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*e use of 5-fluorouracil (5-FU) has been proven benefits, but it also has adverse events in colorectal cancer (CRC) chemotherapy.
In this study, we explored the mechanism of 5-FU resistance by bioinformatics analysis of the NCBI public dataset series
GSE81005. Fifteen hub genes were screened out of 582 different expressed genes. Modules of the hub genes in protein-protein
interaction networks gathered to TOP2α showed a decrease in HCT-8 cells but an increase in 5-FU-resistant HCT-8/5-FU cells
with 5-FU exposure. Downregulation of TOP2α with siRNA or miR-494 transfection resulted in an increase of cytotoxicity and
decrease of cell colonies to 5-FU for HCT-8/5-FU cells. Moreover, we found that an ethanol extract of Spica Prunellae (EESP),
which is a traditional Chinese medicine with clinically beneficial effects in various cancers, was able to enhance the sensitivity of 5-
FU in HCT-8/5-FU cells and partly reverse the 5-FU resistance effect. It significantly helped suppress cell growth and induced cell
apoptosis in HCT-8/5-FU cells with the expression of TOP2α being significantly suppressed, which increased by 5-FU. Con-
sistently, miR-494, which reportedly regulates TOP2α, exhibited reverse trends in EESP/5-FU combination treatment. *ese
results suggested that Spica Prunellae may be beneficial in the treatment of 5-FU-resistant CRC patients.

1. Introduction

Colorectal cancer (CRC, also known as colon cancer) is one
of the most commonly diagnosed cancers. *e GLOBOCAN
2018 data estimates of cancer incidence and mortality
showed that CRC is the third most commonly diagnosed
cancer, with an incidence of 10.2% and a mortality of 9.2%
[1]. Presently, the treatment for CRC includes surgery, ra-
diation, and chemotherapy palliative care [2]. Chemother-
apy drugs for the treatment of CRC include capecitabine,
oxaliplatin, fluorouracil (5-FU), leucovorin (folinic acid),
and irinotecan. Among these chemotherapy agents, 5-FU is
most commonly used for CRC [3]. Treatment with 5-FU has
been shown to reduce tumor size by approximately 50% in
patients with advanced CRC and prolong their median

survival by 5months [4]. However, since the late 1990s,
studies have revealed that 5-FU treatment can lead to
therapy resistance [5, 6] accompanied by hand-foot syn-
drome, cardiotoxicity [7], and gastrointestinal side effects
[3]. *erefore, combination chemotherapy has become
widely used in chemotherapeutic regimens [8]. Nevertheless,
this therapeutic strategy might be partly beneficial; however,
problems, such as new chemotherapeutic resistance or
unacceptable side effects, can still occur. *erefore, explored
of the resistance mechanism for 5-FU would benefit for
searching the new safe and acceptable resistance-reversal
medications.

In this case, natural products have great advantages because
they have relatively fewer adverse effects. Herbal medicines
applied to chemotherapy could improve chemotherapeutic
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efficacy and/or reduce induced toxicities in patients [9]. In
addition, our previous studies have demonstrated that
some herbal medicines suppressed cell growth, induced cell
apoptosis, inhibited CRC angiogenesis, and overcame 5-FU
resistance [10–12]. *erefore, herbal extracts might be
feasible to increase chemotherapeutic efficacy and reduce
the possibility of drug resistance and side effects.

Prunella vulgaris L. is a widely distributed perennial herb
in the family Lamiaceae. In China, the spike of this herb,
Spica Prunellae, is well known as a traditional Chinese
medicine for its effects on heat clearing, dispersing swelling,
and dissipating binds [13]. *e herb has been reported to
promote cancer cell apoptosis [14] and to suppress cell
growth [15], vascular inflammation [16], tumor angiogenesis
[17], and tumor volume [14, 18]; it has also been used in the
treatment of cancers, such as breast cancer [19]. Recently, as
a novel herbal medicine, LA16001, which is composed of
Prunella vulgaris L., was found to prevent cisplatin-induced
anorexia [20]. Extracts from other Lamiaceae plants, such as
rosemary (Rosmarinus officinalis), have been shown to en-
hance the antitumor effect of 5-FU in 5-FU-resistant
SW620-5FU-R cells [21]. Both Rosmarinus officinalis and
Prunella vulgaris L. belong to the Labiatae family, and their
marker compound is rosmarinic acid [22, 23], which has
been shown to exhibit antioxidant [24], anti-inflammatory
[25], and anticancer activities [26].

