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Thermally induced micro-motion by 
inflection in optical potential
Martin Šiler   1, Petr Jákl1, Oto Brzobohatý1, Artem Ryabov   2, Radim Filip3 & Pavel 
Zemánek1

Recent technological progress in a precise control of optically trapped objects allows much broader 
ventures to unexplored territory of thermal motion in non-linear potentials. In this work, we exploit an 
experimental set-up of holographic optical tweezers to experimentally investigate Brownian motion of 
a micro-particle near the inflection point of the cubic optical potential. We present two complementary 
views on the non-linear Brownian motion. On an ensemble of stochastic trajectories, we simultaneously 
determine (i) the detailed short-time position statistics and (ii) the long-distance first-passage time 
statistics. We evaluate specific statistical moment ratios demonstrating strongly non-linear stochastic 
dynamics. This is a crucial step towards a possible massive exploitation of the broad class of complex 
non-linear stochastic effects with objects of more complex structure and shape including living ones.

Biological molecular machines (or Brownian motors) utilize non-linearity and asymmetry of their free-energy 
landscapes to produce a useful directed motion in violently fluctuating biological environments1, 2. Harnessing 
efficiently energy from their surroundings, they are capable of producing useful work, playing a decisive role in 
fundamental intracellular processes3. Despite long-term experimental development in this field, so far, complex-
ity of the underlying free-energy landscapes prevents a detailed understanding of their working principles4. To 
this end, it turned out to be useful to develop simple stochastic systems intended to capture individual aspects 
of action of such machines1, 4, 5. A frequently used model comprises an over-damped Brownian particle moving 
in an asymmetric non-linear potential. In such models, the main emphasis was put on the symmetry arguments 
without any particular attention paid to a specific functional form of the potential. Contrary to this, in the present 
work, we report for the first time an experimental observation of the conversion of the thermal noise to a directed 
motion dictated by a specific type of the non-linearity with an inflection point. We believe that such conversion 
of stochastic behaviour to a local motion can be advantageously exploited to develop new thermal ratchets and 
advanced thermal motors. The reported experiments were performed using holographic optical tweezers6–12, 
showing thus that this widely accessible platform can be used successfully for experimental exploration of the 
whole spectrum of optical potential landscapes13 including non-linear ones14, 15. We believe that it will open 
many future possibilities to experimentally develop new highly non-linear Brownian motors efficiently harness-
ing energy from their fluctuating environments5, 16, 17 as well as in biological matter18.

Analysis of non-linear stochastic dynamics requires simple and reliable techniques for a rather limited number 
of Brownian trajectories. The non-linear Brownian motion can be analytically characterized (i) by a short-time 
statistics of the particle position which offers a detailed view on unexplored local dynamics. In a complementary 
way, (ii) by a global, large-distance first-passage time statistics19, which is crucial for understanding e.g. rates of 
chemical processes20, phase transitions and passages through bifurcations21, 22, and macroscopic transport proper-
ties of complex systems23–25. Both these approaches provide complementary pictures of the non-linear Brownian 
motion and in particular, they allow to understand beneficial global and local effects of thermal noise on the 
stochastic dynamics26. To gain relevant statistical insight, at least comparisons of mean values and variances 
of the two quantities should be analysed for experimentally available number of trajectories. It can be highly 
expected that such experimental analysis and its comparison with theory can start really wide-range investigation 
of non-linear thermal Brownian motion and its application in thermal engines.
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Results
Any non-linear potential can be locally approximated using Taylor series and therefore basic local potentials are 
described by µ∼V x x n( ) /n

n , where n is a natural number. Complex noise-induced effects arise from a linear 
combination of these basic potentials. In order to understand the effects and potentially exploit them to design 
molecular motors, it is necessary to focus attention on individual terms of the series, which is challenging to iso-
late in current experiments15. The first in a line of non-linear potentials, the strong cubic potential µ∼V x x( ) /33

