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Abstract

Motivation: Sequence-based deep learning approaches have been shown to predict a multitude of
functional genomic readouts, including regions of open chromatin and RNA expression of genes. However,
a major limitation of current methods is that model interpretation relies on computationally demanding post-
hoc analyses, and even then, we often cannot explain the internal mechanics of highly parameterized
models. Here, we introduce a deep learning architecture called tiSFM (totally interpretable sequence to
function model). tiSFM improves upon the performance of standard multi-layer convolutional models while
using fewer parameters. Additionally, while tiSFM is itself technically a multi-layer neural network, internal
model parameters are intrinsically interpretable in terms of relevant sequence motifs.
Results: tiSFM’s model architecture makes use of convolutions with a fixed set of kernel weights
representing known transcription factor (TF) binding site motifs. We analyze published open chromatin
measurements across hematopoietic lineage cell-types and demonstrate that tiSFM outperforms a state-
of-the-art convolutional neural network model custom-tailored to this dataset. We also show that it correctly
identifies context specific activities of transcription factors with known roles in hematopoietic differentiation,
including Pax5 and Ebf1 for B-cells, and Rorc for innate lymphoid cells. tiSFM’s model parameters have
biologically meaningful interpretations, and we show the utility of our approach on a complex task of
predicting the change in epigenetic state as a function of developmental transition.
Availability and implementation : The source code, including scripts for the analysis of key findings, can
be found at https://github.com/boooooogey/ATAConv, implemented in Python.
Contact: atb44@pitt.edu

1 Introduction
Functional genomics assays have accelerated our understanding of how
non-coding regions of genomes contribute to cellular and organismal
function by enabling their identification and characterization. Large
consortium projects such as ENCODE Project Consortium, 2012; Gal-Oz
et al., 2019 have generated extensive datasets profiling diverse functional
properties of the non-coding genome across many tissues and cell-types,

including transcription factor (TF) binding, regions of open chromatin, and
biochemical modification of N-terminal histone tails. While such genomic
readouts are believed to be largely determined by DNA sequence, the
precise sequence-to-function (S2F) relation is complex and remains poorly
understood. Nevertheless, recent developments have shown that by using
deep learning models with millions of parameters it is indeed possible
to learn S2F mappings, predict epigenetic readouts, or even characterize
gene expression (Maslova et al., 2020; Avsec et al., 2021b; Kelley et al.,
2016; Zhou and Troyanskaya, 2015; Quang and Xie, 2016). Given these
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successes, it is worthwhile to ask what scientific insights that go beyond
advancing our understanding of applying machine learning engineering
principles to genomics data such models can provide.

Primarily, a model can be considered useful (in the canonical
supervised machine learning sense) if it is able to make reliable out-of-
sample predictions. This is a major promise of complex deep learning
models, given they can potentially predict functional output of arbitrary
sequences (e.g., individual genomes, haplotypes with disease-associated
genetic variants, or synthetic constructs). However, while existing models
have made progress to this end and significantly outperform baseline
approaches on these tasks, performance can still be variable; with
existing models not yet being capable of substituting experiments. For
example, the current SOTA in the field of accessible chromatin (as
measured by ATAC-seq) prediction from sequence, AI-TAC, suffers
from these issues. Specifically, although Maslova et al., 2020 is able
to train models that perform well (in terms of established performance
metrics, and by production of certain biological insights), this is only
after considerable effort is put forward to extract meaningful information
from essentially a black box model featuring a large parameter space
that obfuscates straightforward interpretations. Additionally, AI-TAC’s
reported competitive performance is not consistent since the model fails to
capture relevant biological information throughout all training iterations.

Moving past out-of-sample predictions, a successful model can
also provide information about underlying biochemical principles or
mechanisms. For example, if increasing the receptive field of a S2F
model from 40KB to 200KB increases model performance (as was recently
demonstrated for gene expression predictions (Avsec et al., 2021a)), then
we can conclude that there is indeed evidence for relevant biochemical
interactions that occur in the scope of 200KB. However, questions about
the actual biochemical entities involved, or how they may interact, or be
organized into higher order structures, cannot be answered from observing
model performance. Instead, model parameters need to be subjected to
transparent post-hoc interpretation. For example, many deep learning
S2F models’ architectures include an initial convolution layer on a locus’
DNA sequence, allowing for the possibility to use a priori information by
interpreting this layer’s learned kernel weights as position weight matrices
(PWM) and matching them to databases of known transcription factor
motifs (Alipanahi et al., 2015; Maslova et al., 2020).

