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Abstract: Sessile organisms such as seaweeds, corals, and sponges continuously adapt to both abi-
otic and biotic components of the ecosystem. This extremely complex and dynamic process often
results in different forms of competition to ensure the maintenance of an ecological niche suitable
for survival. A high percentage of marine species have evolved to synthesize biologically active
molecules, termed secondary metabolites, as a defense mechanism against the external environment.
These natural products and their derivatives may play modulatory roles in the epigenome and in
disease-associated epigenetic machinery. Epigenetic modifications also represent a form of adap-
tation to the environment and confer a competitive advantage to marine species by mediating the
production of complex chemical molecules with potential clinical implications. Bioactive compounds
are able to interfere with epigenetic targets by regulating key transcriptional factors involved in the
hallmarks of cancer through orchestrated molecular mechanisms, which also establish signaling inter-
actions of the tumor microenvironment crucial to cancer phenotypes. In this review, we discuss the
current understanding of secondary metabolites derived from marine organisms and their synthetic
derivatives as epigenetic modulators, highlighting advantages and limitations, as well as potential
strategies to improve cancer treatment.

Keywords: secondary metabolites; epigenome; epigenetic signaling; bioactive compounds; cancer ther-
apy; marine species; environment

1. Introduction

Marine habitats are an extraordinary source of new and structurally complex bioac-
tive metabolites naturally produced by different organisms and characterized by unique
functions with marked biological activities. These features can be attributed to extreme
environmental conditions such as lack of light, high pressure, ionic concentration, pH and
temperature changes, scarcity of nutrients, and restricted living spaces [1]. The high con-
centration of coexisting organisms in a limited area also makes them very competitive and
complex, resulting in the development of adaptations and behaviors aimed at safeguarding
the species, such as the adoption of chemical strategies exploiting the wealth of bioactive
molecules produced by the secondary metabolism [2,3]. Marine-derived metabolites origi-
nate from different signal transduction pathways activated as a consequence of epigenome
changes in the organisms that produce them. Phenotypic/genotypic alterations of marine
organisms are characterized by an intricate network of interactions that influence each
other. Such interplay is further complicated by epigenetic modifications, which can trigger
adaptive biochemical processes in the species [4]. The marine environment (characterized
by biotic and abiotic factors), in turn, plays an essentially selective role in intrinsically
changing organisms, exerting an inductive function on epigenetic, genetic, and phenotypic
changes with transgenerational effects on the species [5,6] (Figure 1). Since the repro-
gramming of epigenetic states can be induced by environmental exposures in the marine
habitat, secondary metabolites produced by a large number of organisms might represent
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good candidates as novel natural molecules with potential pharmacological activity for
cancer treatment [7]. Cutting-edge chromatographic isolation and purification techniques,
pharmacological screening methods, and numerous spectroscopic approaches for structural
investigation such as mass spectroscopy and nuclear magnetic resonance (NMR) were used
to isolate and characterize several new marine-derived compounds [8–10], some of which
have potential anticancer activities. The chemical composition of isolated molecules has
a major impact on both the epigenome of the organism [11] and any potential epigenetic
effects produced, reflecting a complex and interconnected machinery of information ex-
change. In this review, we describe the therapeutic potential of marine-derived secondary
metabolites and their synthetic derivatives in cancer, focusing on their importance as epige-
netic modulators generating posttranscriptional, inductive (produced by the metabolism of
the organism), and induced (produced by alterations in marine environment) modifications.
We also discuss the challenges involved in discovering new natural and synthetic marine
bio-compounds with anticancer activity in light of the enormous variability that character-
izes the organisms themselves and the environment that surrounds them. This review also
highlights sustainable use of marine resources as producers of high yields of value added
bio-molecules for pharmaceutical field towards a more sustainability of economic growth
in terms of development, research and transmissibility of marine technology in terms of
development, research, and transmissibility of marine technology.
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2. Anticancer Activities of Marine-Derived Secondary Metabolites with Inductive and
Induced Epigenetic Modifications