3 , 
already yields a stochastic dynamics with a number of intriguing properties. It induces the over-damped 
non-linear motion, for which both the position x and the first-passage time τ depends on the temperature T of the 
environment in a universal, but different way. This asymmetric potential is unbounded with an unstable inflection 
point at the origin x = 0, as is visible from experimentally achieved cubic optical potential in Fig. 1. Close to the 
inflection point, the potential energy is constant and forms a plateau where the particle starting at x > 0 slows 
down in the over-damped regime. Without thermal noise (T = 0, deterministic motion), the over-damped parti-
cle is unable to pass through the inflection point at x = 0 and remains there as the dashed deterministic trajectory 
in Fig. 1 illustrates. Stochastic dynamics (T > 0) is apparently distinct from the deterministic one as is apparent 
from measured trajectories shown in Fig. 1. In this case, the thermal noise prevails over the potential energy and 
the particle diffuses freely across the vicinity of the inflection point and then it gradually accelerates for x < 0. 
Away from this region, the potential is much stronger as compared to kBT and the particle motion becomes fast 
and nearly deterministic even when T > 0 (sections of trajectories for x < −1 μm in Fig. 1). Therefore, only the 
region near the inflection point is relevant for the thermally-induced directed particle motion.

Here, we report on experimental investigation of the both complementary aspects of particle motion in the 
cubic optical potential using routine and broadly available setup of holographic optical tweezers suitable for dif-
ferent objects. The proposed method uses dynamic modification of the intensity profile of the trapping beam from 
quadratic (i.e., the classical single beam optical trap) to cubic formed by two properly designed co-propagating 
Gaussian beams27.

Short-time evolution of stochastic motion.  The non-linear stochastic motion of the particle near the 
inflection point at x = 0 can be described by the statistics of x(t) for small time t, until the particle feels a strong 
force from the cubic potential. For the short time, a formal integration of the Langevin equation
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Figure 1.  Principle of the experiment and examples of measured trajectories. Step 1: The particle (blue spot) 
is trapped in a single beam and follows Brownian motion in a quadratic potential close to its bottom. Step 2: 
The single beam is replaced with two co-propagating beams displaced in x-axis to form a non-linear single-well 
potential (dotted) with a cubic part (blue) along x-axis. Consequently the particle moves down the potential 
well (indicated by a blue arrow) passing through the cubic part and reaching the global minimum. Then the 
two beams are replaced with a single beam which confines the particle near the former global minimum 
and transports it to the initial position x0. Steps 1 and 2 are repeated with the same particle to get a statistical 
ensemble. The dotted curve denotes the reconstructed potential profile (in kBT units) from the particle 
trajectories and a fit to the cubic potential profile gives μ3 = (6.65 ± 0.05)kBT/μm3. A few measured trajectories 
are plotted as colour curves at the bottom part of the figure and the dashed one shows the deterministic 
trajectory without the influence of Brownian motion corresponding to T = 0.
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gives a local insight. Above, ξ(t) is the standard Gaussian white noise (〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t − t′)), κ = μ3/γ, 
and γ, kB, T denote the hydrodynamic drag coefficient, the Boltzmann constant and the absolute temperature, 
respectively. After the formal integration of equation (1) in an interval of time (t0, t), we obtain
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Iterating this formal solution up to the second order, we get (assuming further t0 = 0)
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which yields the following short-time approximation for the mean position
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The cubic non-linearity κ causes on average a unidirectional non-linear drift of the particle evolving linearly 
in time t. When 〈x(0)〉 = 0, the particle mean position depends dominantly on the initial variance 〈x2(0)〉 and 
temperature T of the environment. Figure 2a fully supports these theoretical conclusions with experimental 
observations and stochastic simulations using equation (1). Further, for an initial position very close to the origin 
( x(0) 0, blue curves in Fig. 2a), the mean particle position spontaneously starts to change much slower (as ∼ t2) 
for a short time and it is purely triggered by the environmental thermal noise.

