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Limited by hardware conditions, imaging devices, transmission efficiency, and other

factors, high-resolution (HR) images cannot be obtained directly in clinical settings. It

is expected to obtain HR images from low-resolution (LR) images for more detailed

information. In this article, we propose a novel super-resolution model for single 3D

medical images. In our model, nonlocal low-rank tensor Tucker decomposition is applied

to exploit the nonlocal self-similarity prior knowledge of data. Different from the existing

methods that use a convex optimization for tensor Tucker decomposition, we use a

tensor folded-concave penalty to approximate a nonlocal low-rank tensor. Weighted 3D

total variation (TV) is used to maintain the local smoothness across different dimensions.

Extensive experiments show that our method outperforms some state-of-the-art (SOTA)

methods on different kinds of medical images, including MRI data of the brain and

prostate and CT data of the abdominal and dental.

Keywords: 3D super-resolution, low rank tensor decomposition, nonlocal self-similarity, 3D total variation, medical

image

1. INTRODUCTION

High-resolution (HR) medical images provide rich detailed information that is critical for accurate
lesion segmentation, diagnosis, and treatment (Greenspan, 2009; Shi et al., 2010). Currently,
the most widely used imaging techniques in clinical settings and research include magnetic
resonance imaging (MRI) and computed tomography (CT). However, both MRI and CT have their
limitations. The main limitation of MRI is the balance between image quality and scan time (Bustin
et al., 2018). In general, it requires a long acquisition time to obtain an HRMRI with a high signal-
to-noise ratio (SNR). This not only costs a lot but also affects patients’ breathing and causes motion
artifacts. Contrast-enhanced CT can show small lesions more clearly and blood flow in lesions. Due
to the influence of a high radiation dose and contrast agent, contrast-enhanced CT scans are not
allowed in many cases, such as in patients with hyperthyroidism and hypersensitivity (Marcelino
et al., 2019). For instance, micro-CT (µCT), which is applied to determine the 3D structure of teeth,
has a higher resolution than cone beam computed tomography (CBCT), but it can only be used for
extracted teeth due to the acquisition time and radiation (Hatvani et al., 2019). Super-resolution
provides an efficient method for obtaining HR images from low-resolution (LR) images when
acquisition conditions are limited. Therefore, super-resolution has become an important research
issue in image processing and is widely applied in medical imaging (Zhang et al., 2012b; Shi et al.,
2015; Hatvani et al., 2019; Qiu et al., 2021; Zhao et al., 2021; Zhu and Qiu, 2021).
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Super-resolution image reconstruction is a highly ill-posed
problem because it predicts multiple HR images from a given LR
image. To solve this ill-posed problem, various super-resolution
methods have been proposed. The most direct methods are
based on interpolation (Duchon, 1979; Keys, 1981), such as
nearest neighbor (NN) interpolation, bilinear interpolation,
and bicubic interpolation. Interpolation-based methods are fast
but not very accurate. Learning-based methods (Zhang et al.,
2012a; Salvador, 2016; Lim et al., 2017; Liu et al., 2017) learn
example patches from fixed and finite HR image sets. Thus, the
performance of these methods highly depends on the learned
HR image patches. Deep learning-based methods (Ledig et al.,
2017; Zhao et al., 2019; Fan et al., 2020; Liu et al., 2021)
have obtained outstanding performances in high-level image
processing tasks, such as alignment, segmentation, and object
detection. Recently, they also began to show their advantage
in low-level image processing tasks. It is widely known that
sufficient data are necessary for training an effective deep learning
model. However, unlike natural images, medical databases for
training are not always available due to some privacy regulations
and laws.

As an important and powerful modeling tool, low-rank has
attracted increasing attention in many fields, such as signal
processing (E-Asim et al., 2020), image processing (Xu et al.,
2015; Chen et al., 2020), and machine learning (Yi et al.,
2021). Adding low-rank regularization can achieve a good
reconstruction result in super-resolution (Shi et al., 2015; Yair and
Michaeli, 2018). Liu et al. (2016) exploited the low-rank property
of an image by reshaping multidimensional data to a matrix
and applying a low-rank constraint to the matrix. Veganzones
et al. (2016) took advantage of the low-rank property to propose
two HSI super-resolution methods by local dictionary learning
using end member induction algorithms. Although these low-
rank matrix methods obtain good super-resolution results, they
ignore considerable structural information of data in the process
of reshaping an image to a 2D matrix.