Epigenetics belongs to a branch of genetics based on the concomitance of complex
biomolecular mechanisms, which coordinate genetic information in the nucleus, culminat-
ing in control of gene expression [12], which in turn propagates in subsequent generations.
All this information is further conditioned by perturbations from the external environment.
Epigenetic alterations in gene activity are mitotically stable in the absence of changes in
DNA sequence [13]. Generally, mechanisms of environmental perception act through
alterations in chemical tags that normally exist in the genome. In cancer, “epigenetic mark-
ers” [14] serve as a sort of barcode of DNA function, indicating whether genes are active
or silent. The alteration and reprogramming of epi-signals can lead to changes in gene
expression and also directly influence transcriptional regulator function, with downstream
effects on the way cells and tissues work. In addition to genetic alterations, a hallmark
of various types of cancer, epigenetic dysregulations affecting DNA methylation, his-
tone modifications, and microRNAs introduce another layer of complexity, contributing
to tumor progression and changes in the phenotypic state. These epi-alterations are
further regulated by so-called chromatin writers, readers, and erasers, which constitute
specialized protein machinery able to modulate and reversibly influence the epigenome.
DNA methyltransferases (DNMTs), histone acetyltransferases (HATs), histone methyl-
transferases (HMTs), and lysine/arginine methyltransferases (KMTs/RMTs) are all writers,
due to their ability to add a modification on DNA and histones; readers, able to “read” and
thus interpret covalent modifications include: bromodomains, specific for acetylation site
recognition; chromodomains, recognized by methyl-readers; methyl-lysine readers such
as ATRX-DNMT3-DNMT3L (ADD), ankyrin, bromo-adjacent homology, chromobarrel,
WD40, and zinc finger CW domains, as well as double chromodomain, and tandem Tudor
domain. In addition, plant homeodomains bind to methylated histone H3, while the
PWWP domain can bind DNA and methylated histones. Erasers include TET proteins,
which remove modifications from DNA and histones, as well as histone demethylases
(HDMs), histone deacetylases (HDACs), protein phosphatases, and deubiquitinating en-
zymes, which remove methyl, acetyl, phosphate, and ubiquitin groups from histones and
other proteins, respectively [15–17]. Since modern medical approaches are based on the
personalization of human healthcare, bioactive molecules with epigenetic activity isolated
from marine sources represent a valid alternative to conventional therapies for use in
extensive preclinical assessments and the advanced phases of clinical studies. Further-
more, given the resistance developed by some pathogens to pharmacological treatments
and the inefficacy of traditional chemotherapies, efforts are being made to identify more
biologically active and effective molecules [18]. In marine ecosystems, sessile organisms
are much more susceptible to changes in the external environment [19] and adopt complex
survival strategies. Moreover, the set of biotic and abiotic components in these organ-
isms are extremely predominant, determining the production of secondary metabolites
with almost unique chemical-physical characteristics. A further level of complexity is
added by the intricate relationship between secondary metabolites and epigenetic func-
tions, which in turn contribute to the development of defense mechanisms by the species
that are transmitted across generations [20]. Secondary metabolites can harbor several
beneficial properties for human health such as antioxidant, antibacterial, antivirus, antico-
agulant, antidiabetic, anti-inflammatory, antihypertensive, and antitumor activities [21].
Furthermore, their natural biological functions are strongly influenced by the surrounding
environment, including conditions of climatic stress or attack by predators. Computa-
tional programs using knowledge-based algorithms or sequence-based prediction [22]
have identified genes responsible for the production of these natural products, but only
for some species. These genes are usually located in specific biosynthetic gene clusters
(BGCs) in the genome [23] that contain the required enzymes responsible for synthesis of
secondary metabolites and regulatory structures. Considering the enormous genetic and
epigenetic variability among marine species, it is not always possible to predict their BGCs
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and therefore their association with the production of secondary metabolites. For exam-
ple, under certain conditions chromatin remodeling factors can switch on or switch off
specific genes continuously over time. Cutting-edge technologies such as those involved
in triggering the activation of silent BGCs, which include changes in growth conditions
(e.g., temperature and pH) or genetic engineering-based approaches [24,25] are emerging
to better study the interaction between the production of metabolites and the genes that
produce them. One of the goals of anticancer research is to extract and select biomolecules
from these organisms in order to exploit their properties and generate synthetic analogues
(Figure 2). To date, the U.S. Food and Drug Administration (FDA) has approved several
marine-derived therapeutic compounds such as cytarabine, vidarabine, ziconotide, omega-
3 acid ethyl esters, eribulin mesylate, brentuximab vedotin, and iota-carrageenan [26–32]
(Figure 3) and further studies aimed at characterizing and developing new drugs are
ongoing. The following section describes the epigenetic role of well-known marine-derived
secondary metabolites, classified according to their biosynthetic pathways and subdivided
into three major families: phenolic compounds, cyclic peptides, and alkaloids. Their mech-
anism of action as potential epigenetic bio-compounds for the treatment of different type
of cancers is also discussed.
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3. Sustainability and Health

Potential anticancer drugs derived from various marine species are not always present
in the environment in sufficient quantities and do not maintain the same functional charac-
teristics over time both in terms of chemical-physical structure and biological potential,
thus limiting their characterization. These molecules, before being used as drugs, need to
be submitted to rigorous scientific research and to quality control according to precise
standards and procedures created ad hoc to ensure their best implementation. One of
the aspects that influences their production is represented by the conditions of the ma-
rine environment, which has a fundamental impact on development, research and on
new strategies applied to marine biotechnology. The sea must be considered not only an
environment to be exploited, but also to be safeguarded, since its protection has crucial
benefits for human health. Apart from human activities, climate change, the availability
of nutrients, the attack of predators also strongly affecting the production of bioactive
compounds, for which we are increasingly trying to enhance sustainability, well-being and
health, both in environmental protection and in socio-economic terms.

4. (Poly)phenolic Compounds

(Poly)phenolic compounds are one of the main classes of marine-derived secondary
metabolites. They can be found in different pelagic organisms and their production varies
across genera as well as growing conditions, geographical location, and abiotic/biotic
factors. These compounds can be distinguished by the presence of one (phenolic acids)
or more (polyphenols) aromatic rings annexed to hydroxyl groups in their structures,
which confer very strong antioxidant properties. Their bioactivity is also linked to other
enzymatic inhibitory effects as well as to anticancer, antidiabetic, or anti-inflammatory
actions, with beneficial results for human health [33–35]. In addition, their role as scav-
engers of singlet oxygen and free radicals and/or reducing and chelating agents is a very
promising area for the study and treatment of cancer, as they display interesting epigenetic
molecular mechanisms that modulate gene expression as well as DNA damage and repair.
The following subsections focus on the most studied natural phenolic compounds and
their derivatives in terms of their epigenetic role in cancer and their use in clinical trials
(Table 1 and Supplementary Table S1).