The short-time effect of the thermal noise on the variance of the particle position, 〈Δx2(t)〉 = 〈[x(t) − 〈x(t)〉]2〉, 
is rather similar to the case of a free Brownian motion28,

γ
κ〈∆ 〉 〈∆ 〉 + + 〈∆ 〉 .x t x k T t t x( ) (0) 2 8 (0)
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Non-linearity of the potential starts to manifest itself at longer time (the term ∼ t2) and only through a 
non-trivial dependence on the initial variance. The blue and red curves in Fig. 2b show almost perfect linear time 
dependence as in the case of classical free diffusion while the yellow curve exhibits non-linear behaviour driven 
by the initial variance.

One of the important measures of the presence of noise-to-signal transition is the raising value of the 
signal-to-noise ratio SNR(t) = 〈x(t)〉2/〈Δx2(t)〉28. It compares the mean displacement, which quantifies the aver-
age directed motion, to a possible deviation from this mean value, described by the variance. Figure 2c reveals that 
the SNR obtained for larger initial variances (red and yellow curve) increases in time much faster (as ∼ t2) com-
paring to the case of vanishing initial variance (blue curve) following ∼t3. This corresponds to the signal-to-noise 
ratio continuously powered by the environmental Brownian noise (∼t3) or only by the initial noise (∼t2)28. In all 
cases demonstrated in Fig. 2, the coincidence of experimental and theoretical curves is very persuading. Further, 
one may see that the linear approximation is sufficient up to time 50 ms (best coincidence of the linear term is 
for the yellow curve with the largest initial variance) while for later times the quadratic and higher terms are 

Figure 2.  Experimental evidence of short-time stochastic non-linear dynamics. Panel (a) shows the mean 
particle position 〈x(t)〉, panel (b) its variance 〈Δx2(t)〉 and panel (c) the signal-to-noise ratio SNR(t) = 〈x(t)〉2/
〈Δx2(t)〉 developing in time from 〈x(0)〉 = 0 for three initial variances 〈Δx2(0)〉 = 0 (blue), 0.047 (red), and 
0.12 μm2 (yellow). Solid curves correspond to experimental data, dotted to equations (4, 5) in (a) and (b) or 
their ratio in (c) for κ obtained from the potential profile and corresponding hydrodynamic drag coefficient. 
Dotted grey lines show contribution of only linear time dependence terms taking place in equations (4) and (5). 
Dashed curves correspond to Monte Carlo simulations of the particle motion based on numerical solution of 
equation (1) with initial Gaussian distribution.
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necessary. This is further shown by difference between simulated (dashed) and theoretical (coloured dotted) 
curves where the significant difference appears for t > 0.1 s. For t > 0.1 s even the quadratic term from equation 
(5) is insufficient for large initial variance (yellow curve) and the experimental data follow simulated ones only. 
Notice that, due to the cubic potential, both absolute values of the means 〈x(t)〉 and SNR(t) increase more rapidly 
in time for the larger initial variance 〈Δx2(0)〉.

Figure 3a shows the experimental records of variance 〈Δx2(t)〉 evolution in time for cases where the initial 
positions x(0) of each trajectory correspond to 0.5, 0.4, …, −0.5 μm. Due to this assumption the initial variance 
of the particle positions 〈Δx2(0)〉  is zero, however, in Fig. 3a the curves are mutually shifted (by offset 0.015 μm2) 
to better distinguish individual trajectories. Figure 3a clearly demonstrates that variance indeed increases linearly 
for t < 50 ms. In order to describe a longer process one would need at least 3rd order Taylor expansion of variance 
〈Δx2(t)〉 since the initial variance is zero and the quadratic term in equation (5) vanish. The particle trajectories 
starting at different locations are plotted in Fig. 3b and they coincide with the theoretical predictions over almost 
four times longer period comparing to variances in Fig. 3a. The colours and positions of the curves correspond to 
each other in both Fig. 3a and b and the light-blue curves for initial position x(0) = 0 correspond to blue curves 
in Fig. 2.

