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Abstract

Background: This work presents a machine learning strategy to increase sensitivity in tandemmass spectrometry
(MS/MS) data analysis for peptide/protein identification. MS/MS yields thousands of spectra in a single run which are
then interpreted by software. Most of these computer programs use a protein database to match peptide sequences
to the observed spectra. The peptide-spectrum matches (PSMs) must also be assessed by computational tools since
manual evaluation is not practicable. The target-decoy database strategy is largely used for error estimation in PSM
assessment. However, in general, that strategy does not account for sensitivity.

Results: In a previous study, we proposed the method MUMAL that applies an artificial neural network to effectively
generate a model to classify PSMs using decoy hits with increased sensitivity. Nevertheless, the present approach
shows that the sensitivity can be further improved with the use of a cost matrix associated with the learning
algorithm. We also demonstrate that using a threshold selector algorithm for probability adjustment leads to more
coherent probability values assigned to the PSMs. Our new approach, termed MUMAL2, provides a two-fold
contribution to shotgun proteomics. First, the increase in the number of correctly interpreted spectra in the peptide
level augments the chance of identifying more proteins. Second, the more appropriate PSM probability values that
are produced by the threshold selector algorithm impact the protein inference stage performed by programs that
take probabilities into account, such as ProteinProphet. Our experiments demonstrate that MUMAL2 reached around
15% of improvement in sensitivity compared to the best current method. Furthermore, the area under the ROC curve
obtained was 0.93, demonstrating that the probabilities generated by our model are in fact appropriate. Finally, Venn
diagrams comparing MUMAL2 with the best current method show that the number of exclusive peptides found by
our method was nearly 4-fold higher, which directly impacts the proteome coverage.
(Continued on next page)

*Correspondence: fabio.cerqueira@ufv.br
†Equal contributors
1Department of Informatics, Universidade Federal de Viçosa, 36570-900 Viçosa,
Brazil
Full list of author information is available at the end of the article

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-1341-x&domain=pdf
mailto: fabio.cerqueira@ufv.br
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


The Author(s) BMC Bioinformatics 2016, 17(Suppl 18):472 Page 26 of 86

(Continued from previous page)

Conclusions: The inclusion of a cost matrix and a probability threshold selector algorithm to the learning task further
improves the target-decoy database analysis for identifying peptides, which optimally contributes to the challenging
task of protein level identification, resulting in a powerful computational tool for shotgun proteomics.

Keywords: Artificial neural network, Cost sensitive classification, Peptide/protein identification, Phosphoproteomics,
Shotgun proteomics, Data mining

Background
The goal in proteome studies is to characterize as many
proteins as possible in the samples being analyzed, in
order to assign to these proteins a role in cellular activ-
ities, including cases of severe disease occurrence due
to protein malfunction [1, 2]. For this purpose, liquid
chromatography coupled with tandemmass spectrometry
(LC-MS/MS) is the most commonly used approach [3–5].
An LC-MS/MS run generates thousands of spectra,

where each one represents a peptide. The next step is to
assign a peptide sequence to each spectrum based on its
spectral peak pattern [6]. There are basically two tech-
niques to interpret MS/MS spectra. One is the so-called
de novo approach that analyzes the peak patterns with-
out using any external information [7]. The most common
technique, however, uses protein sequence databases,
which is the case of computational programs such as
Sequest and Mascot [8, 9]. These programs perform an in
silico digestion of proteins present in the database (DB)
and generate virtual spectra from the resulting virtual
peptides. Thus, for each observed spectrum, the program
finds its best match to a virtual spectrum and the respec-
tive peptide sequence is assigned to the given MS spec-
trum. The programs normally report the ten bestmatches.
Several scores are attributed to a peptide-spectrummatch
(PSM) to measure its quality [10]. This strategy can be
used to identify and quantify peptides/proteins [11]. Nev-
ertheless, a major issue in this procedure is that a single
LC-MS/MS run usually leads to thousands of spectra,
where fewer than 20% are interpreted correctly [12].
In this work, we are primarily interested in the identi-

fication task. In particular, we aim at performing a com-
putational curation of Sequest PSMs, given the enormous
volume of spectra that is usually produced and the poten-
tially large number of false positive hits. In this context, it
is important to efficiently estimate the false discovery rate
(FDR) of the identifications [13].
A common strategy to FDR estimation is the use of

a target-decoy database (TDDB) [14]. In this approach,
decoy protein sequences are generated to be used along
with target protein sequences for the search, which can be
performed using a composite target-decoy DB or in two
rounds, i.e., one search for each DB (decoy and target).
Common methods for generating decoy sequences are