Successful incorporation of such strategies into current work is highly
dependent on the effective tuning of hyperparameters; for example, kernel
weights may only represent partial TF motifs that are aggregated in
subsequent layers of the network (Koo and Eddy, 2019). Moreover,
even when successful, since neither sign nor the magnitude of a TF’s
contribution is known, such approaches can only reveal which TFs are
involved, but not how they contribute. As an alternative approach one
can perform attribution analysis, which refers to a class of algorithms
that can attribute a prediction to a specific subset of the input. In many
cases, this type approach will highlight regions of input DNA that can
subsequently be matched to motifs of known TFs. While such attribution
approaches overcome the problem with partial motifs, they do not provide
a universally interpretable solution. Most attribution techniques rely on
propagating "blame" for a prediction though layers of the network using
gradients, and existing methods differ in the exact calculation performed.

Importantly, these approaches require considerable computation and
expertise, and the results will vary depending on the method chosen.
We note that the two types of approaches can also be combined,
revealing both: TFs involved, and their specific contributions (sign and
magnitude) to predicting functional genomic readouts, as was done in
AI-TAC (Maslova et al., 2020). Specifically, AI-TAC focused on a
hematopoeitic development dataset, combining attribution and kernel
analysis to create a TF by cell-type map. However, while effective
in highlighting many known drivers of hematopoeitic differentiation, it

required complex post-processing steps. Moreover, the final interpretation
product, the TF by cell-type contribution, only partially reveals the
underlying mechanism of prediction performance. For example, the
AI-TAC method has 3 convolutions layers and 3 linear layers – an
architecture that was extensively optimized for the dataset. However, the
kernel-motif matching combined with attribution tells us nothing about
how the internal parameters of the model contribute to the predictions.
Do subsequent convolution layers encode interactions or simply fine-tune
motifs?

In this work we introduce a "totally interpretable sequence-to-function
model", tiSFM. While the model is technically a multi-layer CNN, each
layer is interpretable as either DNA sequence or TF binding. Thus, the final
linear layer directly maps TFs to outputs and can produce a meaningful
TF by output matrix with no post processing. Moreover, the internal
parameters of the model, such as learnable pooling or interaction attention,
are also directly interpretable and can reveal additional information about
mechanisms by which highly parameterized models produce high accuracy
predictions.

2 Methods

2.1 Data Processing

We trained tiSFM on the ImmGen ATAC-seq dataset (Gal-Oz et al.,
2019) that consists of assayed open chromatin region (OCR) activity of
81 immune cell-types in the mouse hemtopoeitic lineage. This dataset
was extensively evaluated in a similar deep learning prediction and
interpretation context in a seminal paper by Maslova et al., 2020. Similarly
to this previous work, we focus on predicting correlations across cell-types
rather than raw chromatin accessibility. However, rather than changing the
form of the loss function as was done in the original study, we achieve the
same effect by z-scoring the activity of each OCR across cell-type and using
the standard mean squared error (MSE) loss on the z-scores. Additionally,
we focus most of our benchmarking and evaluation on predicting data
aggregated over the each of the eight main lineage types, rather than the
individual cell-types. This is done for two reasons: (1) Difficulty — as
was demonstrated in the original paper, the within-lineage performance is
considerable worse than across-lineages, (2) Interpretability — in many
cases, we have substantial knowledge about the TFs that play a role in
regulating major lineages, but information about further developmental
decisions within a lineage is comparably sparser.

We also train ourtiSFM on the full dataset; however, rather than using
raw data or the z-scores of OCR activities, we focus on OCR activity
differences along the cell lineage tree of hemtopoeitic differentiation.
Specifically, if a cell-type x has a parent P (x) we predict the
difference between OCR_activity(x) and OCR_activity(P (x)).
This transformation prevents large differences between lineages from
dominating the training objective, instead shifting the focus on
developmental transitions. However, this also has the effect of making
the problem more difficult and the (R2) values achieved for all methods
are considerably lower than previously reported. We refer to this dataset
as “tree-diff”.