First-passage time analysis.  The global insight into the strongly non-linear dynamics is provided by 
the long-distance passage time statistics. The first-passage time (FPT) τ(x0 → x1) is the random time when the 
Brownian particle starting at x0 and moving in the potential V(x) reaches the position x1 for the first time. The 
mean first-passage time29 is given by

∫ ∫τ γ
→ = .
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We have measured the FPT τ(x0 → x1) needed to pass through the cubic non-linearity centred at its inflection 
at x = 0 for a particle that departs from x0 > 0, and passes to x1 < 0. Further, we have also determined the second 
FPT, τ(x0 → 0), accordingly. Interestingly enough, the relative mean first-passage times approach universal values 
dependent only on the order of the non-linear potential, giving for the cubic one30:
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when both x0 and x1 are far away from the inflection point. They reflect the basic feature of the cubic potential, 
that the directed particle motion is slowed down near the inflection point. This fact is clearly visible on the sample 
of measured trajectories shown in Fig. 1, where there are several long-living trajectories spending considera-
ble amount of time crossing the inflection point back and forth. Figure 4 demonstrates a very good agreement 
between the theoretical prediction R = 1/3 and the experimental value R = (0.32 ± 0.05) even though the starting 
and final points are far from infinity and asymmetrically placed with respect to the inflection point.

Since the FPT is a stochastic quantity, its mean should be directly compared to its variance by a signal-to-noise 
ratio30 (SNRτ)

Figure 3.  Short time evolution of variance 〈Δx2(t)〉 and the mean particle position 〈x(t)〉. The initial positions 
of particle trajectories 〈x(0)〉 were equally placed at 0.5, 0.4, …, −0.5 μm (from bottom to top). (a) Short time 
evolution of variance 〈Δx2(t)〉. Thick curves show experimental data (vertically displaced with respect to each 
other, offset 0.15 × 〈x(0)〉) and thin dotted curves correspond to equation (5) fitted to experimental data with 
the only fitting parameter γc (see Methods). Inset shows γc obtained this way for initial particle position. (b) 
Short time evolution of the mean particle displacement from the starting location 〈x(0)〉. Thick curves show 
experimental data and thin lines are obtained using equation (4) with already obtained values of γ and κ.
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which quantifies the relative significance of the two characteristics. For the experimental data presented above we 
determined slightly different value SNRτ = 2.3 ± 1.6. The large error is caused by large variations of measured 
first-passage times. In order to confirm theoretically predicted behaviour we simulated random particle motion 
in 104 independent trajectories. The simulated SNRτ corresponded perfectly to 3  ≈ 1.73 for almost infinite inter-
val of particle motion and we obtained value of 1.62 when considering experimental positions in the range 〈x0, 
x1〉. Further, final duration of the measurement tmax ≪ ∞ leads to stronger deviation of the SNRτ from its ideal 
theoretical value because certain experimental trajectories did not develop behind x1. We found out that both the 
mean first-passage time and the square root of variance scale differently with tmax. As a result, SNRτ exceeds 3  
for tmax ≲ 15 s. For the experimentally used tmax = 8 s simulations predicted SNRτ = 2.32 which is almost in the 
centre of the acquired experimental interval SNRτ = 2.3 ± 1.6.

The presented statistics of first-passage times allows meaningful description of a stochastic motion for longer 
times in the unstable potential in contrast to the time-dependent moments of position described in previous sec-
tion because it stops rapidly diverging trajectories at x1 which in fact serves as the absorbing boundary.

Conclusions
We have demonstrated two complementary views on a Brownian motion in the cubic potential which models e.g. 
firing neurons22 and molecular motors23. The potential shows unique universal global characteristics, as well as 
revealing local properties describing non-linear transformation of thermal noise into a directed motion over an 
unstable inflection point. We have shown that all these principal properties of barrier-less transitions are robust 
enough to be observed in a widely accessible experimental platform, making them a good candidate for further 
thorough exploration and utilization in non-linear thermal motors, testing basic principles of stochastic dynam-
ics and thermodynamics31. Very prospective and challenging is a venture to the under-damped regime, which 
now becomes experimentally accessible15, 32 and later, to the quantum regime, which is currently under active 
investigation33–35.