4.1. Psammaplin A

Psammaplins belong to a group of bromotyrosine phenols, whose common ancestor
is Psammaplin A (PsA), a natural phenolic product isolated for the first time from the
Psammaplin aplysilla marine sponge and from an unknown sponge (probably Thorectop-
samma xana) in 1987 [36]. This marine metabolite was the first natural product containing
oxime and disulfide moieties to be isolated from a marine sponge [29,37], and is charac-
terized by a disulfide bridge and a bromotyrosine ring occurring in nature in the form
of monomers or dimers. PsA exhibits anticancer activities by modulating different hu-
man enzymes, which in turn regulate DNA replication, transcription, differentiation,
apoptosis, proliferation, tumor invasion, and migration. PsA also inhibits topoisomerase
II, aminopeptidase N, chitinases, farnesyl protein transferase, leucine aminopeptidase,
and other enzymes [36,38–41]. PsA is reported to act as an antiproliferative agent in var-
ious human cancer cell lines, such as endometrial, breast, and triple negative metastatic
breast cancer, as well as in in vivo models [15,42,43] by exerting potentially inhibitory
effects on HDACs and DNMTs. PsA was also shown to sensitize human lung and glioblas-
toma cancer cells to radiation in vitro; PsA pretreatment in these cells increased the sub-G1
phase of the cell cycle, induced an increased expression of cleaved caspase-3, and led to
a drastic depletion of DNMT1 and DNMT3A, suggesting inhibition of the DNA damage
repair process elicited by the DNA damage marker γH2AX [44]. The mechanism of action
underlying the HDAC inhibitory effect of PsA involves a change in the redox state of the
disulfide bond. Replacement of the sulfur atom leads to the formation of a mercaptan,
which in turn chelates the Zn+ ion present in the characteristic active site of the HDAC
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enzyme, modifying its conformational state and thus preventing its accessibility to the
natural substrate [45]. This new conformational state determines an increase in acetylation
levels of histone H3, a well-known epigenetic marker of chromatin structure and function,
suggesting selectivity for HDACs.

4.2. Indole-Derived Psammaplin a Analogues

Because of the limits relating to the extraction and instability of PsA, several indole-
derived analogues have been designed and many studies undertaken to improve the
inhibitory effect of this promising natural drug. A computational-based study was carried
out to discover and biologically test novel potent and selective HDAC inhibitors (HDACi)
from thioester-derivatives and analogues of PsA [46]. Although chemically reduced PsAs
and thiol-derived analogues both showed a good inhibitory effect at the nanomolar level
in vitro, when they were tested in cancer cell models, their potency was much lower. This
biological effect was probably due to the low permeability/stability of thiol in malignant
cells. In order to overcome this issue, a novel approach was adopted to “protect” free
thiol and enhance its effectiveness in cancer cells. This strategy was developed thanks to
the production of novel thioester-active PsA analogues, whose molecular mechanism is
mediated by thioester hydrolysis, identified by in vitro assay, and followed by cleavage
of the acetyl group by HDAC1 and six enzymes. These newly synthetized thioesters dis-
played significant cytotoxicity against several cancer cell lines as well as robust enzymatic
activity [46]. After confirming the epigenetic role of PsA using in vitro and cell-based
assays, a structure–activity relationship (SAR) study was performed by modifying the
original scaffold of PsA based on the β-indole-α-oximinoamido protection group and by
the replacement of the o-bromophenol unit by an indole ring. These new derivatives were
evaluated by several biological assays, displaying cell cycle arrest and p21 induction in
acute myeloid leukemia (AML), breast, and prostate cancer cells, as well as histone H3
and alpha tubulin acetylation, showing multiple epigenetic activities [47]. Novel PsA
derivatives were synthetized as bisulfide bromotyrosine products, including psammaplins
F, G, and H, while two new bromotyrosine derivatives were characterized as psammaplins
B, C, D, bisaprasin, I and J, along with the known PsA. [48–51]. PsA, psammaplin G,
and bisaprasin displayed both HDAC and DNMT inhibitory activities, while all the others
substantially exhibited HDAC inhibition in vitro.

Given the growing interest in new epigenetic modulators in cancer, research has been
focusing on the role of PsA and its derivatives as potential epigenetic markers and investigating
their biological activity. Many other computational and biological-based assays have been
carried out to optimize the selectivity of psammaplin compounds and determine the best
trade-off between chemical stability and epigenetic-based biological function.

4.2.1. UVI5008

The molecular characterization and anticancer activities of UVI5008, a novel synthetic
derivative of PsA that exerts multiple epigenetic effects in several cancer cell lines via
simultaneous targeting of HDACs, DNMTs, and sirtuins (class III HDACs). UVI5008 is a
powerful HDACi, displaying histone H3 acetylation and HDAC inhibition. UVI5008 also
inhibits DNA methylation in the promoter region of tumor suppressor gene pl6INK4a
and alters the acetylation status of chromatin on tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL). The inhibitory activity of UVI5008 was also tested on sirtuin 1
and 2, and was found to impact p53 acetylation levels. UVI5008 affects death and ROS
pathways in HDAC-resistant and -mutated cancer cells and tumors, providing a potentially
valid alternative to combination cancer therapy (patent WO2008125988A1) [52].