The input dataset is summit-centered, and for our model we restricted
the sequence to 300 bp centered on the peak summit. We use 862 position
weight matrices (PWMs) of mouse TFs from the cisBP database (Weirauch
et al., 2014a) as weights for our initial convolution kernels.

2.2 Model training

All models are implemented in PyTorch (Paszke et al., 2019). Because of
the differences in the objective and train/test splitting we also re-trained
the original AI-TAC model architecture using our version of the data,
objective, train/validation/test splits, and stopping criteria for comparison.
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All 512,596 reported genomic regions were divided into 10
approximately similar-sized folds. There are no coordinate overlaps
between different peaks and fold assignment was performed at random.
In turn, we used 8 folds to form a training set, 1 fold for validation, and
1 fold for testing. We trained models starting with a learning rate of 0.01,
decaying by a factor of 0.1 if the validation loss does not improve for 10
epochs; once the learning rate is below 5 × 10−7 the training stops. We
repeat this procedure 10 times, with each fold singled out as the test set
once; the performance was averaged across test set folds. tiSFM is trained
first by freezing the first layer kernel weights to be cisBP PWMs, the kernels
are then unfrozen and trained further (for approximately 10 epochs, while
monitoring validation improvement as defined above). A path algorithm
for L1 or the minimax concave penalty (MCP) regularization is applied
only to the final layer of the model by a modified version of the ADAM
optimizer that uses the proximal operators for L1 and MCP penalties as
described in Yun et al., 2021.

2.3 Model Architecture

All variations of tiSFM take one-hot-encoded DNA sequence of length
L as input, which is then is augmented by the integration of positional
embedding and attention. Mathematically, this step can be represented as
follows:

y = x+ p

a = MultiHeadAttention (y)

xaug = x+ a

where x is the one-hot embedded input (∈ R4×L) and p ∈ RL is a
vector of positional embedding parameters. The first sum is carried out by
broadcasting p over the rows of x, while the dimensions of a and x match
for the second sum. These transformations enable the model to account
for positional effects; for instance, TFs are known to preferentially bind
in the center of ATAC-seq peaks, and to incorporate nucleotide context
information. In the subsequent layer, we compute a convolution of the
augmented input with a n fixed PWM matrices for motif binding sites
taken from the CIS-BP database (Weirauch et al., 2014b). Although the
PWMs weights are fixed, every kernel in the convolutional layer (PWM)
has two trainable parameters: a scale and a bias, with a sigmoid function
as activation. This layer maps raw PWM match scores to [0, 1] in a
PWM specific manner. Next, each channel is globally pooled (across the
sequence) using a programmable pooling layer to extract a single value
for each PWM/kernel. We use programmable global pooling which works
similarly to the attention pooling popularized by the Enformer model
(Avsec et al., 2021b). Every channel is assigned a learnable parameter that
scales the channel before applying softmax. If the scale is close to zero, the
pooling layer functions essentially as average pooling; on the other hand,
for high parameter values the operation is essentially maximum pooling.
The programmable pooling layer computes the following for each channel:

o =

∑L
i exp (axi)xi∑L
j exp (axj)

where x is a vector of length L, corresponding to a specific channel in the
output of convolutional layer, a is the trainable weight that is specific to this
channel, and o is the pooled value, which is a channel-specific scalar. The
sigmoid activation combined with the ability to learn a trade-off between
average and maximum pooling enables this architecture to approximate
motif match counting, which has been shown to be useful in modeling
TF-DNA binding (Roider et al., 2006).

After global pooling, every input sequence is reduced to a vector y ∈
Rn of n TF/PWM activities. These values go into a fully connected layer

with sigmoid activation to generate a "mask" for global protein activity
that takes protein-protein interactions into account. Mathematically this
step can be formulated as follows:

m = σ (Ay) (1)

z = m⊙ y

whereA is aRn×n matrix of parameters, y is the input vector for this step,
σ is the sigmoid function, and ⊙ represents element-wise multiplication.
The output, z, goes into a final fully-connected layer to predict functional
output for each input region.