Methods
Experimental setup.  The optical potential landscape containing a cubic part was formed using holographic 
optical tweezers36–38. The beam intensity is shaped into the appropriate lateral profile using the spatial light mod-
ulator (SLM) having 512 × 512 liquid crystal pixels. If the phase mask is changed on the SLM, liquid crystals need 
some time (about 18 ms) to reorient to new direction. During this period the phase mask, and thus the laser beam 
intensity profile, is not well defined. Therefore, using the acousto-optical deflector (AOD) we blocked the beam at 
SF1 during this period so that it did not interact whit the particle. The laser beam is enlarged 6× by the telescope 
L1-L2 to overfill the SLM chip. Both the AOD and SLM are operated in the first diffraction order while the zero 
orders are blocked by spatial filters SF1 and SF2, respectively. The laser beam is focused into the sample chamber 
with microscope objective (magnification 40x, numerical aperture 0.65) giving a beam waist radius 2 μm.

Figure 4.  First-passage times and the ratio R = 〈τ(x0 → 0)〉)/(〈τ(x0 → x1)〉. Light blue × marks the first-passage 
time experimentally determined for each trajectory. The intersection of thick blue lines depicts the mean first-
passage times 〈τ(x0 → 0)〉 (x-axis) and 〈τ(x0 → x1)〉 (y-axis) and the lengths of blue lines denote standard errors 
of the both means, i.e. τ τ∑ −

−
⟨ ⟩[ ( ) ]

N N i
1

( 1)
2 1/2. Full red line passing through the blue cross and the dotted black 

line depict the measured ratio R = 0.32 and theoretically predicted value of R = 1/3, respectively. Comparison of 
experimental data and the computer simulation is shown by background contours revealing 2D histogram 
constructed using the both first-passage times (maximum of histogram normalized to 1). Considered 
trajectories start at x0 = 1.2 μm and end in 0 or x1 = −2.1 μm, see Fig. 1. Side panels show the first-passage time 
probability density function (blue curves) applying the kernel smoothing function on the experimental data and 
the probability density function calculated from the simulated data (dashed curves).
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The sample chamber consists of two coverslips separated by foil spacers 90 μm thick and the sample itself is 
composed of polymer spherical particles of (994 ± 10) nm in diameter (Duke Standards 41303, Thermo Scientific) 
dispersed in distilled water with 1% of surfactant sodium-dodecyl-sulphate (SDS) to prevent sticking of micro-
objects to the coverslip. The sample is attached to pizeo-stage which is used to overlap the selected particle with 
the optical trap. Once the particle is trapped laterally in the beam it is pushed axially against the coverslip surface. 
The sample is illuminated by a Köhler illumination system and observed with the fast Basler camera providing 
acquisition rate of 2000 fps on the limited field of view 256 × 40 pixels.

Measurement protocol.  The cubic profile of the optical potential landscape was achieved by combina-
tion of two spatially separated Gaussian beams with slightly different intensities (see Fig. 1). The lateral distance 
between the two Gaussian focal points was 3.9 μm, beam waists of both focused beams were 2 μm and the inten-
sity of one beam was one half of the other. In order to localize more precisely the particle in the direction perpen-
dicular to the non-linear laser profile, the lateral intensity profiles were squeezed here providing elliptical lateral 
beam profiles. Their major axes were oriented along the axis where the non-linear potential was formed (see an 
example of the phase mask on the SLM in Fig. 5).

The measurement procedure starts with the step 1 where the single beam optical trap (SBT) is formed at the 
starting position of the trajectory (see Fig. 1) and the particle is confined in this quadratic potential well. Before 
the step 2 the laser beam is blocked with AOD and the phase grating generating cubic potential landscape is 
placed on the SLM. After 18 ms, corresponding to realignment of the liquid crystals, the beam is unblocked and 
the particle trajectory in the cubic potential is recorded for 8 s with the CCD camera frame rate 2 kHz. The laser 
beams forming the cubic potential are switched off and replaced with the single beam focused to the former 
potential minimum. The particle is trapped and delivered in the single beam to the starting location and the 
whole procedure is repeated.

Data processing.  The particle trajectories were obtained from the recorded images using 2D correlation 
between the recorded frames and a particle image. The final particle positions were determined as the centre of 
the Gaussian fit (see trajectories in Fig. 1).