4.2.2. Panobinostat

Cinnamic acids play a crucial role in the formation of other more complex phenolic
compounds. Panobinostat, (LBH-589; Farydak®, Novartis Pharmaceuticals Corporation,
East Hanover, NJ, USA), a synthetic analogue of PsA, is one of the most potent pan HDACi
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and in 2015 received FDA approval for therapeutic application in patients with multiple
myeloma (MM). To date, panobinostat has been investigated in numerous completed
clinical trials for the treatment of solid and hematological cancers, alone or in combination
(NCT01242774, NCT01802879, NCT01336842, NCT01460940, NCT01065467) and about
ten clinical studies are currently recruiting (NCT04326764, NCT04341311, NCT02717455,
NCT04150289, NCT02386800, NCT02506959, NCT02890069, NCT04315064, NCT01543763,
NCT04264143, NCT03143036, NCT03878524). Many reports also confirm the antiangio-
genic role of this natural molecule in hepatocellular carcinoma both in vitro and in vivo
through the epigenetically regulated connective tissue growth factor [53]. In vitro findings
demonstrated that panobinostat inhibits tumor growth in an orthotopic xenograft model of
ovarian cancer and that its effect is characterized by acetylation of histone H2B and upregu-
lation of pH2AX, suggesting that these mechanisms are mediated by HDAC inhibition [54].
Panobinostat treatment also showed effective HDAC inhibition in breast, prostate, colon,
and pancreatic cancer cell lines, while its effects on normal cells were marginal [55,56],
suggesting its cancer-specific selectivity.

4.2.3. NVP-LAQ824

NVP-LAQ824 (dacinostat), another PsA analogue, is a derivative of 4-aminomethylcinnamic
hydroxamic acid, which has entered phase I clinical trials [57,58] for the treatment of solid
tumors and leukemia. NVP-LAQ824 inhibits HDAC activities and exerts anticancer effects
at nanomolar concentrations through a mechanism of action involving the disruption of the
charge-relay network via zinc chelation. Dacinostat may interfere with epidermal growth
factor-mediated signaling in breast cancer via two independent epigenetic mechanisms
involving a decrease in human epidermal growth factor receptor 2 (HER2) mRNA levels
and by proteasomal degradation via an increase in the chaperone protein Hsp90. This effect
is due to a further increase in acetylation levels induced by a dacinostat-mediated inhibitory
mechanism [59]. NVP-LAQ824 was also proposed as a novel HDACi due to its ability to
activate p21 at promoter and protein expression level, inhibit cyclin-dependent kinase 2 ki-
nase activity, reduce retinoblastoma phosphorylation, and cause cell cycle arrest selectively
in different cancer cell lines and in vivo models [60]. NVP-LAQ824 can also epigenetically
modulate macrophage immune response through a mechanism involving recruitment of the
transcriptional repressors HDAC11 and PU.1 to the IL-10 gene promoter. This biological effect
results in IL-10 inhibition and improved responsiveness of CD4+ T cells [61].

4.2.4. Trichostatin A

Trichostatin A (TSA) is an hydroxamic acid originally isolated from the bacterium Strep-
tomyces platensis, present in soil, which exerts antifungal, antibacterial, and antineoplastic
activities as well as a broad spectrum of reversible HDAC inhibitory functions. Clinical tri-
als investigating TSA in cancer are currently recruiting (NCT03838926, NCT03784417).
In a recent study, malignant melanoma cells were treated with TSA and subjected to
whole-transcriptome profiling. Data analysis showed that TSA was able to drastically
change the transcriptome and several up- and downregulated transcripts were identi-
fied within BRAF-mutated melanoma cells. Specifically, TSA was able to downregulate
MAPK/MEK/BRAF axis without affecting HDAC and BRAF pathways [62]. Sirtuin 6
is a class III HDAC enzyme involved in various epigenetic-like activities such as gene
silencing regulation and DNA repair mechanisms, as well as blood glucose level regulation
and stress resistance. Dysregulation of sirtuin 6 has a strong impact in various diseases
including dysmetabolism, neurodegeneration, diabetes, and cancer. Since the tumor sup-
pressor protein p53 upregulates sirtuin 6 via a deacetylation mechanism, histone H3 and
p53 acetylation (via suppression of sirtuin 6) by TSA has a robust action on cancer cells as
the posttranslational modification mediated by acetylation restores the regulation of p53 to
normal physiological conditions [63]. TSA analogues such as trichostatic acid, JBIR-109,
JBIR-110, and JBIR-111 derive from cultures of the marine sponge-derived Streptomyces
sp. strain RM72 [64]. The JBIR-17 analogue was instead isolated from Streptomyces sp.
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26634, in turn isolated from a leaf of the Kerria japonica shrub collected in Iwata, Japan [65].
These derivatives display similar biological effects and may be used as lead compounds
for the generation of more active drugs.

4.2.5. Vorinostat

Vorinostat (SAHA, ZOLINZA®, Merck & Co., Inc., Kenilworth, NJ, USA) was the first
HDACi approved by the FDA for the treatment of cutaneous T-cell lymphoma (CTCL) in
2006. Vorinostat is a synthetic derivative of the first natural hydroxamate HDACi identified,
TSA, described in the previous subsection [66]. Vorinostat is a pan HDAC inhibitor and the
most studied synthetic derivative compound from a natural source. Currently, about 40
clinical trials are in the recruitment phase (the most recent are NCT04308330, NCT04339751,
NCT03803605, NCT03056495, NCT02638090, NCT04357873, NCT03167437, NCT03843528,
NCT03842696) for a wide variety of diseases. Furthermore, a broad spectrum of datasets
present in literature describe and demonstrate the multiple epigenetic roles of vorinostat in
cancer and other disorders, as most recently reported in [67–74].
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Table 1. Natural phenolic compounds and their derivatives, and their epigenetic role in cancer.