*e aim of this study was to understand the resistance
mechanism for 5-FU in depth and provide a clue for the
searching of effective medications. *rough bioinformatics
analysis, DNA topoisomerase 2-alpha (TOP II alpha,
TOP2α) was important in the 5-FU resistance. Moreover, we
found it was involved in the 5-FU sensitivity enhancement of
EESP. In the fact, Spica Prunellae was suggested as a po-
tential reversal agent for treating 5-FU-resistant patients. In
addition, searching for medications which could down-
regulate TOP2α expression would be a benefit clue for the
therapy of 5-FU-resistant patients.

2. Materials and Methods

2.1. Identification of Key Genes Associated with 5-FU
Sensitivity. We chose a public and freely available gene
expression profile (GSE81005) from the US NCBI Gene
Expression Omnibus database to screen differentially
expressed genes between HCT-8/5-FU and HCT-8 cells
treated following 5-FU treatment. We searched for differ-
entially expressed genes firstly by comparing data between
the treatment of 5-FU for 24/48 h in HCT-8/5-FU cells or
HCT-8 cells and control groups, secondly comparing the
differentially expressed genes between HCT-8/5-FU cells
and HCT-8 cells, and thirdly obtaining the DEGs by
searching the common DEGs between 24 h and 48 h
treatment. DEGs were detected by the R (3.4.1) software.*e
adjusted P values were used to reduce the false-positive rate
by using the Benjamini and Hochberg false discovery rate
method by default. An adjusted P value of <0.05 was set as
the cutoff criterion. Metascape was used to conduct pathway
and process enrichment analysis of the DEGs using default
settings [27]. STRING was employed to map the DEGs,

which could detect the potential relationship among those
DEGs. A maximum number of interactors� 0 and a confi-
dence score ≥0.4 were set as the cutoff criteria. *e Molecular
Complex Detection (MCODE) app in Cytoscape was used
further to screenmodules in the PPI network with a cutoff� 2,
k-core� 2, node score cutoff� 0.2, and max. depth� 100.
Expression patterns of TOP2A in colon adenocarcinoma
cancer and normal tissues were demonstrated by the available
data from gene expression profiling interactive analysis
(GEPIA) and R2 (https://hgserver1.amc.nl/cgi-bin/r2/main.
cgi?&species�hs), which is a free publicly accessible web-
based genomics analysis and visualization platform.

2.2. Transfection of siRNA ormiR-494. siRNA and its siRNA
control (Genepharma, Shanghai, China) or miR-494 mimics
and miRNA negative control (Guangzhou RiboBio Co.,
LTD, Guangzhou, China) were synthesized. Cells were
plated in 96 or 6 wells, and they were transfected with siRNA
or miR-494 mimics at 50 nM at 30%–40% cell confluence
following the instruction of Lipofectamine RNAiMAX
(*ermo Fisher Scientific Inc., MA, USA).*en, cell viability
was detected by performing a 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide colorimetric assay (ELX800;
BioTek, Winooski, USA) at 570nm each day, or cells were
collected for the western blot or gene expression validation in
48 h.

2.3. Western Blot. Proteins were extracted into RIPA
buffer (CWBIO, Beijing, China), separated in 10% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis, and
then transferred to 0.22 μm NC membranes (Millipore,
MA, USA).*emembranes were blocked and probed with
antibodies against TOP2α, β-actin, and the anti-rabbit
IgG, HRP-linked antibody (Proteintech Group, Inc.,
Taiwan, China). *e bands were detected with BeyoECL
Plus (Beyotime Institute of Biotechnology, Shanghai,
China) or Super ECL Star (US Everbright Inc., Suzhou,
China). Image Lab Software (Bio-Rad, Hercules, CA,
USA) was used to analyze the band intensity.

