogate for activity against
Plasmodium kinases, we evaluated the efficacy of each kinase
inhibitor in a Plasmodium blood stage growth assay (Fig. 1b)22.
We reasoned that any inhibitor that cleared the parasites during
the asexual blood stage might exert its activity by inhibiting
Plasmodium kinases, and thus might confound our modeling
approach. Three out of the 37 compounds tested exhibited >25%
inhibitory activity against asexual blood stage parasite growth
compared to non-treated control. To minimize the confounding
effect of the inhibition of parasite kinases, these inhibitors were
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eliminated from further use in our study (Fig. 1a, b). This does
not exclude the possibility that erythrocyte kinases play an
important role in Plasmodium infection, as has been highlighted
in other studies14,23.

Plasmodium LS development can be quantitatively assessed
by fluorescence microscopy in Hepa 1–6 mouse hepatoma
cells. We infected 150,000 Hepa 1–6 cells with 50,000 P.
yoelii sporozoites, then administered kinase inhibitors 1.5 hours

post infection (h.p.i.). We assessed LS parasite burden at 24 h.p.i.
(Fig. 1a, c). Kinase inhibitors that performed inconsistently over
multiple independent experiments, defined as a standard
deviation greater than 20% of the mean, were excluded from
further analysis (Fig. 1a, c). Remaining kinase inhibitors represent
a panel of compounds that differentially and consistently impact
parasite burden (Fig. 1c, Supplementary Fig. 1, Supplementary
Table 2).
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kinases to be regulators of Plasmodium LS infection. Kinases without any previously described role in LS infection are depicted in blue. Kinases previously
implicated in LS infection, and also predicted by the elastic net regression at α= 0.8, are depicted in red. Of the kinases previously demonstrated to
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modified Fisher’s exact test

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01345-2

4 NATURE COMMUNICATIONS |8:  1232 |DOI: 10.1038/s41467-017-01345-2 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


Elastic net regression predicts kinases that regulate LS. To
identify host kinases that regulate Plasmodium LS development,
we used kinase inhibition data to inform an algorithm based on
elastic net regression. This approach is similar to previously
described methodology17. In short, our methodology regresses
experimentally obtained phenotypic data—in our case, parasite
burden, against a pre-existing kinase-drug interaction data set21

(Fig. 2a). Briefly, we modeled the phenotype (residual LS burden),
y, as a linear function of residual kinase activity X, y= β0+Xβ.
Residual kinase activity in response to each of 178 kinase inhi-
bitors has been measured previously using a biochemical kinase
activity assay21. Parameters of fit (β0, β) were determined using
multivariate linear regression with elastic net regularization,
which minimizes the error between actual and predicted results.
This method has two hyperparameters, α and λ. α is a relative
weighting parameter between 0 and 1 of the elastic net penalty
between LASSO regression (α= 1) and Ridge regression (α= 0)
and is chosen to adjust the stringency of inclusion. λ is the overall
scaling factor of the regularization penalty and is chosen at each
value of alpha such that the Mean Squared Error (MSE) of the
model, calculated via resubstitution, is minimized (Supplemen-
tary Note 1). This approach identified a minimal set of kinases
with non-zero coefficients for each value of α (Supplementary
Data 1). When α was set at 0.8, 47 kinases had non-zero coeffi-
cients (Fig. 2b). We hypothesized that these kinases impact
Plasmodium LS development.

The predicted set of 47 putative kinase regulators of
Plasmodium yoelii LS development (Fig. 3a) represents a
substantial increase over the current number of kinases known
to regulate Plasmodium LS infection. To evaluate the efficacy of
our approach in identifying kinases with a relevant role in LS
infection, we compared predicted kinases to the results of a
kinome-wide siRNA screen by Prudêncio and colleagues24, which
identified host kinase regulators of LS infection. Of the 300
kinases that can be evaluated by our approach, seven had been
previously identified as regulators of LS infection. Of these seven
kinases, four (PKCζ, HCK, c-MET, and MARK2) were predicted
by our approach when α was set at 0.8, which is significantly
greater than expected by chance (p= 0.01, hypergeometric
probability test) (Fig. 3a). When α was decreased, relaxing the
threshold, two additional kinases (PKCι, SGK2) that had been
previously identified24 were predicted.