Compound Structural Formula Chemical Class Source Species Epigenetic
Mechanism Ref

Psammaplin A
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     HDAC inhibition (in vitro) [46] 
     Increased H3 acetylation (in vitro)  

Psammaplin F 

 

Phenolic compound Sponge 
Pseudoceratina pur-

purea 
HDAC inhibition (in vitro) [50] Phenolic compound Sponge Pseudoceratina

purpurea
HDAC inhibition

(in vitro) [50]
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H3 hyperacetylation
(ex vivo)

HDAC inhibition
(in vitro)

HDAC1–4 inhibition
(in vitro)

SIRT inhibition
(in vitro)

NVP-LAQ824
(dacinostat)
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NVP-LAQ824 (dacinostat) 

 

Hydroxamic acid  Psammaplin derivative HDAC inhibition (in vitro) [57,59,60] 

     HDAC inhibition (in vivo) [57,58] 
     Increased H3 acetylation (in vitro) [59–61] 
     Increased H4 acetylation (in vitro) [60,61] 

Trichostatin A 

 

Hydroxamic acid Bacterium Streptomyces platensis HDAC inhibition (in vitro) [62,66] 

     MAPK/MEK/BRAF downregulation (in 
vitro) 

[62] 

     Increased H3 acetylation (in vitro) [63] 

Hydroxamic acid Psammaplin derivative HDAC inhibition
(in vitro) [57,59,60]

HDAC inhibition
(in vivo) [57,58]

Increased H3
acetylation (in vitro) [59–61]

Increased H4
acetylation (in vitro) [60,61]
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     HDAC inhibition (in vivo) [57,58] 
     Increased H3 acetylation (in vitro) [59–61] 
     Increased H4 acetylation (in vitro) [60,61] 

Trichostatin A 

 

Hydroxamic acid Bacterium Streptomyces platensis HDAC inhibition (in vitro) [62,66] 

     MAPK/MEK/BRAF downregulation (in 
vitro) 

[62] 

     Increased H3 acetylation (in vitro) [63] 

Hydroxamic acid Bacterium Streptomyces platensis HDAC inhibition
(in vitro) [62,66]

MAPK/MEK/BRAF
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(in vitro)
[62]

Increased H3
acetylation (in vitro) [63]
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JBIR-109 

 

Trichostatin analogue Sponge 
Streptomyces sp. strain 

RM72 
HDAC inhibition (in vitro) [64] 

JBIR-110 

 

Trichostatin analogue Sponge 
Streptomyces sp. strain 

RM72 
HDAC inhibition (in vitro) [64] 

JBIR-111 

 

Trichostatin analogue Sponge 
Streptomyces sp. strain 

RM72 
HDAC inhibition (in vitro) [64] 

Trichostatin analogue Sponge Streptomyces sp.
strain RM72

HDAC inhibition
(in vitro) [64]
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Trichostatin analogue Sponge 
Streptomyces sp. strain 

RM72 
HDAC inhibition (in vitro) [64] 

JBIR-111 

 

Trichostatin analogue Sponge 
Streptomyces sp. strain 

RM72 
HDAC inhibition (in vitro) [64] 

Trichostatin analogue Sponge Streptomyces sp.
strain RM72

HDAC inhibition
(in vitro) [64]
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Trichostatin analogue Sponge 
Streptomyces sp. strain 

RM72 
HDAC inhibition (in vitro) [64] 

JBIR-110 

 

Trichostatin analogue Sponge 
Streptomyces sp. strain 

RM72 
HDAC inhibition (in vitro) [64] 

JBIR-111 

 

Trichostatin analogue Sponge 
Streptomyces sp. strain 

RM72 
HDAC inhibition (in vitro) [64] Trichostatin analogue Sponge Streptomyces sp.

strain RM72
HDAC inhibition
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JBIR-17 

 

Phenolic compound Bacterium Kerria japonica HDAC inhibition (in vitro) [65] 

Panobinostat 

 

Phenolic compound Sponge Psammaplin aplysilla Pan-HDAC inhibition (in vitro) [53,54] 

     HDAC inhibition (in vitro) [55] 

Vorinostat 

 

Hydroxamic acid  Trichostatin A deriva-
tive 

Pan HDAC inhibition (in vitro) [67] 

Phenolic compound Bacterium Kerria japonica HDAC inhibition
(in vitro) [65]
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JBIR-17 

 

Phenolic compound Bacterium Kerria japonica HDAC inhibition (in vitro) [65] 

Panobinostat 

 

Phenolic compound Sponge Psammaplin aplysilla Pan-HDAC inhibition (in vitro) [53,54] 

     HDAC inhibition (in vitro) [55] 

Vorinostat 

 

Hydroxamic acid  Trichostatin A deriva-
tive 

Pan HDAC inhibition (in vitro) [67] 

Phenolic compound Sponge Psammaplin aplysilla Pan-HDAC
inhibition (in vitro) [53,54]

HDAC inhibition
(in vitro) [55]

Vorinostat
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JBIR-17 

 

Phenolic compound Bacterium Kerria japonica HDAC inhibition (in vitro) [65] 

Panobinostat 

 

Phenolic compound Sponge Psammaplin aplysilla Pan-HDAC inhibition (in vitro) [53,54] 

     HDAC inhibition (in vitro) [55] 

Vorinostat 

 

Hydroxamic acid  Trichostatin A deriva-
tive 

Pan HDAC inhibition (in vitro) [67] Hydroxamic acid Trichostatin A
derivative

Pan HDAC
inhibition (in vitro) [67]