2.4. Gene Expression Validation. Total RNA was extracted
with TRIzol (Takara, Dalian, China). *en, a nanodrop
spectrophotometer (*ermo Fisher Scientific Inc., MA,
USA) was used to assess the RNA quantity and quality.
TOP2A primers for examination by real-time polymerase
chain reaction (PCR) were designed from NCBI/Primer-
BLAST, and GADPH primers were obtained from
PrimerBank (https://pga.mgh.harvard.edu/primerbank/).
*e miRNA primers were obtained from (General Bio-
systems, NC, USA). Reverse transcriptase- (RT-) PCR was
performed for miRNA examination by Mir-X™ miRNA
First Strand Synthesis according to the SYBR® qRT-PCR
User Manual (Takara, Dalian, China) and for mRNA
detection by using a PrimeScript™ RT reagent Kit. Real-
time PCR was outperformed by using a TB Green™
Premix Ex Taq™ II (Takara, Dalian, China) for miRNA
and a SYBR™ Select Master Mix (Life Technologies,
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Shanghai, China). *e 2-ΔΔCt method was used to ana-
lyze the expression levels.

2.5. EESP Stock Solution Preparation and Cell Culture.
EESP stock solution was prepared as previously described
[15]. Human carcinoma HCT-8 cells and HCT-8/5-FU cells
(KeyGEN Biotech, Nanjing, China) were cultured at 37°C in
a humidified incubator with 5% CO2 in RPMI medium 1640
(KeyGEN Biotech, Nanjing, China) supplemented with 10%
FBS (Hyclone, Carlsbad, USA), 100U/mL of penicillin, and
100 μg/mL of streptomycin (Life Technologies, Shanghai,
China). HCT-8/5-FU cells were cultured in the above-
mentioned medium with the addition of 15 μg/mL of 5-FU
(Shanghai Amino Acids Company, Shanghai, China).

2.6. Reversal Effect Assays. Two cell lines were seeded into
96-well plates at a density of 1× 104 cells/well. After 24 h, the
cells were treated following various concentrations of EESP,
5-FU, or EESP plus 5-FU combination for 48 h.*en, the cell
viabilities were evaluated. SPSS 16.0 software was used to
calculate the cell survival rate and IC50 value. *e resistance
index (RI) of HCT-8/5-FU cells to EESP or 5-FU, reversal
fold (RF), and relative reversal rate (RRR%) were calculated
according to the following formulas:

RI� IC50 of HCT-8/5-FU cells (EESP or 5-FU)/IC50 of
HCT-8 cells (EESP or 5-FU)
RF� IC50 of HCT-8/5-FU cells (5-FU)/IC50 of HCT-
8/5-FU cells (EESP + 5-FU)
RRR%� IC50 of HCT-8/5-FU cells (5-FU) − IC50 of
HCT-8/5-FU cells (5-FU+EESP)/IC50 of HCT-8/5-FU
cells (5-FU) − IC50 of HCT-8 cells (5-FU)

2.7. Colony Formation. *e HCT-8 and HCT-8/5-FU cells
were seeded into 6-well plates at a density of 4×105 cells/
well. After transfection or treatment with 5-FU (3.2mM)
with/without EESP (0.25mg/mL or 0.5mg/mL) or EESP
(0.25mg/mL or 0.5mg/mL) for 48 h, the cells were harvested
and reseeded into fresh 12-well plates at a density of
500 cells/well. With 2weeks of maintenance in RPMI me-
dium 1640 supplemented with 10% FBS, penicillin, and
streptomycin, the formed colonies were fixed with 4%
polyoxymethylene and stained with 0.01% crystal violet.