Mathematically, MRI and CT images are multidimensional
data with high spatial resolution and slice resolution. Tensors
provide a natural way to represent multidimensional data. A
tensor is a multiway array that can be viewed as a generalization
of vectors and matrixes. For 3D medical images, there is a
strong correlation between slices, and a 3rd-order tensor can
be used to represent an image to avoid destroying the process
of reshaping data into the matrix. It has been proven that
tensors are a reasonable representation that can preserve the
original structure of data and significantly improve the quality
of reconstruction images (Liu et al., 2013; Yin et al., 2017; Li
et al., 2018; Xie et al., 2018; Hatvani et al., 2019; Prevost et al.,
2019). According to different decompositions of tensor, a series
of low-rank tensor methods have emerged. Liu et al. (2013)
extended low-rank matrix completion to the tensor case for
tensor completion. Different from thematrix, the rank of a tensor
is not clearly defined and the decomposition of the tensor is
not unique. The CP (CANDECOMP/PARAFAC) decomposition
(Carroll and Chang, 1970) of a tensor is a representation based
on a sum of several rank-1 tensors. CP decomposition based
methods require a small memory space, but these methods need

to predefine the rank, and the calculation of CP rank is an NP-
hard problem (Kolda and Bader, 2009). Tucker decomposition
(Tucker, 1966) represents a tensor as the product of a core
tensor and several factor matrixes and minimizes the rank of
the core tensor and the factor matrixes. The appearance of
Tucker decomposition solves the calculation problem of CP rank.
Previous methods (Chen et al., 2014; Dian et al., 2017) have
proved that Tucker decomposition was effective and obtained
satisfactory results in many fields. Li et al. (2017) applied tensor
Tucker decomposition to the tensor completion problem and
utilized the trace norm as a low-rank constraint to the factors
of Tucker decomposition (Tucker, 1966). In low-rank structure
learning, tensor norms, e.g., trace norms and nuclear norms,
penalize large entries of vectors overly and usually introduce
modeling bias (Leng et al., 2006). To correct the estimation bias
of the convex tensor norms, unbiased folded-concave norms are
considered. Hatvani et al. (2019) proposed a tensor factorization
method for 3D super-resolution and applied it to dental CT.
However, they did not consider the prior information of images.

As there are often many similar structures in human organs
or tissues, we consider nonlocal self-similarity in our model.
Nonlocal self-similarity is an important patch-based prior. This
means that for a given patch in an image, some similar patches
within the whole image can be found. In many tasks, such
as denoising and recovery, nonlocal similarity-based methods
(Dabov et al., 2007; Mairal et al., 2009; Wang et al., 2018) have
demonstrated their effectiveness. Most Tucker decomposition-
based methods (Chen et al., 2014; Dian et al., 2017; Li et al.,
2017; Yair and Michaeli, 2018) only employ the global prior
information in their models. To further exploit the low-rank
prior hidden in the data and improve the reconstruction
performance of super-resolution, nonlocal similarity in the
tensor cubes is exploited.

Due to statistical uncertainty in physical measurements,
inevitable noise is introduced in MRI and CT data. The noise
in medical images will affect the clinical diagnosis accuracy and
increase the difficulty of high-level tasks such as registration
and segmentation (Zhang et al., 2015; Diwakar and Kumar,
2018). TV, which is defined as the integral of the absolute
gradients of the image, is an effect regularization for suppressing
noise and preserving the local spatial consistency of images. Shi
et al. (2015) combined both global low-rank priori and two-
dimensional TV regularization to obtain a higher resolution
MR image. The two-dimensional TV only considers the local
smoothness without utilizing the interframe smoothness. To
take advantage of the spatial and interframe local smoothness
simultaneously, weighted 3-dimensional TV (3D TV) is adopted
in super-resolution reconstruction.

In this article, we propose a super-resolution method for
3D medical images based on nonconvex nonlocal Tucker
decomposition with weighted 3D total variation (NNTDTV).
Different from most existing single image super-resolution
methods, our method improves volume super-resolution, i.e.,
it not only improves the spatial resolution of images but also
improves the slice resolution. The framework of our method is
shown in Figure 1. The main contributions of this article are
summarized as follows:
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FIGURE 1 | The detailed framework of our method. The proposed method is divided into two parts, the low-rank regularization term, and the 3D total variation (TV)

regularization term. The low-rank regularization term (the orange box) reconstructs the main information of the data by performing Tucker decomposition for the

nonlocal similar self-similarity patches. The 3D TV regularization term (the green box) uses the local smoothness of the data to suppress the noise and keep the details.

1. We propose a nonconvex nonlocal Tucker decomposition-
based super-resolution method to approximate HR medical
images by utilizing the nonlocal similarity structure hidden in
3D medical images. A nonconvex optimization procedure is
used to avoid estimation bias caused by the traditional convex
procedure.

2. Weighted 3D total variation (TV) is used to exploit the
smoothness of 3D medical images and suppress noise to some
extent.

3. Extensive experiments show that, compared with the existing
methods, our method has better performance and generality
on different kinds ofmedical images. The reconstructed super-
resolution images by our model have a clearer edge while
maintaining local smoothness.