to reverse or shuffle the target sequences, keeping the
amino acid distribution. The TDDB strategy relies on
the premise that the decoy PSMs are good models of
the incorrect target PSMs. Hence, for a wrong PSM, the
probability of the assigned peptide sequence to pertain
to the target DB is assumed to be the same probabil-
ity of the sequence to pertain to the decoy DB. As a
result, a good estimate for the number of wrong spectrum
interpretations among target PSMs is simply the num-
ber of decoy PSMs [15]. However, even though the TDDB
strategy has been used successfully for FDR estimation, it
has not been, in general, suitably applied to optimize sen-
sitivity, i.e., more sophisticated combinations of the PSM
scores are not fully explored to increase sensitivity [16].
Furthermore, important scores are left out from the FDR
estimation process [13].
PeptideProphet is another known approach used to

PSM assessment. This method considers mixed sta-
tistical distributions of PSM scores to predict correct
and incorrect spectrum interpretations [17, 18]. In the
case of Sequest PSMs, for example, the Gaussian and
gamma distribution parameters for incorrect and correct
PSMs, respectively, are estimated by the Expectation-
Maximization algorithm [19]. When the dataset presents
the assumed distributions, PeptideProphet can provide
an accurate probability that a PSM is correct. On the
other hand, in certain datasets the scores might present
completely different distributions. Particularly in the case
of phosphopeptides, the peptide fragmentation process
in the MS/MS run is biased towards phosphate groups,
which suppresses important ions and leads to odd spectra
[20–22].
MUDE and MUMAL are two more recently introduced

methods proposed by our group that explore the TDDB
strategy without assuming and relying on a data distribu-
tion [3, 12]. Bothmethods describe amore comprehensive
use of PSM scores to enhance sensitivity.
MUDE considers in addition to Xcorr and �Cn, nor-

mally used in TDDB analyses, four alternative scores:
�m, SpRank, and PercIons, provided by Sequest, and
RTp-value, provided by the OpenMS proteomics tool [12,
23]. Furthermore, the problem of finding threshold val-
ues for the scores that lead to a desired FDR is treated
as an optimization problem. Even though it provides a
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significant increase in sensitivity, the MUDE approach is
capable of producing only linear decision boundaries to
separate false positives from true positives because the
score thresholds are defined individually.
As in MUDE, the MUMAL method to assess PSMs

applies a TDDB analysis using a multivariate approach.
However, this is accomplished with machine learning
techniques, aimed at providing more flexible decision
boundaries to further increase sensitivity in the FDR esti-
mation process [3, 6]. MUMAL replaces the optimization
procedure in MUDE with an Artificial Neural Network
(ANN) algorithm to perform PSM classification. The
resulting ROC (receiver operating characteristic) curve is
analyzed according to the decoy count idea, i.e., for each
point in the curve, the respective discriminant probability
threshold t is used to count the number of decoy hits with
probability (generated by the ANN) equal or greater than
t. This count is the estimate for the number of target hits
with P ≥ t that are incorrect. For the ANN model con-
struction, the training set is the data to be analyzed itself,
i.e., all Sequest hits, where the attributes are composed by
the six scores mentioned above, and the class labels are:
0 for decoy hits, and 1 for target hits. If, on one hand, all
of the decoy hits are obviously wrong, on the other hand,
only aminor part of target hits are correct. For this reason,
by using classical evaluation methods such as accuracy,
precision, and recall, the resulting model is regarded as
unsatisfactory because most target hits have characteris-
tics similar to decoy hits. However, the ROC analysis is
an optimal tool to find appropriate discriminant proba-
bilities that provide the desired FDR with good sensitivity
[24]. Nevertheless, there is room for improving sensitiv-
ity even further, particularly concerning the classification
procedure, because other techniques could be applied for
using decoy hits to characterize the wrong interpretations
among target PSMs.
In this vein, we again propose to use ANNs as in

MUMAL to keep delineating good decision boundaries.
However, two important approaches are included in the
PSM assessment procedure. The first one is the use of
a cost matrix for making the cost of misclassifying an
instance of class 0 (decoy hit) higher than the cost of
misclassifying an instance of class 1 (target hit) [25]. It
provides a bias toward the correct classification of decoy
hits, for which the class labels are definitely correct (decoy
hits are obviously wrong). In this way, the incorrect tar-
get hits, i.e., the ones with the same characteristics of
decoy PSMs, but with different label (class 1), tend to
be correctly classified as class 0 by the model. Therefore,
decoy hits help to pin down incorrect target hits, provid-
ing better decision boundaries, which leads to a higher
sensitivity.
The second technique we use for improving the