Influence of the surface.  As the particle moves in close vicinity of a surface, the no-slip boundary condition 
influences the streamlines of fluid motion. This effectively increases the drag coefficient and, further, causes ani-
sotropy of motion in directions parallel and perpendicular to the surface39. Therefore, the drag coefficient in the 
direction parallel to the surface can be described as γ = γ0γc(h/r) where γ0 = 6πηr is the drag coefficient far from 
the surface and γc is the correction factor dependent on the ratio of particle radius r and separation h between the 
particle centre and the surface. If a particle is trapped in optical tweezers (i.e. in all three-directions) in the surface 
vicinity, the measured values of γc are between 2–340. Since in our geometry we use loosely focused laser beams 
that push the particle against surface, we can expect values of γc even bigger than 3. It is important to note that 
the coefficient κ (or μ3) was obtained by analysis of motion close to the surface and its value already includes the 
influence of surface. Therefore, the unknown coefficient γc explicitly takes part only in the random motion term 
in equation (1) and in quadratic or linear terms of equations (4) or (5), respectively. We fitted the equation (5) 

Figure 5.  Experimental setup. Laser – Verdi V10 (Coherent, vacuum wavelength 532 nm), AOD – acousto-
optical deflector R35085-3 (Gooch&Housego), lens L1 – AC254-050-A (f1 = 50 mm, Thorlabs), spatial filter 
SF1 – high-power precision pinhole P25C (φ25 μm, Thorlabs), lens L2 – AC254-300-A (f2 = 300 mm, Thorlabs), 
SLM – spatial light modulator HSP512-532-PCIe (Meadowlark Optics), lens L3 – AC508-500-A (f3 = 500 
mm, Thorlabs), M1, M2 – broadband dielectric mirrors BB1-E02 (Thorlabs), spatial filter SF2 – iris aperture 
SM1D12D (Thorlabs), lens L4 – AC254-150-A (Thorlabs), DM - dichroic mirror (made in-house), objective 
– PlanC N 40x/0.65 (Olympus), combined motorized microstage and piezo-driven nanostage – NanoView 
(MadCityLabs), GM – protected gold mirror PF10-03-M01 (Thorlabs), tube lens TL – AC254-200-A (Thorlabs) 
and camera acA640-750-um (Basler). The Köhler illumination is built with IR filter to prevent sample heating.
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to the data presented in Fig. 3a and determined the fitting parameter γc for each initial position (see the inset in 
Fig. 3a). The mean value for all shown initial positions is equal to γc = 4.2 ± 0.3.

Furthermore, γc can be complementary obtained using the distribution of first-passage times, see Fig. 4. In 
order to find it, we analysed 5 × 104 particle trajectories obtained from equation (1) by Monte Carlo computer 
simulations using the same value of κ but with different γc. From collected trajectories corresponding to the same 
γc, we determined first-passage times and constructed the probability density function (PDF) describing times 
τ(x0 → x1). Using the kernel smoothing function we constructed the same PDF for experimental data, see dashed 
curve in the right panel of Fig. 4. Further, we searched for the closest match between simulated and experimental 
PDFs using least-squares fitting and we obtained the following value γc = (4.6 ± 0.2). Values of γc, obtained by 
both methods, confirm a very good coincidence.

Determination of the particle mean position and variance for different starting condi-
tions.  The results presented in Figs 2 and 3 took advantage of multiple particle passages through the same x 
position in following protocol:

	 1.	 For a given trajectory we find the time t0 when the particle reaches the selected point x0 for the first time.
	 2.	 We select data points of the analysed trajectory in the following time period of length 0.2 s lasting from t0 

to t0 + 0.2.
	 3.	 We search for another crossing of the particle trajectory with x0 (point 1) at t > t0 + 0.2.
	 4.	 If no such crossing is found, another trajectory is taken for the same analyses as in 1 and 2 above.
	 5.	 We calculate the mean particle position and variance from data points collected in 1–3 above.
	 6.	 The procedure 1–5 is repeated for different initial positions x0.
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