2.8.ApoptosisDetection. After treatment with 5-FU (3.2mM)
and with/without EESP (0.25mg/mL or 0.5mg/mL) or EESP
(0.25mg/mL or 0.5mg/mL) for 48 h in 6-well plates, apo-
ptosis of cells was detected by using an AnnexinV-FITC
Apoptosis Detection Kit (KeyGENBiotech, Nanjing, China),
as described in a previous study [15].

2.9. StatisticalAnalysis. Data are presented as the mean± SD.
*e statistical significance of differences was assessed by
Student’s t-test or one-way ANOVA in SPSS 16.0 software.
*e level of statistical significance was set to ∗P< 0.05,
∗∗P< 0.01, and ∗∗∗P< 0.001.

3. Results

3.1. Identification of DEGs and Hub Genes. *e potential
molecular mechanisms were studied by searching for DEGs
and hub genes. R (3.4.1) software was applied to detect DEGs
in the US National Center for Biotechnology Information
Gene Expression Omnibus GSE81005 dataset. Since the main
difference between HCT-8/5-FU cells and HCT-8 cells was
the 5-FU sensitivity, we analyzed hub genes during 5-FU
intervention. We identified 1478 and 2316 DEGs in 5-FU
treatment for 24 h and 48 h, respectively. We identified 582
DEGs in both the 24 h and 48 h 5-FU treatment groups. DEGs
were functional and pathway enrichment analyzed using
online tools inMetascape (http://metascape.org/), and the top
20 enrichment items were shown. As shown in Figures 1(a)
and 1(b), the upregulated DEGs were enriched in brain
development, mitotic prometaphase, cofactor metabolic
process, etc., while the downregulated DEGs were enriched
in PID P53 downstream pathway, cellular response to
extracellular stimulus, negative regulation of cell pro-
liferation, etc. To determine the essential genes involved in
the 5-FU associated mechanism, the top 15 hub genes with
a high degree of connectivity were screened (see Table S1).
*en, an associated PPI network was created on the basis of
the information in the STRING database (Figure 1(c)). *e
top 2 modules were selected by MCODE to find the key
modules in the PPI network. *e results revealed that
TOP2A was involved in both the modules (Figures 1(d) and
1(e)). *is suggested that TOP2A might be a key gene for
5-FU resistance of colorectal cancer.

TOP2α was involved in the enhancement of 5-FU
sensitivity to HCT-8/5-FU.

As TOP2α was involved in both the modules, we
speculate that it should be important in 5-FU resistance.
Firstly, the expression levels of TOP2α were analyzed in a
public database. Compared with normal tissues, the tumor
samples appeared to have higher levels in the expression
profiling of TOP2α (Figures 2(a) and 2(b)). *ese results
suggested that overexpression of TOP2α might be a signal
for tumor development. In view of this fact, we wondered if
TOP2α overexpression might also be associated with 5-FU
resistance. *e expression levels of TOP2α between HCT-8
and HCT-8/5-FU cells exposed to 5-FU were compared.
*e results showed that TOP2α was significantly down-
regulated in HCT-8 cell lines but was upregulated in HCT-
8/5-FU cell lines (Figures 2(c), 2(d), and 2(e)). To further
confirm the role of TOP2α in 5-FU resistance, siRNA of
TOP2α and miR-494 which was reported to target TOP2α
[28] was used to knock down the expression of TOP2α. *e
efficiency of siRNA was shown in Figure S1. Compared to
the negative control, siRNA or miR-494 transfection en-
hanced the 5-FU sensitive and cytotoxicity for HCT-8/5-
FU cells (Figures 2(f ) and 2(g)). *eir transfection could
also increase the cytotoxicity for HCT-8/5-FU cells, and
miR-494 enhanced the 5-FU sensitivity for HCT-8/5-FU
cells (Figures 2(h)–2(j)). But there was no significant dif-
ference in siRNA groups in the presence of 5-FU. *ese
results indicated that TOP2A was involved in 5-FU
resistance.
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Figure 1: Identification of DEGs and hub genes. Enriched ontology clusters of (a) upregulated and (b) downregulated DEGs colored by
cluster ID. (c) *e PPI network of the top 15 hub genes. (d, e) Selection of the top 2 modules by using the MCODE plug-in to detect
significant modules in this PPI network.
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Figure 2: Continued.
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3.2. HCT-8/5-FU Cells Were Suitable for the Study of 5-FU
Modulation with EESP. Given that the resistance index (RI)
is a significant metric for evaluation of 5-FU-resistant cells to
anticancer drugs, we examined the RI for EESP and 5-FU
treatment. Compared with parental HCT-8 cells, HCT-8/5-
FU cells showed a 257.4-fold increase in resistance to 5-FU
and a 1.03-fold increase in resistance to EESP (Table 1).
*ese results suggested that HCT-8/5-FU cells were resistant
to 5-FU but not resistant to EESP; therefore, HCT-8/5-FU
cells were suitable for the further study of 5-FU modulation
with EESP.