MUMAL approach is to apply a threshold selector

algorithm (TSA) [26]. After building the model with an
ANN with a cost matrix, and analyzing the ROC curve
to see which discriminant probabilities provide suitable
FDRs, the discriminant probability that leads to a 1% FDR
is selected to be the final threshold value t that separates
correct from incorrect PSMs. Next, threshold t is set to
TSA, which replaces the probabilities generated by the
ANN approach with probabilities that make more sense
in terms of indicating the PSM correctness. For hits with
probability = t, TSA replaces their probabilities with 0.5,
and all other PSM probability values are proportionally
normalized, keeping the range [0, 1], so that 0.5 is the
point of separation between a set of PSMs with high FDR
(those with P< 0.5) and a set of PSMswith low FDR (those
with P ≥ 0.5). Note that the previous version of MUMAL
provides a good approach for separating PSMs with low
FDR. However, due to the model problem caused by the
fact that many class-1 instances have similar characteris-
tics to class-0 instances, the probability value generated
by the ANN approach for a target PSM is not appropriate
for its individual evaluation. With the probability value
adjustment provided by TSA, in turn, individual assess-
ment of PSMs is now possible, which is very important for
the protein inference stage, such as the one performed by
ProteinProphet [17].
In this work, we performed experiments with 11

datasets, in a comparison with standard methods for
PSM assessment, to demonstrate that our method, named
MUMAL2, could achieve an average increase of 15% in
sensitivity concerning the best current method, for FDRs
varying from 0 to 5%. Still, by using Venn diagrams with
peptides identified for a 1% FDR, we demonstrated that
almost 4-fold more exclusive peptides were found. Fur-
thermore, in an additional experiment using a dataset with
known proteins, the ROC area calculated after the adjust-
ment of probabilities by TSA was 0.93, showing coherent
probability values. It is worth noting the demonstration
of the predictive power of our method for phosphopep-
tides. In these cases, the score distribution might be very
different from non-phosphopeptide PSMs, which compli-
cates the analysis of traditional computational tools such
as PeptideProphet.

Methods
Datasets
Eleven datasets used in the validation of MUDE and
MUMAL were again utilized in our experiments [3, 12].
Figure 1 illustrates the datasets with their respective
amounts of PSMs. Note that in all cases the number of tar-
get PSMs is slightly higher than half the total number of
PSMs. This is reasonable because it is expected that less
than 20% of target hits are correct. Therefore, the total
amount of PSMs is composed by this small percentage
plus the rest of incorrect PSMs, where, roughly, one half is
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Fig. 1 The eleven datasets used in most of our experimental work and evaluation

composed of decoy hits and the other half contains wrong
target hits.
These datasets were obtained from three LC-MS/MS

runs with three independent phospho-enriched mouse
samples. For each resulting set of spectra, Sequest
was used for peptide sequence assignment. Each PSM
dataset produced as output was split into two parts:
The first part contained spectra whose best result
was reported as a phosphopeptide, and the second
part was made up of spectra whose best hit was
attributed to a non-phosphopeptide. These sets were fur-
ther split based on the precursor charge state, where
only +2 and +3 charges were considered. As a con-
sequence, the three Sequest outputs turned into 12
datasets that were labeled S1_PH_CH2, S1_PH_CH3,
S1_NPH_CH2, S1_NPH_CH3, S2_PH_CH2, S2_PH_
CH3, S2_NPH_CH2, S2_PH_CH3, S3_PH_CH2, S3_PH_
CH3, S3_NPH_CH2, and S3_NPH_CH3, where PH and
NPH denote phosphodata and non-phosphodata, respec-
tively, while CH2 and CH3 represent +2 and +3 charge
states, respectively. The dataset S3_NPH_CH3 was
removed from the experiments since it had fewer than ten
correct assignments. Finally, for each of these datasets,
the Sequest files in the “out” format were converted
into a single IdXML file, which is the format used
by OpenMS, the computational toolkit we applied to
predict retention time (RT) [27]. The details on the
protocol and chemicals in sample preparation, MS tech-
nology applied, versions of programs and formats, param-
eters and database used in the Sequest search, etc.,
can be found in the previous works of Cerqueira et al.
[3, 12, 22].
Another dataset we used in our experiments was taken

from the work of Pfeifer et al. [23]. They used three

samples containing known proteins. In our work, the
PSMs of each mixture were also generated by Sequest and
were joined in a single IdXML file that we refer to as
M123. The proteins present in the mixtures are: β-casein
(bovine milk), conalbumin (chicken egg white), myelin
basic protein (bovine), hemoglobin (human, divided in
subunits alpha and beta in the DB), leptin (human), crea-
tine phosphokinase (rabbit muscle), α1-acid-glycoprotein
(human plasma, appearing in two distinct versions in
the DB), albumin (bovine serum), cytochrome C (bovine
heart), β-lactoglobulin A (bovine), carbonic anhydrase
(bovine erythrocytes), catalase (bovine liver), myoglobin
(horse heart), lysozyme (chicken egg white), ribonuclease
A (bovine pancreas), transferrin (bovine), β-lactalbumin
(bovine), and thyroglobulin (bovine thyroid). Knowing the
proteins we are supposed to identify facilitates the devel-
opment of experiments to validate the performance of our
method to appropriately curate PSMs. The details to pro-
duce this dataset can be found in the papers of Pfeifer
et al. and Cerqueira et al. [12, 23].