HDAC inhibition
(in vitro) [66,69,70,73]

HDAC inhibition
(in vivo) [67,68]

mTOR inhibition
(in vivo) [68]

PLD-1 upregulation
(in vitro) [70]
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5. Cyclic Peptides

Marine-derived secondary metabolites are a huge source of multi-structured peptides
possessing unique features able to regulate epigenetic mechanisms in cancer. The majority
of these compounds are of natural origin and their backbone, characterized by a ring
structure, has been used for the novel synthesis of more active and specific therapeutic
drugs. This section mainly discusses depsipeptides and cyclic tetrapeptides (CTPs) as
epigenetic-like anticancer agents. Depsipeptides are non-ribosomal peptides in which one
or more amine bonds are replaced by the corresponding ester. These derivatives often
contain non-protein amino acids and are found in the marine environment. Their syn-
thesis is very straightforward and may lead to the development of several structural
combinations useful for identifying the most effective anticancer agents. For instance,
modifying amine groups to esters leads to an increase in lipophilicity, thus increasing their
cell permeability [75]. Unlike depsipeptides, CTPs are very difficult to synthetize due to
their highly complex structure characterized by four amino acids linked by eupeptide
bonds. Specifically, CPTs contain L-, D-, and cyclic amino acids, which reduce the cyclic
tension associated with CTPs. Many biochemical approaches coupled with extensive
studies of three-dimensional structures by X-ray crystallography and NMR have been
developed [76] to produce novel and more bioactive molecular structures. The following
subsections describe the epigenetic role exhibited by marine-derived cyclic peptides dis-
playing strong anticancer and anticancer-associated biological activities, which may have
important implications for human health (Table 2 and Supplementary Table S2).

5.1. Romidepsin

Romidepsin ((Istodax®, Celgene Corp, Summit, NJ, USA) is a depsipeptide derived
from the marine bacterium Chromobacterium violaceum and was the first epigenetic-like
peptide approved by the FDA for the treatment of CTCL and other peripheral T-cell lym-
phomas in 2009 and 2011, respectively [77]. Romidepsin is mainly active against class I
HDACs via a mechanism involving the release of a thiol by the disulfide bond of the pep-
tide. The resulting mercaptan interacts with zinc at the HDAC binding site, thus inhibiting
its activity. Romidepsin is currently the subject of about ten recruiting studies on cancer
NCT02512497, NCT01947140, NCT02232516, NCT02616965, NCT03742921, NCT03161223,
NCT02783625, NCT04257448, NCT03703375, NCT03593018, NCT02551718). About fifty tri-
als investigating the role of romidepsin in cancer have been completed (the most recent are
NCT02296398, NCT01913119, NCT01537744, NCT01324310, NCT01822886, NCT01353664).
Other depsipeptide molecules include spiruchostatins [78,79], burkholdacs [80,81], and thai-
landepsin B [82,83], which are the product of the bacterium Burkholderia thailandensis,
while FR901375 [84] and largazole [85] are derived from Pseudomonas chlororaphis and the
cyanobacterium Symploca sp., respectively.

5.2. Plitidepsin

Also known as dehydrodidemnin B, plitidepsin (Aplidin®, PharmaMar, S.A., Colme-
nar Viejo, Spain) belongs to the class of didemnins isolated from the tunicate Aplidium
albicans of the genus Trididemnum and is a natural HDACi with a broad spectrum of
anticancer effects [86,87]. To date, six studies investigating the anticancer effects of pli-
tidepsin have been completed (NCT01102426, NCT00884286, NCT01149681, NCT02100657,
NCT00788099, NCT00229203), five have been terminated (NCT03117361, NCT00780143,
NCT03070964, NCT00780975, NCT01876043), and only one is active for patients with
COVID-19 (NCT04382066). Plitidepsin displays a strong inhibitory effect on cell growth
and apoptosis in MM patients and cell lines, including those resistant to conventional
therapies. This bioproduct also potently inhibits osteoclast differentiation and bone re-
sorptive activity both in vivo and in vitro [88]. Among hundreds of plitidepsin analogues,
PM01215 and PM02781 (patent WO 2002002596) were identified for their antiangiogenic
effect in human primary cells [89].
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5.3. Largazole

Largazole is a macrocyclic depsipeptide deriving from the marine cyanobacterium
Symploca sp. [90]. This molecule is considered a superior hybrid thanks to its structural
characteristics: it contains a thiazole unit linked to a 4-methylthiazoline, a nonmodified
L-valine amino acid, and a thioester responsible for its mechanism of action. Largazole acts
as an HDACi and is particularly active in colon cancer cell lines, as documented by a
screening of 60 cell lines from the National Cancer Institute. In vivo and in vitro studies
showed its apoptotic and antiproliferative activities as well as histone H3 hyperacetylation.
Many similarities in terms of gene regulation were also found with two other potent
HDACi, vorinostat and FK228, by gene transcriptomic profiling [85,91].