3.3. Reversal Effect of EESP on 5-FU in HCT-8/5-FU Cells.
For the evaluation of the reversal effect of EESP on 5-FU, two
low concentrations of EESP (0.25mg/mL and 0.5mg/mL)
with weakly cytotoxicity (inhibition rate< 20%) were chosen

according to the evaluation of cell cytotoxicity with 5-FU in
MTT assays. *e results showed that EESP increased the
sensitivity of HCT-8/5-FU cells to 5-FU by 3.88-fold (at
0.25mg/mL) and 20.68-fold (at 0.5mg/mL), respectively
(Table 2). *e relative reversal rates for these 2 concen-
trations of EESP were 74.56% and 95.53%, respectively.
*ese results demonstrated that the combination of EESP

Table 1: Inhibitory effects of EESP and 5-FU on HCT-8 and HCT-
8/5-FU cells for 48 h (n� 3).

Cell line
aIC50

EESP (mg/mL) 5-FU (mM)
HCT-8 0.77± 0.07 0.60± 0.13
HCT-8/5-FU 0.75± 0.09 154.46± 14.07
RI 1.03 257.40
aIC50 represents semi-inhibitory concentration of modulators.
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Figure 2: Overexpression of TOP2α mediates the 5-FU resistance. (a, b) Analysis of TOP2A expression levels in the GEPIA database and
Mega-sampler in the TCGA database. (c) Detection of relative protein levels for HCT-8 and HCT-8/5-FU cells treated with or without 5-FU
(3.2mM) for 48 h by western blot and (d) quantification. (e) Real-time PCR evaluation of themRNA levels of TOP2A.*e data fromwestern
blot and real-time PCR are normalized to GADPH. Relative cell viability of HCT-8/5-FU cells transfected with (f ) siRNA or (g) miR-494 and
then treated with or without 5-FU (3.2mM) for different time periods (1, 2, 3, and 4 days). (h) Cell colonies for HCT-8/5-FU cells transfected
with siRNA or miR-494 and then treated with or without 5-FU (3.2mM) for 48 h and (i, j) their relative numbers for cell colonies were
analyzed. Compared with the negative control group, for siRNA or miR-494 transfection, ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001; for
negative control treatment with the 5-FU group (NC+ 5-FU), #P< 0.05, ##P< 0.01, and ###P< 0.001; for siRNA or miR-494 transfection
and treatment with the 5-FU group (NC+ 5-FU), &P< 0.05, &&P< 0.01, and &&&P< 0.001.
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with 5-FU increased the 5-FU sensitivity in HCT-8/5-FU
drug-resistant cells although 0.25mg/mL and 0.50mg/mL
of EESP combined separately with 5-FU each only partially
reversed the effect of 5-FU.