2. METHODS

2.1. Notation and Preliminaries
A tensor is a multidimensional array that can be viewed as
a high-dimensional generalization of a matrix. We consider
scalars as zero-order tensors and denote them by lowercase
letters (x, y, z, · · · ). Vectors and matrices are first-order and
second-order tensors and denoted by bold lowercase letters
(x, y, z, · · · ) and uppercase letters (X,Y ,Z, · · · ), respectively. A
high-order tensor can be expressed as X ∈ R

I1×I2×···×IN , and

its element is xi1 ,i2 ,··· ,iN . The mode-n matricization or unfolding
of a tensor X ∈ R

I1×I2×···×IN is the operation of reshaping a
tensor into a matrix X(n) ∈ R

In×(I1···In−1In+1···IN ). The elements
(i1, . . . , in−1, in, in+1, . . . iN) of matrix X(n) satisfy:

j=1+

N
∑

k=1,k 6=n

(ik − 1)Jk with Jk=

k−1
∏

m=1,m 6=n

Im. (1)

For two tensors of the same size, their inner product is defined
as:

〈X ,Y〉 : =
∑

i1 ,i2 ,...,iK

xi1 ,i2 ,...,iK · yi1 ,i2 ,...,iK . (2)

The corresponding Frobenius norm is defined as:

‖X‖F =
√

〈X ,X 〉. (3)

A tensor X ∈ R
I1×I2×···×IN and a matrix Z ∈ R

J×In ’s mode-n
product is:

Y = X×nZ ∈ R
I1×···In−1×J×In+1···×In , (4)

with entries

yi1 ,··· ,in−1 ,j,in+1 ,···N =

In
∑

in=1

(xi1 ,··· ,xN zj,in ). (5)
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For a tensor X ∈ R
I1×I2×···×IN , its Tucker decomposition is

defined as:

X =

S1
∑

s1=1

×

SN
∑

sN

gs1s2...sN [u
(1)
s1

◦ u(2)s2
◦ · · · ◦ u(N)

sN
]

= G×1U
(1)×2U

(2) · · · ×NU
(N).

(6)

where G ∈ R
S1×S2×···×SN denotes the core tensor and

{

U(n)
}N

n=1
∈ R

In×Sn denote the decomposition factors by Tucker

decomposition of the tensor.

2.2. Problem Formulation
Affected by acquisition modality, motion blur, and noise, the
observation model of an LR image can be expressed as:

Y = DSX + ε, (7)

where Y ∈ R
w×h×S denotes the observed LR image, D denotes

the downsampling operator, S denotes the blurring operator, ε

is the observation noise, and X ∈ R
W×H×S is the HR image

that we want to reconstruct. To reconstruct an HR image, we can
estimate X by minimizing

min
X

‖DSX − Y‖2F . (8)

According to Equation (8), recovering HR X from Y is an
ill-posed inverse problem. This problem can be solved by
introducing some regularization terms. Thus, we obtain the
following cost function:

min
X

‖DSX − Y‖2F + λR(X ), (9)

where ‖DSX − Y‖2F is the fidelity term,R(X ) is the regularization
term, and λ is a parameter used to balance the fidelity term
and regularization term. The reconstruction effectiveness of
the proposed model is closely related to the rationality of
regularization terms.

2.3. Proposed Model
We use Weighted 3D TV and nonlocal low-rank terms as the
regularization terms to approximate X in our model. Therefore,
the proposed model for the super-resolution task is formulated as
follows:

min
X

‖DSX − Y‖2F + λtv‖X‖3DTV+λrankrank(P
k
X ), (10)

where ‖·‖3DTV is the 3D TV regularization and rank(·) denotes
the low-rank terms. Here, Pk

X
denotes the kth group of patches,

k ∈ [1,K] and K is the number of groups, and the order of Pk
X
is

N. λtv and λrank are the regularization parameters.

2.3.1. 3DTV Regularization

Total variation is a well-known regularization approach for
preserving the local spatial consistency of data in various image
processing tasks. Traditional TV is designed to exploit the local

spatial smoothness prior to removing noise and retaining edges
in images. Considering that 3D medical images can be seen as a
3rd-order tensor, smoothness is in three dimensions. Therefore,
we introduce the weighted 3D TV to model the spatial and slice
smoothness simultaneously. 3D TV is formulated as follows:

TV(X ) =
∑

ijk

w1

∣

∣xijk − xij,k−1

∣

∣+ w2

∣

∣xijk − xi,j−1,k

∣

∣

+w3

∣

∣xijk − xi−1,jk

∣

∣

(11)

where xijk denotes the pixel at location (i, j) in the kth band,
and wd(d = 1, 2, 3) denotes the weight along with different
modes of X . With constraints on spatial and slice dimensions,
this weighted 3D TV remains piecewise smoothness in three
dimensions.