5.4. Azumamides

Azumamides are a group of CTPs isolated from the Japanese marine sponge Mycale
izuensis, with five isoforms (A, B, C, D, E). Azumamides A–E were the first cyclic peptides
with HDAC inhibitory activity isolated from marine organisms, and are characterized by
four non-ribosomal amino acid residues, three of which are D-series amino acids while
only one is a beta amino acid [92]. Azumamides A–E were identified for the first time as
potent HDACi in a chronic myeloid leukemia cell line [93] following in vitro evaluation of
HDAC activity. Specifically, increasing concentrations of azumamide A induced histone
H3 acetylation while producing cytotoxic effects in colon cancer and chronic leukemia cells.
Azumamide variants B, C, and E produced an HDAC inhibitory effect in human carcinoma
cell lines with IC50 values in the micromolar range. Derivative E resulted the most active
compound with inhibitory activities due to its different chemical structure represented
by a carboxylic acid, which has a higher affinity for thee HDAC active site containing
zinc ion, unlike the amide group present in the other azumamides A, B, and D [94].
From a mechanistic perspective, azumamide E was the only isoform found able to induce
overexpression of p21, a well-known marker regulating cell cycle progression, in murine
induced pluripotent stem cells [95].

5.5. Trapoxins

Trapoxin (TPX) A is a fungal-derived HDACi with a homodetic cyclic tetrapeptidic
structure isolated from the species Helicoma ambiens. This molecule is an epoxyketone and
exerts irreversible inhibitory effects on class I HDACs due to the analogous structure of its
ketone carbonyl group and the carbonyl of the substrate acetyl-L-lysine of HDACs. A study
reporting the creation of a novel X-ray structure characterized by trapoxin A bound to
HDAC8 demonstrated that trapoxin A is a non-covalent HDAC8 inhibitor thanks to an
α,β-epoxyketone side chain, which by chemical transition state is able to bind the HDAC
active site containing zinc [96]. Cyclic hydroxamic acid-containing peptide (CHAP) 1 is a
hybrid compound deriving from trapoxin A and TSA, in which the epoxyketone group is
substituted by the hydroxamic acid instead of the epoxyketone and can reversibly inhibit
HDACs at low nanomolar concentrations. Although several CHAP derivatives have been
produced, only one showed antitumor activity in BDF1 mice bearing B16/BL6 tumor cells,
suggesting the possibility of an improved synthesis of new hybrids [97].
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Table 2. Cyclic peptides and alkaloids with their epigenetic anticancer role.

Compound Structural Formula Chemical Class Source Species Epigenetic Mechanism Ref
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     HDAC inhibition (in vivo) [85] 
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Cyclic tetrapeptide Sponge Mycale izuensis HDAC inhibition
(in vitro) [92,93,95]
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5.6. Apicidin

Apicidin is a fungal metabolite derived from the species Fusarium pallidoroseum, in the
Sordariomycetes class. It is an HDAC2 and 3 inhibitor and acts as a trapoxin A analogue,
but lacks the epoxyketone functional group. Several studies described the anticancer
activities of apicidin in vitro and in vivo [42,98,99]. A recent report investigated the charac-
terization of HDAC3 in Notch signaling by comparing data obtained following apicidin
treatment and HDAC3 loss of function in APRE T cell models. Gene expression data from
RNA sequencing revealed a cluster of 65 upregulated genes and another of 368 downregu-
lated genes in both HDAC knockdown and apicidin-treated cells. Many of the identified
downregulated genes affected Notch signaling, and in particular apicidin treatment led
to an increase in epigenetic markers such as acetylation levels of histone H3 lysine 27
(H3K27), histone H3 lysine 18 (H3K18), and histone H3 lysine 9 (H3K9), while a de-
crease in H3K27 acetylation was detected at the recombination signal binding protein for
immunoglobulin kappa J region binding sites associated with Notch target genes. Api-
cidin treatment affected NOTCH1 intracellular domain stability via a mechanism driven
by proteasomal degradation mediated by ubiquitination [100]. Microsporins A and B are
also marine-derived metabolites from the fungus Microsporum cf. gypseum that display
HDACi action. Their cytotoxic-related activities were reported in colon adenocarcinoma
cells and a precursor to the unusual amino acid residue of the anticancer agent microsporin
B was subsequently synthetized as (S)-2-Boc-Amino-8-(R)-(tert-butyldimethylsilanyloxy)
decanoic acid [101].

6. Alkaloids

Alkaloids are natural compounds characterized by a nitrogen-heterocyclic structure.
Specifically, marine alkaloids have an amine nitrogen group and a carbon ring and mainly
derive from marine organisms such as sponges, algae (green, brown, and red), coelenterates,
and tunicates. These metabolites display several properties, acting as antitumor, antiviral,
antimalarial, antifungal, and anti-osteoporosis agents. Marine alkaloids may be used as
chemotherapeutics or as lead compounds for structural modification (Table 2).

6.1. Brominated Alkaloids: Isofistularin-3

Brominated alkaloids (BAs) include the promising natural molecule isofistularin-3
(Iso-3), whose source is the sponge Aplysina aerophoba. Structurally, this compound shows
similarities with PsA, a well-known bromotyrosine derivative. Iso-3 was screened for its
DNMT1 inhibitory activities in vitro together with a library of compounds. The confor-
mational structure of this compound was also analyzed by molecular docking prediction,
revealing an inhibition interaction between DNMT1 and DNA via a conserved CXXC
motif affecting binding activity via positively charged residues. BAs lack a thiol linker
moiety, explaining the absence of HDAC inhibitory activity. Iso-3 was shown to have
anticancer potential in lymphoma cells, leading to cell cycle arrest, morphological changes,
and authophagy as well as caspase-dependent and -independent cell death [33].