2.4 Proximal Operators for MCP/L1 regularization

To make our model sparse and therefore more interpretable, we impose
sparsity regularization such as L1 and MCP on the coefficients of the final
layer of our model. Yun et al., 2021 formulated the proximal operator for
the L1 regularized ADAM as

θ̂t,i = θt,i − αt
mt,i

Ct,i + δ

θt+1,i = sign
(
θ̂t,i

)(∣∣∣θ̂t,i∣∣∣− αtλ

Ct,i + δ

)

where Ct,i is the preconditioner matrix, mt,i is the momentum estimate,
αt is the learning rate, δ is a small constant added to avoid division by 0, θ
is the coefficient of the model, and finally λ is the hyperparameter for L1.
In a similar vein, they formulated the closed form solution of projecting
through MCP regularization as

θ̂t = θt − αt (Ct + δI)−1 mt

θt+1,i = sign
(
θ̂t,i

)
min

 bmax
{∣∣∣θ̂t,i∣∣∣− αtλ

Ct,i+δ
, 0

}
b− 1

,
∣∣∣θ̂t,i∣∣∣


where the parameters are the same with L1 case, with the addition of b
which is the second hyperparameter for MCP.

3 Results

3.1 The tiSFM model outperforms a state of the art CNN at
OCR activity prediction

An overview of the tiSFM architecture can be seen in Fig. 1A. Briefly,
the tiSFM is multi-layer CNN that consists of several elements that have
been successfully used across a variety of deep learning models, tasks,
and datasets, such as: self-attention mechanisms, positional embedding,
convolutional layers, and programmable pooling. In order to quantify the
performance contribution of different parts of the model we implement
several variants of this architecture that selectively leave out some of the
layers from the full model for comparison (ablation analysis). We also
trained all models with fixed kernels (cisBP PWM), and then subsequently
fine-tuned kernels.

Fig. 1B and Fig. 1C show the performance of different model variants
quantified on the test data of all 10 cross validation folds and reported as
mean and standard error. We choose to compare the change in R2, defined
as the difference between tiSFM’s and AI-TAC’s.

As a baseline we consider the AI-TAC CNN architecture proposed
by Maslova et al., 2020, retrained using the train/validation/test splits
and training procedure (see Methods for details). As this architecture was
extensively optimized on this dataset we consider it to be SOTA for this
learning task. Overall, we find that the full tiSFM’s model architecture
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Fig. 1. tiSFM improves on prediction accuracy when compared to the current SOTA. (A) A graphical display of the architecture of tiSFM. (B) The improvement of tiSFM, measured via
the change in R2 on the full model; additionally, different iterations of tiSFM were tested with the inclusion/exclusion of certain model components in order to weigh their contribution to
the overall performance. (C) similar to (B), but after the kernels of the convolutional layer were fine-tuned during training.

(red bars), using either frozen or un-frozen kernels outperforms the
AI-TAC CNN model across all cell-types (Fig. 1B and C).

This observation is particularity striking as tiSFM has 966,182
parameters (including the kernels) while AI-ATAC has 2,974,908 — a
nearly 3-fold increase. This result highlights the importance of adding
biological prior knowledge in the form of PWMs and suggests that
learning the appropriate kernel weights (or PWMs) is the main source of
prediction accuracy. This interpretation is consistent with a recent results
demonstrating that combining a max-pooled convolution layer with a fully
connected linear layer is competitive with multi-layer CNN networks on
a variety of sequence-to-function prediction models (Novakovsky et al.,
2022).

Studying the unfreezing of PWM/kernel weights further supports this
line of thought (Figure 1C), as we find that even the base model that
lacks interaction and attention layers (but still has PWM specific learnable
logistic and pooling parameters) can outperform AI-TAC after kernel
fine-tuning.