2.3.2. Nonlocal Low-Rank Regularization

The spatial non-local similarity is one of the most important
priors in image processing. For a given local patch in an image,
we can find some other similar patches. To exploit this prior, we
perform a series of operations on the original tensor. First, we

separate image X into a set of patches � =
{

Pk ∈ R
b×b×B

}K

k=1
,

where b×b is the size of the patch, B is the number of bands, and
K is the number of patches with overlap. Second, for a given local
patch, we find d-1 patches with the smallest Euclidean distance
from it. Then, we stack them together with a local patch, forming
a 4th-order tensor Pk

X
with size b× b× B× d.

The global spectral correlation and spatial nonlocal similarity
of images give the matched 4th-order tensor Pk

X
a good low-

rank property. Furthermore, we perform Tucker decomposition
for the nonlocal low-rank terms Pk

X
to exploit the low-rank

characteristics and obtain:

min
U
(n)
k

,Gk

λ1

K
∑

k=1

N
∑

n=1

∥

∥

∥
U

(n)
k

∥

∥

∥

Pλ

+λ2

K
∑

k=1

‖Gk‖
2
F s.t. P

k
X

= Gk×1U
(1)
k

×2U
(2)
k

· · · ×4U
(N)
k

,

(12)

where Gk andU
(n)
k

are the core tensor and decomposition factors,

respectively, obtained by Tucker decomposition of Pk
X
, and λ1

and λ2 are the regularization parameters.
The fold-concave penalty is a nonconvex norm. Different from

the matrix nuclear norm that punishes the large singular value
resulting in bias (Leng et al., 2006), the fold-concave penalty is
theoretically proven to be an almost unbiased estimation of the
rank (Fan and Li, 2001). For a given matrix X, we define its
folded-concave norm as:

‖X‖Pλ
: =

∑r

j=1
Pλ[σj(X)], (13)

where r is the rank of X, σj(X) is its jth singular value, and Pλ is
called the folded-concave penalty function.

The minmax concave plus (MCP) penalty is one of the
fold-concave penalties, and it has a simple form and excellent
performance. In this article, we use the MCP penalty to exploit
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the low-rank structure of the Tucker decomposition factors

U
(n)
k

(n = 1, 2, · · · ,N) of Pk
X
. MCP penalty defined as follows:

Pλ(t) =

{

aλ2/2, if |t| ≥ aλ,

λ |t| − t2

2a , otherwise,
(14)

where a is a constant. In addition, the last term in Equation (12)
imposes the Frobenius norm on the core tensor Gk to avoid
overfitting.

In summary, our tensor super-resolution model is formulated
as follows:

min
X

‖DSX − Y‖2 + λtv‖X‖3DTV + λ1

K
∑

k=1

N
∑

n=1

∥

∥

∥
U

(n)
k

∥

∥

∥

Pλ

+λ2

K
∑

k=1

‖Gk‖
2
F ,

s.t. P
k
X = Gk×1U

(1)
k

×2U
(2)
k

· · · ×4U
(N)
k

.

(15)

2.4. Optimization
For optimization purposes, we rewrite Equation (15) as:

min
X

‖DSX − Y‖2 + λtv
∥

∥Gw(X )
∥

∥

1
+ λ1

K
∑

k=1

N
∑

n=1

∥

∥

∥
U

(n)
k

∥

∥

∥

Pλ

+ λ2

K
∑

k=1

‖Gk‖
2
F ,

s.t. P
k
X = Gk×1U

(1)
k

×2U
(2)
k

· · · ×4U
(N)
k

,

(16)
where

∥

∥Gw(X )
∥

∥

1
=
[

w1 × G1(·);w2 × G2(·);w3 × G3(·)
]

is the
weighted three-dimensional difference operator and G1, G2, and
G3 are the first-order difference operators in three dimensions.

We introduce some necessary auxiliary variables, including
X = M and F = GwX , to split the interdependencies of the
terms in Equation (16) and obtain:

min
X

‖DSX − Y‖2 + λtv
∥

∥Gw(X )
∥

∥

1
+ λ1

K
∑

k=1

N
∑

n=1

∥

∥

∥
U

(n)
k

∥

∥

∥

Pλ

+ λ2

K
∑

k=1

‖Gk‖
2
F ,

s.t. P
k
X = Gk×1U

(1)
k

×2U
(2)
k

· · · ×4U
(N)
k

, X = M,

F = GwX ,

{V
(n)
k

= U
(n)
k

}Nn=1
K
k=1, {Pk

M = Gk×1U
(1)
k

×2U
(2)
k

· · ·

×NU
(N)
k

}Kk=1
(17)

We solve the cost function Equation (17) by adopting the
alternating direction method of multipliers (ADMM) algorithm

and obtain the object function as follows:

L

(

X ,F ,U
(n)
k

,V
(n)
k

,Gk,M,W1, . . . ,W4

)

= ‖DSX − Y‖2F +
w1

2

∥

∥

∥

∥

X −M+
W1

w1

∥

∥

∥

∥

2

F

+ λtv‖F‖1

+
w2

2

∥

∥

∥

∥

F − GwX +
W2

w2

∥

∥

∥

∥

2

F

+

K
∑

k=1

[

λ2 ‖Gk‖
2
F +

N
∑

n=1

(

λ1

∥

∥

∥
U

(n)
k

∥

∥

∥

Pλ

)

]

+

K
∑

k = 1

N
∑

n = 1





w3

2

∥

∥

∥

∥

∥

U
(n)
k

− V
(n)
k

+
W3

n
(k)

w3

∥

∥

∥

∥

∥

2

F





+

K
∑

k=1

(

w4

2

∥

∥

∥

∥

P
k
M − Gk×1V

(1)
k

×2V
(2)
k

· · · ×NV
(N)
k

+
W4(k)

w4

∥

∥

∥

∥

2

F

)

(18)
where W1, W2, {W3

(n)
k

}Nn=1
K
K=1, and {W4(k)}

K
k=1

are Lagrange
multipliers. According to ADMM, we divide Equation (18) into
Equation (6) subproblems and solve them by iteratively updating
the variables. The following are the detailed variables updating
procedures. The optimization procedure of the proposed model
is shown in Algorithm 1.

Update X . Fixing the other variables, we extract terms that
contain X in Equation (18). We update X by minimizing:

min
X

‖DSX − Y‖2F +
w1

2

∥

∥

∥

∥

X −M+
W1

w1

∥

∥

∥

∥

2

F

+
w2

2
‖F

−GwX +
W2

w2

∥

∥

∥

∥

2

F

(19)

The partial derivative of Equation (19) with respect to X is as
follows:

2(DS)TDSX + w1X + w2G
′
wGwX = 2(DS)TY + w1M

−W1 + w2G
′
wF +W2G

′
w

(20)
where (DS)T denotes the transposes of DS and G′

w denotes the
adjoint of Gw.

Update F . Update F by minimizing:

min
F

λtv‖F‖1 +
w2

2

∥

∥

∥

∥

F − GwX +
W2

w2

∥

∥

∥

∥

2

F

= min
F

N
∑

n=1

(

λtvαn

∥

∥F(n)

∥

∥

1
+

w2

2

∥

∥

∥

∥

F − GwX +
W2

w2

∥

∥

∥

∥

2

F

)

(21)
Then, we have:

F= foldn

[

Softλtvαi/w2

(

GwX(n) −
W2(i)

w2

)]

(22)
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where Soft denotes the soft-thresholding operator, which is
defined as:

Soft1(x) =







x− 1, if x > 1 ,
x+ 1, if x < 1 ,

0, otherwise.
(23)

where x ∈ R and 1 > 0.
Update U

(n)
k

. Update U
(n)
k

by minimizing:

min
U

λ1

∥

∥

∥
U

(n)
k

∥

∥

∥

Pλ

+
w3

2

∥

∥

∥

∥

∥

U
(n)
k

− V
(n)
k

+
Wn

3(k)

w3

∥

∥

∥

∥

∥

2

F

(24)

To solve Equation (24), we introduce the singular value shrinkage
operator, which is defined as:

Sτ (X) : = UXDτ (
∑

X

)VT
X , (25)

where X = UX
∑

XV
T
X is the singular value decomposition of X.

For a matrix A, [Dτ (A)]ij = sgn(A(ij)(
∣

∣Aij

∣

∣− τ )+. U
(n)
k

can be
obtained by:

U
(n)
k

= Sλ1λ/w3

(

V
(n)
k

+
Wn

3(k)

w3

)

(26)

Update V
(n)
k

. Update V
(n)
k

by minimizing:

min
V

N
∑

n=1





w3

2

∥

∥

∥

∥

∥

U
(n)
k

− V
(n)
k

+
Wn

3(k)

w3

∥

∥

∥

∥

∥

2

F



+
w4

2

∥

∥

∥
P
k
M

−Gk×1V
(1)
k

×2V
(2)
k

· · · ×NV
(N)
k

Wn
4(k)

w4

∥

∥

∥

∥

∥

2

F

(27)

We obtain the solution of Equation (27) as follows:

V
(n)
k

=
[

−Wn
3(k)

+ w3U
(n)
k

+
(

W4(k) + w4P
k
M

)

V
(−n)
k

GT
(n)

]

×
(

w4I + w4G(n)V
(−n)T
k

V
(−n)
k

GT
(n)