Since this methodology provides an unbiased approach to
elucidating host regulators of infection, kinases with similar drug-
inhibitory profiles have the potential to be predicted as hits together,
which could introduce false positives. Thus, to test the accuracy of
our predictions, we asked which kinases that we predict to play a
role in LS infection significantly impacted LS infection when
knocked down using shRNA. We chose to evaluate 18 predicted
kinases for their role in LS infection and six non-predicted kinases
as negative controls (Fig. 3b, Supplementary Fig. 2). Hepa 1–6 cells
were transduced with a pool of shRNA-expressing lentivirus against
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each kinase and transduced cells were selected over a period of five
days using puromycin. Lentivirus expressing a non-targeting
shRNA was used as a control (Supplementary Table 3). Decrease
in transcript level of each kinase was evaluated by qPCR
(Supplementary Fig. 3, Supplementary Table 4). Each cell line
was then infected with P. yoelii parasites and parasite development
was quantified at 24 h.p.i. by microscopy (Fig. 3b). Knockdown of
15/18 kinases resulted in a substantial decrease in parasite burden,
defined as ≤70% of scramble control (estimated false positive rate =
16.7%), despite very minimal cell death after knockdown
(Supplementary Fig. 4). Our approach identifies host regulatory
kinases with more comprehensive coverage than a whole-kinome
siRNA screen, using a less laborious experimental design.
Functional classification of kinases identified by our approach
revealed enrichment of multiple GO terms and KEGG pathways,
including microtubule cytoskeleton reorganization (p= 0.007),
positive regulation of MAP kinase activity (p= 0.03), cytokine-
cytokine receptor interaction (p= 0.03) and endocytosis (p= 0.05)
(Fig. 3c) using the DAVID toolbox25,26. This suggests that a broad
range of cellular activities are likely important for Plasmodium LS
infection.

Identification of host-targeted inhibitors of LS infection. In
addition to elucidating host regulatory factors, this approach can
be used to predict the efficacy of previously untested host-
targeted drugs in eliminating LS burden. The algorithm ranked
the 178 kinase inhibitors, for which activity profiles had been
obtained21, for their predicted efficacy against P. yoelii LS infec-
tion. Inhibitors were ranked from most efficacious (predicted to
completely eliminate LS infection) to least efficacious (inhibitors
predicted to have no impact or slightly increase LS infection)
(Fig. 4a, Supplementary Data 2). Of the 178 compounds, two
compounds that were both developed against CDK2 were pre-
dicted to have dramatically different efficacies against LS infec-
tion. CDK2 inhibitor IV was predicted to have no activity against
LS malaria, whereas CDK 1/2 inhibitor III was predicted to have
potent efficacy against LS infection. Interestingly, CDK2 was not
predicted as a kinase regulator of LS infection, suggesting that the
activity of each inhibitor was driven exclusively by ‘off-target’
effects. To test this prediction, we evaluated LS infection in the
presence of each inhibitor over a range of concentrations between
4 μM and 62.5 nM and evaluated LS burden at 24 h.p.i. (Fig. 4b).
As predicted, we found that CDK2 inhibitor IV had no significant
impact on parasite burden over the range of drug concentrations.
In contrast, the predicted efficacious drug, CDK 1/2 inhibitor III,
decreased LS burden in a dose-dependent manner. Next, we
tested two inhibitors, SB505124 and LY364947, both with high
predicted efficacy against the kinase target TGFβ Receptor 1. Both
drugs eliminated >40% of LS parasites at 48 h.p.i. when admi-
nistered at 500 nM (p= 0.0043 and p= 0.0097, Student’s two-
tailed t-test) (Fig. 4c). Finally, we evaluated the efficacy of VX-680
and Roscovitine, which are currently in clinical studies as well as
Sunitinib, which has been FDA approved. Each of these com-
pounds was predicted to eliminate a substantial portion of LS
parasites (Supplementary Data 2). When evaluated experimen-
tally, each of these compounds eliminated >85% of LS burden at
500 nM 24 h.p.i. (p= 0.0025, p= 0.0026, and p= 0.0013 by Stu-
dent’s two-tailed t-test) (Fig. 4d). Taken together, we were able to
predict and test host kinases involved in infection and also
identify novel host-targeted inhibitors that are effective at dra-
matically reducing LS infection.