While our results strongly indicate that the first layer convolution
kernels, which approximate the binding preferences of transcription
factors, are the most critical part of the model, other aspects of the model
architecture yield additional performance gains. Investigating the impact
of attention and/or interaction we find that both contribute an appreciable
amount to the performance, with the biggest contribution coming from
inclusion of the modeling TF interactions (Fig. 1C). This trend is the
same regardless of whether kernels are frozen or not. Attention, on the
other hand, improves the performance when the kernels are kept fixed and

interaction is included; however, the performance is slightly reduced when
the kernels are fine-tuned.

One concern with the fine-tuning of the kernels is that they will no
longer resemble the initial PWM which would hamper interpretability.
However, on this data, this problem does not arise. PWMs before and after
weight unfreezing are very similar, with an average MSE of 0.04.

Additionally, we examined the pairwise distance between the initial
kernels and the final fine-tuned kernels. For 92% of the fine-tuned kernels,
the most similar motifs were their pre-fine-tuning counterparts; if a change
was detected between the two, the fine-tuned motif is often a different motif
for the same TF, as is the case with Tcfcp2l1, or a motif in the same family
— for example, Dlx1 in the fine-tuned kernel is most similar to Dlx3 in
the initial kernel. We also note that our observation that a relatively minor
parameter change (i.e., the difference between fine-tuned and initial kernel
weights) can dramatically increase performance further highlighting the
fact that getting the first layer kernels are the most important parameters
of S2F CNNs.

3.2 tiSFM parameters are intrinsically interpretable in
terms of lineage specific transcription factors

In the original AI-TAC manuscript, the authors combined kernel-PWM
matching (also using the mouse CIS-BP database) with attribution analysis
using DeepLift (Shrikumar et al., 2017) to create a cell-type by TF
contribution map. In our approach both of these steps are unnecessary,
as the final linear layer already contains this information. We visualize the
tiSFMTF-by-cell-type contribution from a single run of the model in Fig.
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Fig. 2. tiSFM consistently finds motifs that are relevant to immune cell differentiation. (A) The final layer of a single fully trained model, after the rows were normalized to [-1, 1], while
preserving the sparsity. The 5 motifs with the highest absolute weight for each cell type are shown. (B) Inclusion ratio was defined as the number of times a motif appeared among the top
10 motifs across the 10 folds in our k-fold cross validation procedure, with the highest weights in the final layer for each cell type. The motifs included in more than 50% of the models are
shown here.

2A. Coefficients from the final layer of tiSFM are normalized to [−1, 1]

without breaking sparsity.
We find thattiSFM effectively highlights known regulators of immune

cell differentiation. For B cells the model selects Pax5 (with Pax9, an
additional TF in the family) and Ebf1, which are known as the key early
regulators of B-cell lineage commitment (Somasundaram et al., 2021;
Hagman et al., 2011). The model also highlights Cebpb and Sfpi1 (a.k.a.
Spi1/PU.1) for myeloid cells and Rorc and Eomes for innate lymphoid
cells. These TFs are also well-characterized master regulators of their
respective lineages (Suñer et al., 2022; Hoorweg et al., 2012; Kiekens
et al., 2021). Importantly, these TFs were also highlighted in the original
AI-TAC analysis and overall the AI-TAC and tiSFM TF by cell-type
matrices are highly similar; an important difference, though, is that for the
tiSFM model these are simply model parameters no additional post-hoc
calculations are required.

Additionally, we use cross-validation folds from model training to
assess the consistency of our approach by calculating a per-motif inclusion
ratio, defined as the number of times a motif appears in the top 10 motifs
with the highest absolute weights from each cell type. Several of the motifs
reported consistently appeared the top 10. Indeed, all the well known
lineage regulators discussed above (Pax5, Ebf1, Cebp, Sfpi1, and Rorc)

have an inclusion ratio of 1 (Fig 2B), suggesting that TFs with similarly
high inclusion ratio are likely true positives. One such TF is Hoxc9, which
is highlighted by tiSFM as being important for hematopoietic stem cells
(HSCs). While no such function for Hoxc9 has been established, Hoxa9 is
a highly similar motif (cisBP database the Hoxa9 consensus is a subset of
the Hoxc9 consensus) that is known to play a critical role in hematopoiesis.
Defects in Hoxa9 lead to an inability of HSCs to repopulate an irradiated
host (Lawrence et al., 2005). On the other hand, over-expression of Hoxa9
increases the efficiency of hematopoiesis (Ramos-Mejía et al., 2014).