3.4. EESPEnhanced 5-FUCell Sensitivity inHCT-8/5-FUCells
via Cell Colony Formation Suppression and Cell Apoptosis
Induction. To study the effects of EESP on the 5-FU sen-
sitivity of colon carcinoma cells, 5-FU-resistant HCT-8/5-
FU cells were treated at 0.25mg/mL and 0.5mg/mL of
EESP separately with 5-FU at 3.2mM or 0.25mg/mL and
0.5mg/mL of EESP alone for 48 h. *ere was no significant
difference in the number of cell colonies between the 5-FU
group and the control group. However, following treat-
ment with 0.25mg/mL and 0.5mg/mL EESP combined
with 5-FU, the number of cell colonies significantly decreased
(Figures 3(a) and 3(c)). Furthermore, it was interesting that
EESP in 0.25mg/mL combined with 5-FU could enhance the
suppression effect compared with 0.25mg/mL of EESP alone
groups. Similar results were also observed in the detection of
cell apoptosis (Figures 3(b) and 3(d)). *e combination of 5-
FU with EESP in 0.5mg/mL notably increased the apoptotic
populations of HCT-8/5-FU cells relative to those in the 5-FU
or EESP group. Results suggested that combination of EESP
and 5-FU in low cytotoxicity concentration leads a better
effect for enhancement of 5-FU sensitivity in HCT-8/5-FU
cells. So in our following study, we chose to study its
mechanism by EESP combined with 5-FU groups. *ese
results together clearly implied that EESP enhanced 5-FU
cell sensitivity in HCT-8/5-FU cells via suppression of cell
colony formation and cell apoptosis induction.

3.5. ESSP Enhanced 5-FU Sensitivity in HCT-8/5-FU by
Downregulating the Expression of TOP2α. Our results
showed that EESP suppressed the expression of TOP2α
protein significantly, which increased by 3.2mM of 5-FU
(Figures 4(a) and 4(b)). Similar results were shown in the
transcription level analysis (Figure 4(c)). Because TOP2α
was a downstream target for miR-494 [28], we decided to
investigate its probable effects in the function of EESP. Levels
of miR-494 were detected in HCT-8 and HCT-8/5-FU cells
with or without 5-FU treatment. *e expression level of
miR-494 was increased following 3.2mM 5-FU treatment in
HCT-8 cells, but there was no difference in HCT-8/5-FU
cells (Figure 4(d)). Furthermore, treatment with 0.5mg/mL
of EESP combined with 5-FU in HCT-8/5-FU cells signif-
icantly increased the levels of miR-494 (Figure 4(e)). In
addition, combination with 5-FU seemed to enhance EESP
effect for TOP2α and miR-494 (Figure S2), which was
consistant with the results of cell colonies depression. Taken
together, the results suggested that EESP suppressed TOP2α
expression and promoted the levels of miR-494, which could
partially reverse 5-FU resistance in HCT-8/5-FU cells.

4. Discussion

With the presence of 5-FU resistance, some chemical re-
versal molecules, such as bufalin [29], 2′,4′-dihydroxy-6′-

methoxy-3′,5′-dimethylchalcone [30], oroxylin A [31],
schizandrin A [32], and tyroservatide [33], were studied in 5-
FU-resistant cell lines. However, these chemical agents
might be restricted in clinical applications because of the
single mechanism, poor selectivity, or unacceptable side
effects.