)−1

(28)
Update Gk. Update G by minimizing:

minλ2
G

‖Gk‖
2
F +

w4

2

∥

∥

∥
P
k
M − Gk×1V

(1)
k

×2V
(2)
k

· · · ×NV
(N)
k

+
W4(k)

w4

∥

∥

∥

∥

2

F
(29)

We obtain the following solution of Gk:

vec(G) = [V(−n)TV(−n) ⊗ w4V
(n)TV(n) + λ2I]

−1

× vec[V(n)T(W4(k) + w4P
k
M)V(−n)]

(30)

Update M. Fixing the other variables, we extract terms
containingM in Equation (18). We updateM by minimizing:

min
M

w1

2

∥

∥

∥

∥

X −M+
W1

w1

∥

∥

∥

∥

2

F

+

K
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(

w4

2

∥

∥

∥

∥

P
k
M − Gk×1U

(1)
k

×2U
(2)
k

· · · ×4U
(N)
k

+
W4(k)

w4

∥

∥

∥

∥

2

F

)

(31)
We obtainM by updating Pk

M
and aggregating them:

M =

K
∑

k=1

P
k
M. (32)

Here, the formula to update Pk
M

can be expressed as:

min
Pk
M

w1

2

∥

∥

∥

∥

P
k
X − P

k
M +

W1(k)

w1

∥

∥

∥

∥

2

F

+

K
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k=1

(

w4

2

∥

∥

∥

∥

P
k
M − Gk×1U

(1)
k

×2U
(2)
k

· · · ×4U
(N)
k

+
W4(k)

w4

∥

∥

∥

∥

2

F

)

(33)
Then, we obtain the following closed-form solution of Pk

M
:

P
k
M =

w4C + w1P
k
X
+W1(k) −W4(k)

w4 + w1

(34)

where C = Gk×1U
(1)
k

×2U
(2)
k

· · · ×4U
(N)
k

.

Algorithm 1: NNTDTV .

Input: Low-resolution image Y
Output: Reconstructed high-resolution image X

1 Initialize: X = Upsample(Y ),M, Pk
M

, Gk, U
(n)
k

= V
(n)
k

;

2 for l=1, 2, ... L do

3 Extract the set of Pk
M

and find similar patch group;
4 Update X via Equation (20);
5 Update F via Equation (22);
6 for each patch do

7 Update U
(n)
k

via Equation (26);

8 Update V
(n)
k

via Equation (28);

9 Update Gk via Equation (30);

10 Update Pk
M

via Equation (34);

11 end

12 Aggregate Pk
M

K

k=1 to reshape the X
(l);

13 UpdateW1,W2,W3,W4;

14 end

3. EXPERIMENTS

3.1. Database
We conduct extensive experiments to evaluate the effectiveness
of our method compared with the SOTAmethods.We adopt four
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kinds of medical images including the synthetic brain MRI data
selected from the BrainWeb database (Cocosco et al., 1997)1, the
real abdominal CT data from the NIH pancreas segmentation
database (Roth et al., 2015)2, the real prostate MRI data from
the NCI-ISBI 2013 database,3 and dental image published by
TF-SISR.

The BrainWeb database contains a set of synthetic brain
MRI data volumes (image size of 181 × 217 × 181 and spatial
resolution of 1 mm3 × 1 mm3 × 1 mm3) produced by an MRI
simulator. The NIH pancreas segmentation database contains 82
real contrast-enhanced abdominal CT volumes (image size of 256
× 256 × B, where B ∈ [90, 233] and spatial resolution from
0.5 mm3 × 0.5 mm3 × 0.5 mm3 to 1 mm3 × 1 mm3 × 1 mm3).
The NCI-ISBI 2013 database contains 30 prostate MRI cases
(image size of 384 × 384 × B, where B ∈ [113, 217] and spatial
resolution from 0.6 mm3 × 0.6 mm3 × 3.6 mm3 to 0.625 mm3

× 0.625 mm3 × 4 mm3). The dental image published by the
TF-SISR contains a set of dental CT data (image size of 282 ×

266 × 392). The CBCT image was obtained with the Carestream
81003D system. The linewidth resolution of the CBCT machine
was 500 µm and the volumes have a voxel size of 80 × 80 × 80
µm3. The µCT image was obtained with a Quantum FX system
from Perkin Elmer, with a linewidth resolution of 50 µm, and
voxel size of 40× 40× 40 µm3.

3.2. Experimental Settings
Experiments on the BrainWeb database, NIH pancreas
segmentation database, NCI-ISBI 2013 database, and LR images
are obtained by applying Gaussian blurring with a blur kernel
of 1 voxel wide and downsampling the original HR images with
a factor of 2, similar to LRTV (Shi et al., 2015), and the original
HR images are used as ground truth (GT).