Target-decoy database strategy
As recommended by Elias et al. [28], we used a compos-
ite target-decoy DB for the searches, where decoys were
produced by reversing the target sequences. In this way,
the peptide sequence of an incorrect PSM has an equal
chance of coming from either a target or a decoy sequence.
As a result, to estimate the number of wrong target hits,
it suffices to count the number of decoy hits, i.e., the FDR
estimate for target hits is given by: Dt /(Nt - Dt), where
Dt is the number of decoy PSMs found with a score equal
or greater than a predetermined threshold t, and Nt is the
total number of PSMs (decoys and targets) according to
the same threshold t.
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In order to enhance sensitivity, as proposed previously
[3, 12], the TDDB strategy is used here in a multivari-
ate manner, taking into consideration six key PSM scores:
�Cn , Xcorr, �M, SpRank, percentage of ions found (all of
them calculated by Sequest), and RT p-value (calculated
by OpenMS). A careful statistical analysis was previously
performed to evaluate the impact of each of these scores
on PSM curation [12].
In addition to themultivariate approach, machine learn-

ing techniques are applied to promote a better separation
between correct and incorrect hits, using decoy PSMs
as a key part in this procedure, as described in the next
sections.

Cost sensitive artificial neural network
Classical decoy approaches typically use nomore than two
scores that have their threshold values analyzed individ-
ually. Such a procedure leads to linear decision bound-
aries. In order to construct more appropriated decisions
boundaries between correct and incorrect hits, an ANN is
used so that the six scores (the ANN’s inputs) mentioned
previously are applied in combination to produce a final
score in the range [0, 1] (the ANN’s output using a sigmoid
function) that can be interpreted as a probability value.
Then, using the decoy counting idea, a suitable threshold
for this score is pursued to reach a desired FDR. Figure 2
illustrates the ANN architecture.
In the MUMAL work, the authors compared support

vector machines with ANNs and showed that the latter

approach was capable of delivering higher sensitivity. The
authors still observe that labeling decoy PSMs as class 0
and target PSMs as class 1 leads to a difficult classification
task because most target PSMs are incorrect, i.e., they are
similar to decoy hits. However, the goal is not providing a
perfect separation between class-0 and class-1 instances.
Once a model (even supposed of low quality using tra-
ditional metrics such as accuracy) is created, different
discriminant probabilities are tested to obtain one that
results in a sought FDR. This threshold exploitation using
decoy counting is the key to separate what really matters,
i.e., correct from incorrect hits among target PSMs.
In this work, we improve the MUMAL approach

to further increase the sensitivity in PSM assessment.
The selected strategy is to use the decoy instances in
the data-set to pin down wrong target instances, so that
the model’s capacity to separate correct from incorrect
hits is improved. For this purpose, a cost matrix is intro-
duced to the classification task [25, 26, 29], where, con-
sidering target instances as positives, the cost of a false
positive (CFP) is set higher than the cost of a false nega-
tive (CFN). Therefore, the final model will tend to classify
class-0 instances correctly, while class-1 instances will be
mostly “misclassified”. The double quotes are to call the
attention to the fact that the final goal is to construct
a model to separate correct from incorrect PSMs, not
separating target from decoys. Hence, when most tar-
get instances are classified as class 0 by the model, they
are being, actually, correctly relabeled to class 0 because

Fig. 2 Architecture of the artificial neural network used in MUMAL and in this work. It illustrates the input layer (six nodes), the hidden layer (four nodes
by default), and the output layer (one node), where the activation function is the sigmoid to map the ANN’s output into a value in the range [0, 1]
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their peptide sequences were incorrectly assigned. Table 1
shows an example of a cost matrix that forces the model to
favor decoy instances. The idea is to provoke a model bias
toward decoy instances, leading to the relabeling of wrong
target instances to class 0, resulting in better decision
boundaries to separate correct from incorrect PSMs.
As can be seen in the results of our experiments, this

relabeling process could be successfully accomplished.
However, after fixing CFN = 1 and trying different values
for CFP, we have realized that a certain CFP that leads to a
good model for a given dataset is not necessarily the best
choice for another dataset. As a result, for each dataset
given as input to our pipeline, ten different models are
created varying CFP with the integer values in the range
[1, 10], and many discriminant probabilities resulting in
different FDR values for each case are reported. Next, the
model with the highest average number of correct PSMs,
for FDRs varying from 1 to 5%, is selected as the final clas-
sifier. This cost sensitive classification was implemented in
the Java programming language using theWeka API v3.7.8
[26, 30].