We also note that the consistency of top transcription factors for T cells
is notably lower (Fig 2B); nevertheless, among the ones shown we find
several that are canonically associated with maintaining T cell function,
including Lef1, Tcf7l2 (Tcf7 family), Egr3, and Gata3 (Xing et al., 2016;
Shan et al., 2021; Ho et al., 2009; Li et al., 2012). Notably, while Gata3
has a known role in early T cell development, other of these TFs are
associated with maintaining the function of specific T cell sub-types and
are not necessarily establishing T cell identity. This result mirrors the
original AI-TAC finding and conclusion that the observed weak T-cell
attribution implied that the T-cell lineage was a fall back plan that did
not require specific regulators. Rothenberg, 2011 supports this notion with
experimental evidence .
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Fig. 3. (A) A scatter plot of pooling parameters vs. the information content (IC) calculated from motif PWMs. The color annotation of the points correspond to the final layer coefficients for
B-cell, OCR activity prediction. The 5 motifs with the highest absolute weight for B cells are annotated (Ebf1, Pax5, Mef2a, Pou2f1, Bbx) along with some outliers to the pooling/IC trend
(Pax4, Bcl6, Rela, Ctcf). (B) A scatter plot contrasting the coefficients in the final linear layer (pooled from absolute values of the cell-type prediction coefficients corresponding to the same
TF, then the coefficients are normalized to [−1, 1 ] , range preserving the sparsity) with total contribution to the interaction layer. The two are notably different, only one TF influences the
other TFs while contributing to the cell-type prediction significantly, as some TFs contribute far more to the interaction matrix but have near 0 linear coefficients.

3.3 Internal tiSFM parameters have intuitive biological
interpretations

We have demonstrated that the final linear layer of our tiSFM model is
interpretable and highly consistent with known biology. However, other
internal parameters of the model also have biological and biochemical
interpretations.

For example, our model includes a learnable pooling parameter that
can interpolate between max and average pooling (see Methods). As
the input to the pooling is passed through a sigmoid activation with TF
specific scaling and offset, the learnable pooling model can in theory count
binding events, rather than simply retain the maximal motif match. From
a biochemical perspective we expect that TFs with weak protein DNA
interactions to be more dependent on multiple instances of a binding motif.
As such, we expect that motifs with relatively lower information content
(as proxy for low sequence specificity) would prefer average pooling. This
is indeed what we observe by plotting motif information content against
pooling parameter in Fig. 3A. There we see that the information content
and pooling parameter are strongly correlated. We note that Ctcf has the
largest pooling parameter, indicating that the strength of the strongest Ctcf
site is the most useful featurization of local Ctcf activity. In the figure
weights of the final model layer for B-cells are color coded; no trend is
observed, indicating that the association of motif information content and
pooling parameter is independent of final layer weights. We highlighted 5
motifs with the highest absolute weight for B cell prediction: Ebf1, Pax5,
Mef2a, Pou2f1, Bbx, along with some others that were outliers relative
to the overall trend between information content and pooling parameter
(Rela, Bcl6, Pax4).

Fig. 3B displays the total interaction influence as computed as the
column sum of the absolute values of the matrix A in Equation (1). The
corresponding interaction layer enables the final pooled score of one motif
to influence the score of another motif, while maintaining directionality
(i.e., A is not necessarily symmetric). Plotting interaction influence against

the final layer coefficients (we pooled the maximum from the absolute
value of coefficients, one for each cell-type, for a TF) we find that the top
interaction TFs are not the same as the ones with the most influence on the
final output. Indeed, Ctcf has the largest overall interaction influence, but
does not appear as a top TF for any cell type. This is consistent with known
biology as Ctcf is an important regulator of 3D genome organization is
expressed in every cell-type and thus should not be predictive of cell-type
identity.

The other two motifs that score highly for interaction, Cxxc1 and Ikzf1,
also have low linear layer coefficients. While these TFs do have roles
in specifying cell-fate, they have short and thus low-affinity recognition
sequences and partake in complex interaction networks with other TFs that
increase their binding affinity (Kiuchi et al., 2021; Marke et al., 2018).