In the experiment with dental images published by the TF-
SISR method, our method can be validated on the real-world
database. We use the CBCT as input and the µCT as GT. we
follow the TF-SISR setting, including the downsampling and
blurring kernel type, to ensure integrity and fairness. To evaluate
the reconstruction effect, we compare the reconstruction results
of eachmethodwithµCT images acquired from the same sample.

There are four important parameters in our model including
λtv, λ1, λ2, and d. λtv, λ1, and λ2 control the balance of 3DTV
and nonlocal low-rank regularization terms, and d is the number
of similar patches that form the fourth-order tensor Pk

X
. We

select 20 serial representative slices from the BrainWeb database
for parameters analysis and selection. In Figure 2, we show the
relationship between PSNR and the regularization parameters
λtv, λ1, and λ2 in Equation (15) with the other parameters
fixed at optimal values. The change of λtv has the biggest
influence on PSNR of results, while the change of λ2 has the
least influence. It can be seen that when λtv, λ1, and λ2 vary
within a wide range, PSNR can reach a high value. We observed

1The BrainWeb database can be downloaded at: https://brainweb.bic.mni.mcgill.

ca/brainweb/.
2The NIH pancreas segmentation database can be downloaded at: https://wiki.

cancerimagingarchive.net/display/Public/Pancreas-CT.
3The NCI-ISBI 2013 database can be downloaded at: https://liuquande.github.io/

SAML/.

similar behavior in other cases. The value of λtv and λ1 and
λ2 can be chosen in [5, 20] and [1, 10], respectively. In all
experiments, the parameters are set as follows: the regularization
parameters λtv, λ1, and λ2 are fixed to 10, 5, and 20, respectively.
Figure 2D shows the PSNR gains vs. the number of similar
patches. The PSNR of reconstruction results becomes stable when
the number of patches is larger than 10. We set the number
of similar patches as 15 in our experiment. Great experimental
results show that the set of parameters has good universality
for different types of data. For LRTV and TF-SISR, we adjust
the parameters for each database to optimize experimental
results.

3.3. Quantitative Comparison
To evaluate the performance of our method on medical
images, we compare our method with the nearest neighbor
(NN) interpolation method, two state-of-the-art (SOTA)
methods for the medical image 3D super-resolution including
the low-rank and total variation regularizations (LRTV)
method (Shi et al., 2015) and the tensor factorization single
image super-resolution (TF-SISR) method (Hatvani et al.,
2019). In 3D medical image super-resolution methods,
LRTV and TF-SISR achieve competitive results. We use
two quantitative picture quality indices to evaluate the quality
of the reconstructed image, i.e., the peak signal-to-noise
ratio (PSNR) and the structural similarity index (SSIM). It is
known that higher values of PSNR and SSIM indicate better
performances.

Table 1 shows the quantitative results of the BrainWeb
database, NIH pancreas segmentation database, NCI-ISBI 2013
database, and dental image. The bolding values in table means the
best results. These results show that our reconstruction method
in terms of PSNR and SSIM outperforms the existing method
in different types of medical images. Through Table 1, we can
find that our model achieves the highest MPSNR value than
those of other methods. The quantitative results by TF-SISR are
relatively low in the first three databases. This shows that it is not
enough to only use tensor factorization to recover images with
complex structures, and it is necessary to add more priors. This
is also demonstrated by our quantitative and visual results. Our
model makes full use of the 3DTV and the nonlocal similarity
to suppress noise and preserve tiny details, thus achieving the
best results. For a further detailed analysis of the super-resolution
results, we randomly select a set of data from the BrainWeb
database, the NIH pancreas segmentation database, and the
NCI-ISBI 2013 database and show the SSIM and PSNR values
of each slice in Figure 3. Our method obtains much higher
values of SSIM and PSNR than other methods for almost every
slice.

3.4. Visual Quality Comparison
In this section, we demonstrate the visual results of each method
on four databases. For the results of the BrainWeb databases,
a typical slice of the coronal, sagittal, and axial views is shown
in Figure 4, and a zoom in of the frontal region in the sagittal
view is also provided. Figures 5, 6 show a set of representative
reconstruction results and the corresponding details from the
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FIGURE 2 | Sensitivity analysis of two regularization parameters: (A) The peak signal-to-noise ratio (PSNR) value vs. λtv; (B) the PSNR value vs. λ1; (C) the PSNR

value vs. λ2; (D) the PSNR value vs. the number of similar patches.

TABLE 1 | Quantitative results [peak signal-to-noise ratio (PSNR), structural 254 similarity index (SSIM)] by different methods on four medical databases.

Database NN LRTV TF-SISR NNTDTV

BrainWeb
PSNR (dB) 28.3336 31.7784 28.2847 33.3313

SSIM 0.8996 0.9492 0.8955 0.9593

NIH pancreas
PSNR (dB) 30.6488 32.6053 27.2705 33.2831

SSIM 0.9039 0.9242 0.8935 0.9289

NCI-ISBI 2013
PSNR (dB) 29.6478 31.2985 26.6026 33.2587

SSIM 0.8632 0.9019 0.8582 0.9239

Dental
PSNR (dB) 23.3410 23.4459 25.5183 25.9325

SSIM 0.4418 0.4449 0.8310 0.8851

The best results are shown in bold.