Discussion
The LS of the Plasmodium parasite represents an important
interventional opportunity as parasites are only present in small

numbers and clinical symptoms are absent. During this stage, the
parasite is entirely dependent on the host hepatocyte, suggesting
that the LS parasite might be particularly sensitive to host
perturbations. Although it has been understood that this sus-
ceptibility could be exploited for intervention, specific strategies
for eliminating LS parasites remain limited both in the clinic and
in development (reviewed in ref. 27). No single approach has
systematically and broadly identified host factors involved in LS
infection and translated these insights to a drug discovery effort.
We have demonstrated the ability to identify host kinase reg-
ulators of parasite infection within the hepatocyte and directly
link those insights to the discovery of host-targeted drugs.

We and others have previously shown that altering the levels of
host factors can reduce LS parasite burden11,13,24,28–33. Yet, it
remains technically challenging to perform a global assessment of
the functional role of each human protein in malaria LS infection.
Since kinases are known to regulate nearly all outcomes within
the cell, evaluating the impact of host kinases indirectly evaluates
the impact of a substantially larger portion of the proteome than
the kinome itself represents. Previous reports have demonstrated
that a number of host kinases are involved in infection11,24,
although inhibition of no single kinase has been demonstrated to
completely eliminate infection24,28. This could originate from
many sources including incomplete knockdown or compensatory
activity of other kinases.

To date, the assessment of relevant host factors involved in
many cellular processes, including infection against a multitude of
pathogens, has relied on genetic screens where pathogen devel-
opment is observed after knockdown of individual host factors.
Previously, Prudêncio and colleagues used a kinome-wide siRNA
screen to implicate multiple kinases in the regulation of Plas-
modium infection and development. Of the kinases they identi-
fied to regulate LS infection, seven were included in the 300
kinases that we interrogated in this study. We observed significant
overlap between the two approaches. Specifically, four kinases,
PCKζ, HCK, c-MET and MARK2, were identified by siRNA to
play a role in LS infection, and also predicted by our approach
(Fig. 3a). At a relaxed threshold, an additional two kinases are
predicted (Fig. 3a).

The substantial agreement of these two approaches is non-
obvious for several reasons. First, the systems used to evaluate
infection are heterologous: the siRNA screen was performed in
Huh7 human hepatoma cells using P. berghei infection. In con-
trast, our study uses Hepa 1–6 mouse hepatoma cells and P. yoelii
infection. Secondly, the nature of the inhibition between these
approaches is inherently different: genetic knockdowns aim to
eliminate all aspects of a protein’s function (kinase activity in
addition to non-kinase related activities) whereas the kinase
inhibition screen we have performed only perturbs the catalytic
activity of the kinase itself. We have recently demonstrated that at
least one member of the Eph family of Receptor Tyrosine Kinases
is critical for parasitophorous vacuole membrane formation
through engagement of its extracellular (non-kinase) domain28.
As such, we would expect to see an effect on parasite burden after
genetic knockdown but not after kinase domain inhibition.
Indeed, Prudêncio et al.24 identify one member of the Eph
receptor family, EphA3, in their genetic screen, but the kinase
activity of no members of the Eph family are predicted to be
involved in P. yoelii LS infection by our approach (Fig. 3a).

Furthermore, we and others have previously demonstrated that
host responses and key regulatory factors between P. yoelii and
P. berghei vary29,34,35. In our study, we uncovered a surprising
difference in the role of MET signaling in LS infection. P. berghei
relies on MET signaling for infection in all cell types evaluated to
date whereas P. yoelii does not utilize MET signaling in the
HepG2-CD81 model32. Interestingly, MET was predicted by our
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approach to play a role in P. yoelii infection of Hepa 1–6 cells.
This suggests that host–parasite interactions can vary across
species (and, presumably, different strains of Plasmodium) as well
as across different host genetic backgrounds. This observation
further suggests the need for a straightforward methodology for
evaluating host factors involved in infection across many model
systems. Ultimately, the capability to interrogate relevant host
factors in diverse field-isolated strains, in the context of altered
hepatocyte biology, will be critical for our comprehensive
understanding of malaria infection in the liver.