As a chemotherapy agent, 5-FU is an analog of uracil
[34] that inhibits thymidylate synthase and incorporates
into DNA and RNA as the 5-FU metabolites [34]. 5-FU
induces cell apoptosis through p53. Moreover, its sensi-
tivity has been correlated with membrane-associated
proteins, such as MDR3, MDR4, and MAT-8 [35, 36]. In
addition, a recent study demonstrated that genes in drug
metabolism-cytochrome P450 and pyrimidine metabolic
pathways with promoter hypermethylation and concordant
expression were silenced in HCT-8/5-FU cells [37]. Among
fifteen hub genes in the PPI network, nine of them were
related to protein synthesis and protein translocation. *ey
consisted of seven genes associated with ribosome function:
5 ribosome proteins (RPL23, RPL27A, RPL37, RPL31, and
RPL41) and 2 ribosome binding proteins (RPS18 and
RPS27L). And the other two were translocation-associated
proteins: signal peptidase complex subunit 3 and signal
sequence receptor subunit 1. *ere were also three DNA
replication-associated proteins (DNA topoisomerase
TOP2A and sister chromatid cohesion proteins PDS5A and
PDS5B). *e rest of them were mitotic checkpoint serine/
threonine kinase 1 (BUB1 gene) which participated in
mitosis, chromosome condensation protein of structural
maintenance of chromosomes protein 2 (SMC-2 gene), or
baculoviral IAP repeat-containing 5 (BIRC5 gene). *ese
genes indicated that DNA replication, protein synthesis,
and protein translocation were active in 5-FU-resistant
cells. Identifying the key protein might be a favorable way
to reverse 5-FU resistance. In our study, TOP2α was selected
since it was involved in both the modules. Besides, it was also
reported as a character in new induction of 5-FU-resistant cell
lines for its level was always altered in 5-FU-resistant cancers
[38]. Furthermore, the other two hub genes, RPL37 and
RPL23, were identified in the expression profiling of the
cDNA-based microarray in response to 5-FU in a breast
cancer cell [36] though without subsequent validation. So we
considered that other genes were still valuable for further
research. Additionally, because the resistance mechanism of
5-FU is complex as noted above and Chinese medicine with
multiple compounds always targets many pathways, we
suspected that EESP might have a role through other genes or
pathways associated with 5-FU resistance besides regulation
of TOP2α.

Table 2: Potency of EESP in enhancing cytotoxicity of 5-FU in
HCT-8/5-FU cells (n� 3).

Anticancer drugs IC50 RFa RRR%b

0.25mg/mL EESP+ 5-FU 49.46± 2.14 3.88 74.56
0.50mg/mL EESP+ 5-FU 7.47± 1.91 20.68 95.53
aRF and bRRR% represent reversal effect of modulators. *e greater the RF
magnitude, the more significant the effect. When RRR% ≥100%, the
modulator totally reversed the effect of 5-FU; when RRR% <100%, the
modulator only partially reversed the effect of 5-FU.
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TOP2α is a DNA helicase encoded by the TOP2A gene,
which is located in chromosome 17. TOP2α can instantaneously
break and connect double-stranded DNA chains and regulate
and alter the topological states of DNAduring transcription and
replication. Some type IIA topoisomerase inhibitors, including
epipodophyllotoxins and anthracyclines, were selected for re-
lated diseases [39]. Mutation or overexpression of TOP2α was
associated with chemotherapeutic resistance to some drugs,
such as etoposide, irinotecan, and 5-FU [40–42]. In our study,
we also confirmed the gene’s pivotal role in 5-FU resistance by
bioinformatics analysis. Besides TOP2α, topoisomerase-I, an-
other protein from the topoisomerase family, has also been
observed to be overexpressed in the tumor recurrences of
patients with colorectal cancer who had received 5-FU-based

adjuvant chemotherapy [42, 43]. We suggest that some
other members in the topoisomerase family probably take part
in the 5-FU-resistance mechanism or in the function of Spica
Prunellae.

In our study, the protein level of TOP2α in HCT-8/5-FU
cells after 5-FU exposure increased significantly, whereas its
transcription level showed no difference from that in the
control group (Figures 2(c)–2(e)). Since the levels of miR-494
was not change in the 5-FU exposure too (Figure 4(d)), it does
not exclude the possibility that resistance to 5-FU for HCT-8/
5-FU cells in this concentration of 5-FU was not in the ac-
tivation of transcriptional levels but in the inhibition of
protein degradation as a compensatory effect to protect cells.
Of course, this hypothesis would be confirmed in the future
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Figure 3: EESP combined with 5-FU suppressed the colony formation ability and induced apoptosis of HCT-8/5-FU cells. (a) After treatment
with 5-FU (3.2mM) with/without EESP (0.25mg/mL or 0.5mg/mL) or EESP (0.25mg/mL or 0.5mg/mL) for 48h HCT-8/5-FU cells were fixed
withmethanol and stainedwith 0.01% crystal violet. (b)*e numbers of colony formationwere calculated from (a). (c) Treatment ofHCT-8/5-FU
cells with 5-FU (3.2mM) with/without EESP (0.25mg/mL or 0.5mg/mL) or EESP (0.25mg/mL or 0.5mg/mL) for 48 h cell staining with annexin
V/PI and analysis by using fluorescence-activated cell sorting. (d) Statistical analysis of the data from (c). Compared with the control group,
∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001; for 5-FU group, #P< 0.05, ##P< 0.01, and ###P< 0.001.
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by performing a cyclohexamide chase assay [44].Moreover, in
our study, we also observed that EESP could enhance 5-FU
sensitivity of HCT-8/5-FU cells by cell apoptosis induction;
considering that EESP contained multicompounds which