3.4 Sparsity constraints improve performance for the most
cell-types and increase interpretability of tiSFM

We emulate the path algorithm, first put forward by Park and Hastie, 2007
in their seminal work. Specifically, we utilized the proximal operators
for L1 and MCP to enforce sparsity on the final layer of tiSFM and to
select a few motifs that are crucial for prediction of celltype-specific OCR
activity. The path-finding algorithm starts with the fully trained model and
progressively increases the intensity of the penalty (by increasing MCP’s
hyperparameter, lambda) on the final layer of the model, starting at each
step from the model that was converged on at the previous step. Results
are summarized in Fig. 4.

While we observe that the sparsity does not improve model
performance significantly (Fig. 4A), it enables us to obtain sparser, more
interpretable models that can perform similarly to the full model; sparser
representations allow us to focus on consistently reappearing motifs,
indicating their importance in contributing to the tiSFM model. Fig.
4B shows the regularization path for innate lymphocytes. We observe
that choosing the best-performing model induces sparsity (many PWMs’

.CC-BY-NC 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted January 26, 2023. ; https://doi.org/10.1101/2023.01.25.525572doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.25.525572
http://creativecommons.org/licenses/by-nc/4.0/


i
i

“output” — 2023/1/25 — 21:15 — page 7 — #7 i
i

i
i

i
i

short Title 7

Fig. 4. Sparsity constraints improve the performance for the most cell-types and increase interpretability of the tiSFM. (A) MSE vs the MCP hyperparameter (the second hyperparameter
is fixed at 3). The lines for every cell type and the overall performance are assigned a color. The vertical line indicates the hyperparameter that resulted in the best performance for the
corresponding cell type. (B) Coefficients vs the MCP hyperparameter path plot. The best model in terms of MSE is marked by a dashed vertical line. Colored, are the top 9 motifs with the
highest absolute coefficients from the best model, and the black lines are the motifs with 0 coefficient in the best model.

contribution is zero); PWMs with the largest coefficients are colored, and
we note that Rorc is consistently selected by the path algorithm as one of
the proteins that contributes the most to the epigenetic characteristics of
the innate lymphoid cells, as seen in Fig. 4B.

3.5 tiSFM identifies key regulatory events along
differentiation trajectories

For our analyses, we usetiSFM to analyze OCR activity changes between
parents and children in the homeopoietic lineage tree, which we term “tree-
diff” (see Methods). This problem is considerably more challenging than
predicting open chromatin in cell-types per se. For instance, using lineage-
aggregated data (i.e., pooling all cell-types within a lineage), all models
are able to achieve a mean (across cell-types) R2 of about 0.2 or a Pearson
correlation of about 0.4 with AI-TAC’s R2 range being 0.1 (stem cell) to
0.31 (myeloid). On the “tree-diff” data the corresponding values are around
0.05 (R2) and

√
0.05 ≈ 0.22 (correlation). There are large differences in

performance, with some changes having R2 values near 0. We focus our
analysis on those lineage differences that had R2 > 0.05 (equivalently,
correlation > 0.22). For visualization in Fig. 5 these edges are scaled
according to R2 and color-coded according to the transition identity. The
same colors are used to indicate TF importance (as inferred from final

model layer) for each well-predicted transition (heatmap inset). The first
column in the heatmap’s row annotations indicate the lineage of the parent
node, the second the lineage of the child node, and the third the specific
edge.

Despite relatively few edges with high quality predictions, we find
striking consistency with known biology among the transitions that we
predict well. The lineage transitions that stand out and are modeled
most clearly are those leading to NK, ILC, and myeloid subtypes from
their respective common progenitors. The TF influence map for these
transitions are highly correlated indicating that we capture largely general
development and only to a lesser extent differentiation into specific sub-
types. For these transitions TF contributions mirror closely the ones we
observed when analyzing lineage aggregated data, for example B and
innate lymphoid cells.