Interestingly, PKCζ was previously reported to play a role in LS
infection and our approach confirmed its impact. PKCζ is an aty-
pical PKC, which unlike other PKCs, requires neither calcium nor
diacylglycerol as second messenger activators. Instead, PKCζ sig-
naling relies on protein scaffolds or other second messengers for
activation and interaction with substrates (ref. 36, reviewed in refs.
37,38). The role of PKCζ in LS infection is consistent with a model
where the developing parasite relies exculsively on non-canonical
PKC signaling while remaining resistant to changes in canonical
PKC signaling, which is activated by a wide variety of cell stimuli. In
addition to recapitulating previous findings, we predicted that 43
kinases impact infection that were not identified by previous
screens. Among these kinases, several examples of pathways per-
turbed by the parasite emerge. For example, host cell autophagy has
been shown to play a role in LS Plasmodium infection as inhibition
of key regulators in the autophagic pathway, such as LC3, Beclin,
and Atg5 lead to a reduction in parasite size39. Consistent with this
model, we predict the ULK kinases (ULK1/2/3), which mediate host
autophagy, to regulate LS infection.

One potential limitation of this approach is confounding effects
that arise from kinase inhibitor activity that is exerted directly on
parasite kinases. In order to minimize any direct cidal activities
that the kinase inhibitors had on the parasite during LS devel-
opment, we excluded compounds that inhibited P. falciparum
parasites during blood stage growth. However, because testing in
blood stages is an imperfect surrogate for assessing inhibitor
activity against the LS parasite, we performed genetic knockdown
experiments to determine the false positive and negative rate of
our predictions (Fig. 3b). We validated a subset of the hits and
found a false positive rate of 16.7% (3/18). When compared to the
previously reported kinome-wide siRNA-screen, we find a false
negative rate of 43% (3/7) with the α hyperparameter set at 0.8.
This is similar to the rate we observe (50%) when we knockdown
individual kinases that were not predicted to play a role in LS
infection (Supplementary Fig. 2). Interestingly, several of the
kinase knockdowns resulted in a modest effect on LS burden,
suggesting that our approach is not comprehensive in its ability to
identify kinases that play a role in infection and may exclude the
prediction of host kinases that exert a small effect on LS infection.
However, this false negative rate is likely an over-estimation as it
does not account for kinases whose impact is not tied to their
enzymatic activity. As such, the kinases found to be false nega-
tives might have kinase-independent functions. For example, the
kinase domain of ABL1 has been described to promote ubiqui-
tination of damaged proteins independently of its kinase activ-
ity40,41. This activity would not be impaired by chemical
inhibition of kinase activity but would be impacted by genetic
knockdown.

Of the >500 kinases in the human kinome42, our approach
utilizes activity profiles of 300 kinases. Thus, it is likely that
additional kinases play an important role in Plasmodium LS
development. For example, AMP-activated protein kinase
(AMPK) was recently described to play a role in LS infection43

but was not included in the 300 kinases that we assessed. As
additional kinase profiling data becomes available, it will be trivial
to re-run our model and identify the contribution of a greater

number of host kinases that regulate LS malaria. As new, more
selective, and therapeutic-grade kinase inhibitors are profiled for
their ability to inhibit a diverse range of host kinases, we will be
able to predict their impact on Plasmodium development during
LS infection using this approach. Finally, as inhibition profiles are
generated for inhibitors of other enzyme classes, such as deace-
tylases, phosphatases and methyltransferases, this method can be
extended to make predictions on several key cellular processes
not limited to the kinome.

The increased sensitivity of our approach over a forward
genetic approach could originate from multiple factors. First,
chemical inhibition of kinases is often more complete than siRNA
knockdown suggesting that kinases that require a certain
threshold of inhibition in order to impact LS malaria may escape
detection in an siRNA screen. Secondly, the polypharmacological
properties of the kinase inhibitors used in the screen create an
environment where multiple kinases are inhibited simultaneously.
This enables the identification of groups of kinases whose inhi-
bition is most significantly perturbed in combination. Some of
these limitations might be overcome with new genetic approaches
using CRISPR/Cas9, as this approach results in more complete or
even total knockdown9,44–46. However, genetic screens will typi-
cally facilitate the knockdown of only a single gene within a single
cell. This further emphasizes the unique role that our metho-
dology could play in identifying critical factors involved in a
multitude of cellular phenotypes.