helped it play multiroles, there must be some apoptosis
pathways involved.

A recent study found that TOP2α is activated by Y-box
binding protein-1 in transcriptional level, which is a
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Figure 4: EESP enhanced the 5-FU sensitivity of HCT-8/5-FU cells through inhibition of TOP2α. (a) Detection of relative protein levels for
HCT-8 and HCT-8/5-FU cells treated with 5-FU (3.2mM), with or without EESP (0.25mg/mL or 0.5mg/mL), for 48 h by western blot and
(b) quantification. (c) Real-time PCR evaluation of the mRNA levels of TOP2A. *e data from western blot and real-time PCR were
normalized to GADPH. (d) Detection of levels of miR-494 by real-time PCR in HCT-8 and HCT-8/5-FU cells treated with 3.2mM of 5-FU
for 48 h (e) Relative levels of miR-494 in HCT-8/5-FU cells treated with 5-FU (3.2mM), with or without EESP (0.25mg/mL or 0.5mg/mL),
for 48 h. Data were normalized to U6. Compared with control, ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001; compared with the 5-FU (3.2mM)
treatment alone group, #P< 0.05, ##P< 0.01, and ###P< 0.001.
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multifunctional oncoprotein containing an evolutionarily
conserved cold shock domain and dysregulates a wide range
of genes involved in cell proliferation and survival, drug
resistance, and chromatin destabilization by cancer [44]. So
there is a possibility for EESP being suppressed by the ex-
pression of TOP2α via YBX1. Of course, this assumption
needs to be confirmed by further investigation. Since our
study suggested that TOP2α might be a marker for 5-FU
resistant, it could be an index for selection of more effective
treatments for 5-FU resistant patients. Additionally, we also
recommend trying the medications like TOP2α inhibitors or
other medicines like Spica Prunellae (with less side effects and
charges) in the clinical therapy might achieve some new hope
to change the bottleneck period for 5-FU resistance.

MicroRNAs (miRNAs) are a group of small noncoding
RNA molecules. *ey are crucial in every period of life or
cancer development. Previous studies have demonstrated that
TOP2αwas one of the targets for miR-494 [28]. miR-494 has a
global regulatory role in the cell cycle process by binding to the
open reading frame and downregulating TOP2α and PTTG1
[28]. Fortunately, we noticed that EESP enhanced 5-FU
sensitivity by downregulating TOP2α and miR-494. We
suggest that EESP probably suppressed expression of TOP2A
via upregulation of miR-494. *is mechanism will be con-
firmed by miRNA mimics and inhibitors in a planned future
study. Furthermore, because more than two of these miRNAs
are involved in the regulation of TOP2α or drug-resistance
mechanisms, they would be valuable to study in the future.

5. Conclusions

Chemotherapy is a common phenomenon during the
treatment of colorectal cancer. In our study, we aimed to
find some key genes involved in chemotherapy resistance
of colorectal cancer. An important gene, TOP2A, was
obtained for 5-FU resistance of colorectal cancer by
bioinformatics analysis. Our study showed that TOP2α is a
potentially important protein in the 5-FU-resistance
mechanism and Spica Prunellae partly reversed 5-FU
resistance by downregulating TOP2α and upregulating
levels of miR-494. Furthermore, we believe that Spica
Prunellae has more advantages in clinical therapy for 5-
FU-resistant patients because it is safer and has fewer
adverse effects than chemical agents have.
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