ROC curve
As already mentioned, several discriminant probabilities
are explored after the model construction, so that the
count of decoys considered as positives serves as an esti-
mate to the number of wrong positive targets. This task is
accomplished by analyzing the resulting ROC curve [25].
For each point in the curve, the respective discriminant
probability t is used to count the number of decoy hits
with probability (generated by the ANN) equal or greater
than t. This count is the estimate for the number of tar-
get hits with P ≥ t that are incorrect. As described before,
class labels in the datasets are: 0 for decoy hits, and 1
for target hits. It is expected that a minor part of target
hits are correct. For this reason, by using classical evalua-
tion methods such as accuracy, precision, recall, and area
under the curve (AUC), a very poor classification model is
expected. However, we stress the fact that the goal is not
separating decoys from targets, but incorrect from correct
hits, and the ROC analysis suffices to establish appro-
priate discriminant probabilities that provide the desired

Table 1 Cost matrix for a 2-class (class 0 and class 1) classifier

Predited class

0 1

Given class 0 CTN=0 CFP=10

1 CFN=1 CTP=0

In this case, the cost of a false positive is 10 times higher than the cost of a false
negative. CTN = cost of a true negative, CFP = cost of a false positive, CFN = cost of a
false negative, and CTP = cost of a true positive

FDR with a better sensitivity when compared to classical
target-decoy approaches.
Figure 3 illustrates such an analysis. For each point

in the curve (Fig. 3a), the discriminant probability t
(threshold) and the respective statistics (Fig. 3b) are
known. The FDR estimation (Fig. 3c) is made by divid-
ing the number of FPs by the number of TPs because
FPs and TPs are, respectively, the decoys and targets
with P ≥ t.

Threshold selector
We could see that the ROC analysis gives us the chance
of selecting an appropriate probability threshold value
leading to a desired FDR. This is enough if the goal is
just the selection of a low-FDR set of PSMs. Nonethe-
less, such a set is normally used in the protein inference
stage, where the proteins in the sample being analyzed
are ultimately identified. To this end, the probability asso-
ciated to each PSM is of great importance, mainly for
computational tools that use this value as a key measure
to infer proteins, e.g., ProteinProphet. On the other hand,
the probability values originally assigned by the ANN to
the instances in the dataset do not reflect the correct-
ness of PSMs. These values indicate, instead, whether
PSMs are decoys or targets because the class labels where
defined this way. Considering that most targets (the incor-
rect ones) are similar to decoys, even the distinction of
decoys and targets is not very well characterized in these
probabilities. The AUC = 0.55 seen in Fig. 6 clearly shows
this fact.
In order to obtain appropriate probability values indicat-

ing PSM correctness, we came up with another improve-
ment by using the threshold selector algorithm (TSA)
implemented in the Weka API. This algorithm can work
in two ways. In the first setting, TSA automatically finds a
discriminant probability that optimizes some given mea-
sure such as F-measure, accuracy, precision, and recall. In
the second setting, TSA is given a fixed threshold value.
Then, TSA forces the classifier to predict as positive all
instances with probability greater or equal to the given
threshold, or as negative, otherwise. Our pipeline uses
the latter option along with the probability range cor-
rection that TSA provides. In this correction procedure,
TSA replaces the probabilities that are equal to the given
threshold with 0.5 and expands the other values so that
the minimum probability observed maps to 0, while the
maximum maps to 1.
The threshold given to TSA is defined as follows. After

building a model with a cost-sensitive ANN, with the best
cost matrix, and analyzing the ROC curve to perform FDR
estimations, the discriminant probability that results in
1% FDR is selected to be the final threshold value t that
separates correct from incorrect PSMs. We have chosen
1% because this is the best trade-off between sensitivity
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Fig. 3 Analysis of a ROC curve obtained from a model built with dataset S2_NPH_CH2. For each point of the curve a, the threshold and several
statistical measures b related to that point are known. False and true positives are, respectively, instances of class 0 (decoys) and class 1 (targets) that
were considered positives (P ≥ threshold) by the model. In c, it is shown how to estimate FDR among target hits for a given discriminant probability
(threshold) of the model. It is simply the number of FPs over the number of TPs

and precision, as described by Elias et al. and Balgley
et al. [31, 32]. Next, the threshold t is given to TSA that
adjusts the probabilities generated by the ANN, producing
new values that are more appropriate to indicate the PSM
correctness. For PSMs with P = t, TSA replaces their
probabilities with 0.5. All other PSM probability values
are modified as described above. As a result, we finally
obtain a classifier that separates correct from incorrect
PSMs (not target from decoys) with the usual mid-point
probability value 0.5 as the point of separation between
negatives and positives.