6.2. Bispyridinium Alkaloids: Cyclostellettamines

Marine-derived alkaloids include a group of compounds with a macrocyclic ring of
the precursor bispyridinium alkaloid called cyclostellettamines. Cyclostellettamines A and
G together with dehydrocyclostellettamine D and E, shown to act as HDAC inhibitors in
the myelogenous leukemia K562 cell line, were isolated from a marine sponge of the genus
Xestospongia [102]. The inhibitory effect of these compounds was very weak, with cyto-
toxic activities observed in human cervix carcinoma, mouse leukemia, and rat fibroblasts,
suggesting that multifunctional targets of these molecules can modulate their cytotoxic
effects. A synthetic route for cyclostellectamines A–L and dehdrocyclostellettamines D
and E was developed using bispyridinium dienes precursors and subsequent catalytic
hydrogenation. The compounds obtained and their precursors were tested in vitro in an
AML cell line for HDAC activity, cell cycle modulation, acetylation levels of histone H3 and
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tubulin, differentiation, and apoptosis. The precursors were found to have more potent
activities than the natural compounds [103].

7. Conclusions

Anticancer therapy-associated drawbacks include resistance to drug treatments and
the occurrence of relapses, whereby, finding and characterizing new drugs is one of the main
objectives. The development of new drugs with anticancer activity follows a multidisci-
plinary approach that generally begins with the identification and retrieval of new bioactive
molecules from natural sources, which in turn undergo preliminary evaluations assess-
ing biological activity, toxicological tests, and chemical/biotechnological synthesis [23].
The difficulty in finding natural substances of marine origin and collecting sufficient quan-
tities for clinical and preclinical experimentation often hinders the possibility of isolating
natural biomolecules, preventing the development of promising compounds. Although the
epigenetic role of natural compounds has been discussed in previous studies, the aspects
related to the discovery of new marine-derived anticancer bio-compounds highlighting the
variability that characterizes the organisms themselves and their surrounding environment
that, have not been extensively discussed previously. The chemical-physical-biological char-
acteristics of natural marine compounds are unique and cannot be found in the terrestrial
environment, but the properties of already characterized molecules can be exploited for a
new chemical synthesis and molecular modeling of new products to refine their anticancer
activity. Natural marine bio-compounds are produced in co-evolution with biological
systems and can be specific mediators of epigenetic processes in cancer, in turn influencing
the abundance and distribution of species in nature and the functioning of ecosystems.
A very important aspect also involves the concept of environmental sustainability, linked to
the strong need to reduce the impact of the ecosystem on natural resources and the need
to safeguard the marine environment to maintain and preserve biodiversity and prevent
as much as possible the decrease of ecosystem functions. Marine biotechnologies are
increasingly specializing in the development of new methods based on the evaluation of
the sustainability of organisms sampling for their subsequent use associated with new
selection criteria and the creation of marine biobanks.

Marine organisms produce secondary metabolites whose chemical-physical and bi-
ological characteristics are extremely variable due to biotic and abiotic factors, adding a
further level of complexity to research and development efforts in this field. Most com-
pounds of marine origin can be synthesized and more than 10 are currently at an advanced
clinical stage [104]. Furthermore, new and advanced technologies allow the biotechno-
logical production of these molecules either through cloning techniques or gene cluster
manipulation, overcoming a number of obstacles including those linked to environmental
risks associated with the potential loss of genetic resources caused by overharvesting of
producer organisms. Major interest is currently focusing on the identification and biosyn-
thetic characterization of natural marine compounds, particularly those derived from
the secondary metabolism, potentially available as active principles (lead compounds)
or biochemically comparable (biosynthetic analogues) to active compounds, for the de-
velopment of new epigenetic drugs. Many marine compounds with anticancer activity
capable of modulating microRNA and epigenetic mechanisms such as DNA methylation,
acetylation, and histone methylation, have a considerable impact on the regulation of gene
expression [105]. Marine organisms are themselves subject to intrinsic epigenetic changes
induced by the surrounding environment, causing them to produce biomolecules with
unique structural characteristics that can act as an imprint to produce a novel synthesis.
An example of a response to ecological changes is represented by dimethylsulfoniopropi-
onate (DMSP), a metabolite that can be degraded by phytoplankton or bacteria to produce
dimethylsulfide (DMS). Inducing the bloom of the Gulf of Mexico phytoplankton, bacteri-
oplankton cells can demethylate this metabolite via the dmdA gene pointing out several
dmdA subclases identified in response to ecological alteration [106]. Epigenetic mecha-
nisms such as DNA methylation and histone modifications may also affect coral adaptation
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to climate change [107] spreading to subsequent generations, but these mechanisms still
need to be further studied [108]. The chromosomal characterization of different species of
sponges has been carried out on the basis of their phylogenetic relationships, identifying
similar karyotypes, harboring a diploid chromosome number. A high variability in the
extent of the genome has been defined also in species belonging to the same class, reflect-
ing distinct genomic organization [109]. Further studies will allow to understand how
epigenetic mechanisms, which are sometimes stochastic events and often are responsible
for locus-specific gene expression via chromatin modifications, can be correlated with
organism ploidy. As cancer treatments are increasingly based on personalized medicine
due to the complexity of the disease and the multitude of hallmarks involved, including
epigenetic alterations, developing new bioactive molecules derived from marine sources
will provide a vast repertoire of substances with pharmacological activity that can be used
alone or in combination with other epigenetic drugs, chemotherapy, or radiotherapy.

Supplementary Materials: The following are available online at https://www.mdpi.com/1660-339
7/19/1/15/s1. Table S1: Recent registered clinical trials on phenolic compounds with epigenetic
mechanisms in different cancers alone and in co-treatment. Table S2: Recent registered clinical trials
on cyclic peptides with epigenetic mechanisms in different cancers alone and in co-treatment.
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