There is comparatively few well predicted transitions in the lymphocyte
portion of the tree. Strikingly though, one of the transitions that is predicted
well is the CD4/CD8 split. In fact, for this transition, tiSFM highlights
Zbtb7b as a key regulator of CD4 cells — a result not observed when the
T cell lineage is predicted in aggregate. Zbtb7b (often referred to in the
literature as ThPOK) is a repressor gene that is well known to be essential
for CD4+ T cell differentiation (Basu et al., 2021). As this protein is a
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Fig. 5. tiSFM predictions and TF contributions applied to the problem of predicting differentiation transitions. In this setting the model predicts the output corresponding to each edge along
the differentiation tree computed as the difference between child and parent. Edges are scaled according to R2 and those with a value of > 0.05 are selected for TF contribution analysis
depicted in the color matched heatmap. The included motifs are among top 5 with the highest absolute coefficients for at least one target.

repressor, and in fact represses the alternative CD8 lineage, the observed
negative coefficient is consistent with known biology. Our “tree-diff”
analysis also recovers Pax5 and Ebf1 as master B-cell regulators; however,
it places their influence at a specific developmental transition denoted as
"proB.FrBC.BM-proB.FrA.BM" thus pinpointing the time point at which
these regulators induce lineage commitment.

4 Discussion
Non-coding regulatory grammar, encoded into the nucleotide sequence
of genomes, mediates genome function through complex interactions
between transcription factors and their DNA binding motifs. Here we
propose tiSFM, a novel CNN-based architecture for predicting functional
genomic readouts directly from sequence. Our approach is capable of

matching and exceeding the performance of SOTA architectures, while at
the same time providing immediately interpretable model parameters.

tiSFM has less parameters (as compared to current SOTA models
like AI-TAC), instead relying on prior knowledge regarding sequence
preferences of TFs. The fact that it outperforms SOTA standard CNN
architecture highlights that learning the right PWMs (i.e., convolution
kernels) is key to performance in sequence to function modeling. This
result strongly indicates that subsequent CNN layers in deep CNNS are
more likely to perform kernel refinement rather than compute complex
regulatory grammar.

Using a dataset of hematopoietic development we show that our model
re-discovers essential regulators previously highlighted by a much more
complex post-hoc interpretation approach (Maslova et al., 2020), without
the need of any additional analysis. We also demonstrate that other internal

.CC-BY-NC 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted January 26, 2023. ; https://doi.org/10.1101/2023.01.25.525572doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.25.525572
http://creativecommons.org/licenses/by-nc/4.0/


i
i

“output” — 2023/1/25 — 21:15 — page 9 — #9 i
i

i
i

i
i

short Title 9

model parameters, such as the learnable pooling parameters and TF-TF
interactions are interpretable in terms of biochemical principles and known
biology.

Further, applying our model to above-mentioned data, and considering
accessibility changes across the hematopoietic lineage tree, we identify
specific developmental transitions that are highly predictable from
sequence; this indicates that they correspond to large chromatin
remodeling events that are driven by local TF activity.

Overall, our work demonstrates progress towards a model that has
high predictive capacity but is also interpretable in the context of current
knowledge. Significant challenges remain, however. First, it is not always
possible to identify a true regulator from the PWM relevance, because
many TFs come in families with highly similar PWMs. For example,
our model highlighted Hoxc9 as important for hematopoietic stem cells,
while the correct protein involved is most likely Hoxa9. This problem may
be partially resolved by cross-referencing the motif databases and results
genes that are actually expressed in the cell-type or sample of interest.
Second, while we show that explicitly accounting for TF-TF interactions
increases model performance and, that the interaction coefficients we
recover are consistent with known biology, the interaction model could be
made more biochemically relevant. For example, our current interaction
layer is applied after global pooling and thus does not consider distance
between TF motifs in the input sequence. The interaction layer is also
not cell-type specific, which is an important limitation as biochemical
interactions can only occur if both species are present, but not all TFs
are expressed in all cell-types. Expanding on the TF-TF interaction model
will be the subject of future efforts. Nevertheless, tiSFM presents a step
forward in interpretable sequence-to-function modeling and can readily be
applied to contexts other than modeling open chromatin during blood cell
differentiation.
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