Framework
Figure 4 shows a flowchart that summarizes MUMAL2’s
framework. Ten cost-sensitive ANNs are built for CFP
varying from 1 to 10. Then, the best CFP is selected
according to the execution with the highest sensitiv-
ity. Furthermore, the probability threshold leading to
FDR=1% of the best execution is saved. A final model is
thus built with the best CFP and using TSA with the saved
threshold. TSA makes a range correction, where PSMs
with probability equal to the saved threshold have their
probabilities replaced with 0.5. Additionally, the other

probability values are expanded, such that the minimum
probability is set to 0 and the maximum is set to 1. As a
consequence, the PSMs with FDR=1% are assigned high
probabilities (≥ 0.5).

Results and discussion
To evaluate MUMAL2, the parameters were kept with
default values, i.e., number of nodes in the hidden layer =
4, momentum = 0.2, learning rate = 0.3, and epochs =
1000. The experiments were performed on a Linux
machine equipped with Intel �Celeron� CPU N2830
2.16 GHz × 2, and 4 GB of RAM. Our intention was to
prove that MUMAL2 can provide a quick answer even on
personal computers. In fact, one iteration of MUMAL2,
i.e., one execution of the strategy costmatrix +ANN, takes
20 s on average. Because eleven executions to produce
the final model are needed, the total time taken is 220 s,
in general. We realized that it is not significantly dif-
ferent from MUMAL’s running time because MUMAL
has also to execute a number of iterations to produce
its best results. Therefore, we concentrate the analyses
of our experiments on the capacity of our approach to
assess PSMs.
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Fig. 4 Flowchart to illustrate MUMAL2’s framework. Ten different values for the cost of a false positive are tested in the cost matrix. After selecting
the best value in terms of the resultant sensitivity, the final model is built, including the use of TSA with probability range correction. The probability
threshold for a 1% FDR identified in the ROC analysis is converted to 0.5 by the TSA. Therefore, the end model uses 0.5 as the discriminant
probability, i.e., the set of PSMs with FDR = 0.01 are characterized as the ones with high probabilities (≥ 0.5)

Measuring the predictive power of MUMAL2
First, dataset M123, whose proteins are known, was used
to measure the predictive power of our method. We ana-
lyzed whether the relabeling of wrong PSMs in class-1
to class-0, i.e., the establishment of a suitable decision
boundary between correct and incorrect hits, could be
satisfactorily accomplished. Figure 5 contains plots of
�Cn vs Xcorr for dataset M123 before (Fig. 5a) and after
(Fig. 5b) running MUMAL2. Class-0 PSMs are repre-
sented in blue, whereas class-1 PSMs are shown in red.
A dense cloud of points in Fig. 5a can bee seen com-
posed of approximately 50% of decoys and 50% of targets.
According to the target/decoy principle, this dense cloud
represents the set of wrong PSMs. Therefore, we are inter-
ested in the part that is comprised mostly of red points
(likely correct targets). As already mentioned, the use

of a cost matrix to construct an accurate model for the
class-0 instances is an attempt to keep these instances
as such, since decoy PSMs are obviously wrong, whereas
correctly relabeling the wrong class-1 instances, the ones
mixed with decoys in the dense cloud, to class 0. Figure 5b
shows that the decision boundary produced by MUMAL2
seems to provide a good separation of the mixture of
decoys/targets from the homogeneous part composed of
red points. Notice that the confusion matrix on the top
makes evident the huge amount of target PSMs that were
classified as class 0, which was expected because most
of these PSMs are known to be wrong. The plot built
as a result of the instance relabeling shows that the vast
majority of instances in the dense cloud turned into blue.
Even though the plot in Fig. 5b indicates that the

region of interest (the part in Fig. 5a composed mostly of



The Author(s) BMC Bioinformatics 2016, 17(Suppl 18):472 Page 33 of 86

Fig. 5 Instance relabeling provided by MUMAL2. A plot of �Cn vs Xcorr for dataset M123 is shown in a and b, before and after applying MUMAL2,
respectively. Class-0 instances are shown in blue, while class-1 instances are shown in red. Part b includes also the confusion matrix on the top to
show the huge number of class-1 instances that were classified as class 0