FIGURE 3 | Detailed quantitative evaluation (PSNR and SSIM) of different methods for each slice: (A,E) The Brainweb database; (B,F) the NIH pancreas segmentation

database; (C,G) the NCI-ISBI 2013 database; and (D,H) the dental image.

NIH pancreas segmentation database, respectively. Figure 7

shows two sets of results from the NCI-ISBI 2013 database.
As shown in the figures, the reconstruction results of NN
and TF-SISR have obvious serrated edges while the results of
LRTV are too smooth to keep the details clear. Compared
with them, our method not only preserves the exact color

but also reconstructs clearer edges while maintaining the local
smoothness.

Notably, the TF-SISR method obtains a relatively good
performance only on dental images. This may be because the
TF-SISR method only utilizes tensor factorization to recover
images without any prior information. Therefore, when the
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FIGURE 4 | Reconstruction results and their corresponding details of synthetic brain MRI data from Brainweb database: (A) Low-resolution (LR) band with

downsampling factor 2, (B) nearest neighbor (NN), (C) low-rank and total variation regularizations (LRTV), (D) TF-SISR, (E) nonconvex nonlocal Tucker decomposition

with weighted 3D total variation (NNTDTV).

FIGURE 5 | Reconstruction results and corresponding details of contrast-enhanced abdominal CT data from NIH pancreas segmentation database: (A) LR band with

downsampling factor 2, (B) NN, (C) LRTV, (D) TF-SISR, (E) NNTDTV.

FIGURE 6 | Reconstruction results and corresponding details of contrast-enhanced abdominal CT data from NIH pancreas segmentation database: (A) LR band with

downsampling factor 2, (B) NN, (C) LRTV, (D) TF-SISR, (E) NNTDTV.
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FIGURE 7 | Reconstruction results of prostate MRI data from NCI-ISBI 2013 database: (A) LR band with downsampling factor 2, (B) NN, (C) LRTV, (D) TF-SISR, (E)

NNTDTV.

FIGURE 8 | Reconstruction results of dental image: (A) Cone beam computed tomography (CBCT), (B) NN, (C) LRTV, (D) TF-SISR, (E) NNTDTV, (F) micro-CT (µCT).

Each column corresponds to an axial, a coronal, and a sagittal slice. The location of the slices in the volume is illustrated on the CBCT images in colored lines.

structure of an image is complex, the reconstruction effect
is not satisfactory. The TF-SISR method was proposed for
3D image super-resolution and applied to dental images.
In this part of the experiment, we follow the experimental
setting of the TF-SISR method. We show the PSNR and
SSIM in Table 1 and the corresponding axial, coronal, and
sagittal slices in Figure 8. Our method is not only superior to
other methods with various types of medical images but also
achieves a slightly better effect than TF-SISR with the dental

image. This shows that our method has good performance
and generalization.

4. DISCUSSION

Super-resolution reconstruction provides an economical and
effective solution to improve the resolution of CT and MRI
at the software level. However, there are few super-resolution
methods designed for 3D medical images. We proposed a
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single image super-resolution method based on tensor low-rank
decomposition that combines the local smoothness and nonlocal
similarity and apply to 3D CT and MRI data. Our method
shows better quantitative results and visual quality compared
with existing 3Dmedical super-resolutionmethods.Wemaintain
the local smoothness while keeping the clear edges of images.

This study has certain limitations. First, nonlocal similarity
prior makes full use of the structural information of images and
improves the effect of super-resolution reconstruction. However,
it increases computational costs. In the future study, we will
explore more efficient priors to include in our framework.
We will further consider the global spatial correlation in all
directions of data by constructing reasonable tensors and then
performing low-rank constraints. We will combine the low-
rank prior data with the deep learning method to obtain
accurate data features and achieve better super-resolution
reconstruction results. Second, although our super-resolution
model can theoretically be used for images of any dimension,
we only verify it on 3D images in this article. In the future, the
experiments will be conducted on diverse data.

5. CONCLUSION

In this article, we proposed a new super-resolution method
based on nonlocal Tucker tensor decomposition and 3D TV
regularization. Nonlocal Tucker tensor decomposition fully
exploits the spatial and inter-frame low-rank information to
reconstruct the data. The 3D TV regularization term retains
the local smoothness of spatial and spectral information, thus
enhancing the detailed information. Extensive experimental
studies on four different kinds of medical data, including MRI
data of the brain and prostate and CT data of the abdominal and
dental, validated our method compared with the SOTAmethods.
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