The technical advantage of this approach over any other
approach previously described to evaluate host factors against LS
malaria is substantial. A small-scale, technically straightforward,
chemical inhibition experiment can be performed in a wide variety
of settings, including using field isolates and evaluating infection
in the context of a number of different host genetic backgrounds.
As new pathogens emerge and geographic distributions of ende-
mic diseases overlap, it is increasingly critical to be able to rapidly
characterize key host points of susceptibility for multiple patho-
gens as well as in the context of co-infections. By minimizing the
resources required to generate data, we can work towards a
comprehensive picture of the critical host–pathogen interactions
that drive a multitude of infectious diseases worldwide.

Methods
Cell lines and culture. Hepa 1–6 cells were obtained from American Type Culture
Collection. Cells were maintained in DMEM-Complete Medium (Dulbecco’s
modified Eagle medium (Cellgro, Manassas, VA), supplemented with 10% FBS
(Sigma-Aldrich, St. Louis, MO), 10,000 IU/ml penicillin/100 mg/ml) streptomycin
(Cellgro), 2.5 mg/ml fungizone (HyClone/Thermo Fisher, Waltham, MA and
4 mM L-Glutamine (Cellgro)). Cells were split 2–3 times weekly. All experiments
were performed using Hepa 1–6 cells that were passaged between 4 and 12 times
after purchase from ATCC.

Mosquito rearing and sporozoite production. For P. yoelii sporozoite produc-
tion, female 6-week to 8-week-old Swiss Webster mice (Harlan, Indianapolis, IN)
were injected with blood stage P. yoelii (17XNL) parasites to begin the growth
cycle. Animal handling was conducted according to the Institutional Animal Care
and Use Committee-approved protocols. Anopheles stephensi mosquitoes were
allowed to feed on infected mice after gametocyte exflagellation was observed.
Salivary gland sporozoites were isolated according to the standard procedures at 14
or 15 days post-blood meal. For each experiment, sporozoites were extracted from
salivary glands in parallel to ensure consistency.

Quantification of liver stage parasites by microscopy. 1.5 × 105 Hepa 1–6 cells
were seeded in DMEM-Complete Medium in each well of an eight-well Permanox
slide. Cells were infected with 5 × 104 P. yoelii sporozoites per well. Slides were
centrifuged for five minutes at 515 × g in a hanging-bucket centrifuge to aid in
sporozoite invasion. After 90 minutes, sporozoite-containing media was removed.
For treatment/experimental wells, DMEM-Complete Media containing kinase
inhibitors at 500 nM was added, or media with 0.5% dimethyl sulfoxide for control
wells. Compounds were obtained from Selleck Chemicals (Houston, TX) or Mili-
poreSigma (Darmstadt, Germany). All compounds were dissolved at 1 mM in
dimethyl sulfoxide. Compounds were added to cells 90 minutes after infection.
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Parasites were allowed to develop for 24 h or 48 h, at which time cells were fixed
with 4% paraformaldehyde, and blocked and permeabilized for 1 h in phosphate-
buffered saline (PBS) with the addition of 0.1% Triton X-100 and 2% Bovine serum
albumin (BSA). Staining steps were performed in PBS supplemented with 2% BSA.
Cells were stained using antisera to Plasmodium HSP70 at 4 °C overnight and then
washed several times. Antibodies were visualized with the use of AlexaFluor-488
goat anti-mouse secondary antibody (Life Technologies, Grand Island, NY). 4′,6-
diamidino-2-phenylindole (DAPI) stain was used to visualize both hepatocyte and
parasite nuclei. LS parasites were counted manually by microscopy based on
presence of HSP70 fluorescence and confirmed by the presence of parasite nuclei
using DAPI staining. Complete well counts were taken for all experiments. Each
assay contains data from three to four biological replicates, each which includes
three technical replicates. Three individual experiments were performed testing the
efficacy of each compound. An additional independent experiment was performed
if the standard deviation was ≥20% of the sample mean for the initial three
replicates. Parasite numbers in treated wells were normalized to corresponding
non-treatment control within experiments in order to assess infection rates;
however, non-treatment infection rates were comparable across experiments.