red points) could be identified, it is possible to provide
more precise measurements of the quality of our solution
because the proteins of datasetM123 are known. The con-
fusion matrix on the top of Fig. 5b shows that 12 decoy
hits were mistakenly classified as class 1. Probably, some
correct target hits were incorrectly relabeled to class 0
as well. Thus, to provide a more precise assessment of
our strategy, the 8917 instances predicted as class 0 and
the 1059 predicted as class 1 had their peptide sequences
inspected to check whether or not they came from the set
of expected proteins. As a result, we could build a more
useful confusion matrix, considering positive or negative
those instances whose peptide sequence came from the
list of known proteins or from a random protein, respec-
tively. As a consequence, we could use classical metrics
that express the predictive power of an ML model, as
shown in Tables 2 and 3. It can be seen that MUMAL2’s
classification was highly accurate. Only 25 instances (12
negatives and 13 positives) were misclassified, also leading
to very high values of sensitivity, specificity, and preci-
sion. However, it is important to highlight that the decoy

Table 2 Assessing MUMAL2 according to the known proteins of
datset M123

Predicted class

0 1

Actual class
0 8904 12

1 13 1047

A confusion matrix is shown, where positive and negative instances are not target
and decoys anymore. Instead, an instance is considered positive if its peptide
sequence came from the list of known proteins. Otherwise, the instance is
considered negative

hits are known to be wrong PSMs. Therefore, the 12
misclassified decoys shown in Fig. 5b have no importance,
i.e., only target instances are further considered after the
classification.
It is clear, thus, that the application of a supervised ML

method here does not follow the classic steps: Build the
learning model using a training set, and apply the resul-
tant model to unknown instances. In our case, the ANN
is trained and applied using the same data. Notice that
the target instances are the ones of interest. Our final
aim is to separate wrong targets from correct targets.
To this end, we use a higher cost for FPs to force the
model to learn how to correctly classify decoys whose
labels are obviously correct. That is why we say that
decoys help to pin down wrong targets. Next, we apply
the final model on the same data to relabel the wrong tar-
get hits, i.e., the ones with similar features to decoy hits,
to class 0. Thus, it does not make sense to talk about
cross-validation to evaluate the model. Instead, we have
to verify whether correct and incorrect targets are being
identified.
Another important aspect to analyze is whether the

probabilities produced by our model are coherent. This is

Table 3 Assessing MUMAL2 according to the known proteins of
datset M123

Statistical measures

Accuracy 0.9975

Sensitivity 0.9877

Specificity 0.9987

Precision 0.9887
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Fig. 6 ROC curve of MUMAL2’s model for dataset M123. An instance is regarded as TP if its peptide sequence came from the list of expected
proteins. Otherwise, the instance is considered FP

a very relevant matter if the intention is to use a method
for protein inference that takes PSM probabilities into
account. As shown in Fig. 3, the AUC and other measures
are low because the wrong target hits that are correctly
relabeled to class 0 are counted as misclassification. In
fact, the blind application of MUMAL2 to dataset M123
leads to an AUC of 0.60. However, as we know the pro-
teins of dataset M123, we can produce the real ROC curve
to evaluate the probabilities generated by TSA. Figure 6
shows the ROC curve built for dataset M123 counting as
TPs those instances whose peptides came from the list
of known proteins, and counting as FPs, otherwise. As
can be seen, the AUC is very satisfactory (nearly 0.93),

showing that the probability values are appropriate, and
corroborates the high predictive power of MUMAL2.
MUMAL2 was also applied to the other datasets for

which the proteins are not known a priori. However, it is
possible to use plots of �Cn vs Xcorr, as previously shown
for dataset M123, to perform a visual inspection. Figure 7
shows this analysis for dataset S1_PH_CH2. It can be seen
in the confusion matrix (Fig. 7b) that a significant number
of class-1 instances were relabeled to class 0, as expected.
In the plot of Fig. 7b, the colors of the points indicate
that the classification seem to be appropriate because the
blue points correspond to those in Fig. 7a composed of a
mixture of targets and decoys, i.e., the part where targets

Fig. 7 Instance relabeling performed by MUMAL2 for dataset S1_PH_CH2. A plot of �Cn vs Xcorr for the dataset is shown in a and b, before and
after using MUMAL2, respectively. Class-0 hits are shown in blue, whereas class-1 hits are shown in red. Part b addtionally presents the confusion
matrix on the top, demonstrating the significant number of class-1 examples that were classified as class 0
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are probably wrong, according to the target/decoy prin-
ciple. Performing the same analysis for the other datasets
led to very similar outcomes (not shown), i.e., MUMAL2
promoted an expressive migration of target hits to class
0, resulting in a plot where class-0 instances correspond
to the mixture of class-0 and class-1 instances before the
application of MUMAL2.