Plasmodium blood stage assay. GFP-Luciferase expressing Plasmodium falci-
parum blood stage parasites were cultured asexually. Assays were performed on
synchronous (>90%) ring stage parasites at 2% parasitemia and 5% hematocrit. In
triplicate, kinase inhibitors were administered to parasites at 500 nM with vehicle
as a non-treatment control (0.5% DMSO in PBS), and Chloroquine administered at
2.5 μM as a positive control. At 44 h post treatment, 30 μL of the assay culture was
transferred to a 96-well white flat-bottom opaque tissue culture plate (Beckton
Dickinson, Franklin Lakes, New Jersey). Using a Berthold LB960 XS3 microplate
(Berthold Technologies, Wildbad, Germany) an equal volume of Bright-Glo luci-
ferase reagent (Promega, Madison, WI) was added to parasites and resultant
luminescence was measured. Experimental data is representative of three inde-
pendent experiments.

Prediction of kinases and kinase inhibitors. Elastic net regularization, a multi-
variate variable selection method, was performed using the standard Statistics
Toolbox in MATLAB. Specifically, we performed elastic net regularization with a
range of alpha values varying from 0.1 to 1.0. Resubstitution methodology was used
in order to calculate mean squared error. The code for our analysis is provided in
Supplementary Note 1.

shRNA-mediated gene knockdown. MISSION shRNA vectors were obtained
from Sigma-Aldrich (St. Louis, MO). Detailed information on constructs can be
found in Supplementary Table 3. Nonreplicating lentiviral stocks were generated by
transfection of HEK293-FT cells. 10 cm TC-treated petri dishes were coated with
0.01 mg/mL poly-L-lysine for ≥30 min at 37 °C, and rinsed with diH2O twice. 4 ×
106 HEK293-FT cells were plated on poly-L-lysine coated dishes to achieve 70–80%
confluency at time of transfection. Approximately 24 h after plating, transfection
mixtures were prepared by mixing 20 µl Polyethylenimine MAX (Polysciences Inc,
Warrington, PA) prepared at 1 mg/ml, together with 4.75 µg of shRNA construct
or a non-targeting shRNA control, 1.5 µg viral envelope plasmid (pCMV-VSV-G),
and 3.75 μg viral packaging plasmid (psPax2). After incubating for 10 minutes at
room temperature in DMEM, transfection complexes were added dropwise to cells.
After overnight incubation, cells were washed to remove transfection mixtures and
were fed with 10 ml fresh media. Lentivirus-containing supernatant was harvested
36 h later, passed through 0.45 µm syringe filters, and either used immediately for
transduction or stored at -80 °C.

In order to induce knockdown of candidate host kinases, Hepa 1–6 cells were
transduced with lentiviral supernatants in 6-well plates at a cell density of 1 × 106/
well. At time of plating, cells were transduced with 1 ml of supernatant in the
presence of 1.0 µg/mL polybrene (Sigma-Aldrich St. Louis, MO). In order to select
for cells with stable integration of shRNA transgenes, supernatant was replaced
with complete media with the addition of 2 µg/mL puromycin 24 h post
transduction, and cells were selected for at least five days prior to experiments.

Validation and quantification of shRNA-mediated knockdown. Quantification
of RNA by real-time RT-PCR: Total RNA was extracted using TRIzol reagent
according to the manufacturer’s procedure (Invitrogen). cDNA synthesis was
performed using the Thermo Scientific RevertAid RT Kit according to the man-
ufacturer’s instructions (Thermo Scientific). For this quantitative PCR (qPCR) a
standard curve was generated using 1:4 dilutions of a reference cDNA sample for
PCR amplification of all target PCR products. The values of each transcript were
normalized to mouse GAPDH. Experimental samples were compared to this
standard curve to give a relative abundance of transcript.

Statistical analyses. Method of statistical analysis are reported for each experi-
ment in the corresponding figure legend.

Code availability. Script used to generate kinase and kinase inhibitor predictions is
provided as Supplementary Note 1.

Data availability. All data generated or analyzed during this study are included in
this published article and its supplementary information files or available from the
corresponding author upon request.
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