Comparing MUMAL2 with previously proposedmethods
The next experiments demonstrate the superior sensitiv-
ity of MUMAL2 in relation to important methods for
PSM assessment: MUMAL, MUDE, PeptideProphet, and
bivariate decoy/target analyses, where the thresholds of
two scores, often �Cn and Xcorr, leading to a desired
FDR are pursued. For comparisons with phosphodata, we
included a bivariate analysis with �M and Xcorr, follow-
ing Beausoleil et al. and Jiang et al. recommendation [21,
33]. According to them, �Cn scores are often suppressed
when phosphopeptides have more than one potential
phosphorylation site. Therefore, �M should be used
instead. For a detailed description of how the methods
used in the comparison were run to produce the results
shown next, refer to the works of Cerqueira et al. [3, 34].

Figures 8 and 9 show the curves of the number of iden-
tified PSMs vs estimated FDR for all above-mentioned
methods applied to the eleven datasets of unknown
proteins. It is possible to build such curves because all
those approaches provide an effective way to estimate the
FDR value for a given set of selected PSMs. The curves
show FDR values varying from 0 to 5%, which are the error
rates commonly accepted. It can be seen in all cases that
MUMAL2 is superior than MUDE, PeptideProphet, and
the bivariate analyses.
Regarding MUMAL, MUMAL2 has an equal or greater

sensitivity. It is expected because MUMAL2 performs 10
executions with CFP varying from 1 to 10. The execu-
tion with CFP = 1 is equivalent to the MUMAL execution.
Therefore, MUMAL2 cannot be worst, but it can even-
tually present the same sensitivity as MUMAL. Notice,
however, that the number of cases where MUMAL2
has a greater sensitivity is higher than the cases of
equal performance. Our method could provide an average
increase of 16.5 and 7.2% in relation to MUMAL
for non-phosphodata and phosphodata, respectively. It
means about 24 and 20 more peptides, on average,
respectively.

Fig. 8 Comparing the sensitivity of MUMAL2 and other approaches with data of non-phosphorylated proteins. For each dataset, a curve of the
number of identified PSMs vs estimated FDR is shown. FDR values vary from 0 and 5%
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Fig. 9 Comparing the sensitivity of MUMAL2 and other approaches with data of phosphorylated proteins. For each dataset, a curve of the number
of identified PSMs vs estimated FDR is shown. FDR values vary from 0 and 5%

In particular for a 1% FDR, which is a commonly
pursued FDR value, MUMAL2 demonstrates superior-
ity in all cases. For non-phosphorylated proteins, the
PSM evaluation provided by MUMAL2 for this FDR led
to an average improvement in sensitivity of 16.8% com-
pared with MUMAL, meaning about 23 additional pep-
tides. For phosphorylated proteins, in turn, the increase
was approximately 12%, resulting in nearly 31 more
peptides.
Figures 8 and 9 demonstrate that MUMAL pre-

sented the best performance among the methods being
compared with our approach. For this reason, we per-
formed an additional experiment to compare MUMAL2
with MUMAL by means of Venn diagrams to call
attention to the higher number of exclusive peptide iden-
tifications provided by the former. Figure 10 shows this
counting for a 1% FDR in both methods. In all cases,
an expressive superiority of MUMAL2 can be noted. On
average, the number of exclusive PSMs that our method
could find is almost 4-fold greater. This is an important
result because more peptides may imply more identified
proteins and a higher proteome coverage.

Conclusions
The target-decoy database strategy is widely used for data
analysis in shotgun proteomics. Many previous studies
have demonstrated the effective capacity of this approach
for FDR estimation. However, the classical TDDB proce-
dure does not take sensitivity into account. Fortunately,
this fact has been changing since the introduction of
MUDE and MUMAL.
In this work, we have further improved sensitiv-

ity in MS/MS-based peptide/protein identification by
using advanced machine learning methods that use
decoys to establish more appropriate decision bound-
aries. Furthermore, the probabilities assigned to PSMs by
our method are proven to be highly accurate. This is a
fundamental matter to improve protein inference when
the applied approach depends on such probability values,
as in the case of ProteinProphet.
We could demonstrate that our new approach has great

potential to provide important improvements in pro-
tein identification, which will impact future studies that
seek a broader understanding of notable cell activities.
Hopefully, future research on drug discovery, diseases,
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Fig. 10 Comparison of MUMAL2 with MUMAL by Venn diagrams
containing the number of PSMs selected for FDR=1%. For each
diagram, the left-hand side contains the number of peptides
identified exclusively by our method, while the right-hand side shows
the number of identifications found exclusively by MUMAL

and many other studies in life sciences will be posi-
tively affected by this new computational strategy for
peptide/protein identification.
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