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Abstract

Background: Previous expression quantitative trait loci (eQTL) studies have identified thousands of genetic variants
to be associated with gene expression at the mRNA level in the human liver. However, protein expression often
correlates poorly with mRNA levels. Thus, protein quantitative trait loci (pQTL) study is required to identify genetic
variants that regulate protein expression in human livers.

Results: We conducted a genome-wide pQTL study in 287 normal human liver samples and identified 900 local
pQTL variants and 4026 distant pQTL variants. We further discovered 53 genome hotspots of pQTL variants.
Transcriptional region mapping analysis showed that 1133 pQTL variants are in transcriptional regulatory regions.
Genomic region enrichment analysis of the identified pQTL variants revealed 804 potential regulatory interactions
among 595 predicted regulators (e.g., non-coding RNAs) and 394 proteins. Moreover, pQTL variants and trait-variant
integration analysis implied several novel mechanisms underlying the relationships between protein expression and
liver diseases, such as alcohol dependence. Notably, over 2000 of the identified pQTL variants have not been
reported in previous eQTL studies, suggesting extensive involvement of genetic polymorphisms in post-
transcriptional regulation of protein expression in human livers.

Conclusions: We have partially established protein expression regulation networks in human livers and generated a
wealth of pQTL data that could serve as a valuable resource for the scientific community.
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Introduction
High-throughput sequencing technologies enabled the
analysis of genome-wide expression quantitative trait
loci (eQTL) to study the transcriptional and post-
transcriptional regulatory mechanisms involved in the
regulation of mRNA expression [1]. Tens of thousands
of eQTL variants have been identified to be associated
with mRNA expression in the human liver [2]. However,
mRNA expression correlates poorly with protein levels

for many genes [3], which is in part due to many post-
transcriptional factors, such as sequence features implicated
in protein translation and degradation [4, 5]. Chick et al.
studied genome-wide mRNA and protein expression in 192
mouse livers and discovered that only half of the identified
protein quantitative trait loci (pQTL) were also eQTLs [6].
Such a discrepancy between eQTLs and pQTLs was also
observed in a proteomics study of liver mitochondria in re-
combinant inbred mice [7]. Several eQTL studies have been
performed in human livers [8–11], but the discrepancy be-
tween mRNA and protein expression necessitates a further
study of hepatic gene expression regulation at the protein
level. However, genome-wide pQTL studies and associated
network analyses have not been conducted in human livers.
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Liquid chromatography-tandem mass spectrometry
(LC-MS/MS)-based proteomics is a powerful approach
for relative and absolute quantification of targeted pro-
teins and of proteins at the global scale [12]. Compared
to relative quantification, absolute protein quantification
(APQ) is often more desirable for revealing complex
protein expression regulation networks [13]. Label-free
APQ methods are not dependent on heavy isotope-
labeled internal standard proteins or peptides and can
be used to quantify a large number of proteins [14].
However, most label-free APQ methods are based upon
MS1 precursor ion signals obtained from data-
dependent acquisition (DDA), which is biased towards
highly abundant peptides [15]. Schubert and colleagues
established a data-independent acquisition (DIA)-based
APQ method using a linear correlation model built on a
set of pre-selected anchor proteins [16]. We recently de-
veloped a label-free APQ method named DIA-TPA that
uses MS2 intensity signals from DIA data and an im-
proved total protein approach (TPA); this method en-
abled high-throughput global absolute protein
quantification and was successfully used to absolutely
quantify human liver proteomes [17]. In the present
study, we conducted a global proteomic analysis in 287
normal human liver samples using DIA-TPA and ana-
lyzed protein-protein association patterns. Furthermore,
we performed a genome-wide pQTL study to uncover

both transcriptional and post-transcriptional mecha-
nisms regulating protein expression in human livers
(Fig. 1). The study also determined genome hotspots of
pQTLs for correlated proteins.

Results
Absolute quantification and subcellular location of
hepatic proteins
A total of 1508 proteins were absolutely quantified in
287 HLS9 samples using the DIA-TPA proteomic
method (Additional file 1: Fig. S1 and Additional file 2:
Data file S1). The number of proteins quantified in the
present study is much less than the number of mRNA-
expressing genes in human livers as documented in
GTEx (1508 vs 26,560) [10], which is likely due to that
many transcripts are not translated into proteins, and
the concentrations of many proteins are below the limit
of detection of our proteomics assay. The relatively small
number of quantified proteins is also partially attributed
to a less sensitive micro-flow LC setting adopted in this
study and the use of a spectral library generated from
the DDA analysis of pooled HLS9 samples without pep-
tide fractionation. Subcellular location analysis indicated
that these proteins originated from all major cellular
components, ranging from the nucleus to the extracellu-
lar region (Fig. 2a). Cytosol was the largest source of
proteins, containing about half of the quantified

Fig. 1. A schematic diagram of the study investigating protein expression regulation networks in human livers. We performed genome
genotyping and whole proteome absolute protein quantification in 287 human liver samples. Transcriptional regulatory region mapping and
genomic region enrichment analysis were conducted to uncover protein expression regulatory networks. We also identified protein-disease-drug
response networks and pQTL genome hotspots
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proteins. Proteins from different subcellular sources
showed varied expression levels. For example, vesicle
proteins exhibited the highest median abundance values,
while nuclear proteins were the lowest (Fig. 2b). Human
liver transcriptome data retrieved from the GTEx data-
base revealed a different mRNA expression pattern
(Additional file 1: Fig. S1A). Most proteins had similar
expression patterns across samples, although interindi-
vidual variability existed (Additional file 3: Fig. S2).

Therefore, we performed a correlation analysis of pro-
tein expression in the 287 human liver samples.

Correlation of hepatic protein expression across
individuals
Spearman’s correlation analysis indicated that there were
more positively correlated proteins than negatively cor-
related. The median value of Spearman’s rho (correlation
coefficient) of significantly correlated protein-protein

Fig. 2. Features of quantified proteins in human livers. The number of quantified proteins in major subcellular locations (a). Violin plots of log10-
transformed protein concentrations in major subcellular locations (b). The analysis was performed using protein subcellular location data obtained
from the Gene Ontology (GO) database. Violin plot of Spearman’s correlations (Spearman’s rho) of protein expression levels in human liver (c).
The medium value of Spearman’s rho was about 0.146. Circos plot of chromosome locations of highly correlated proteins (Spearman’s rho > 0.8
or < − 0.8) (d). Lines in the circos plot represent the correlations (Spearman’s rho > 0.8 or < − 0.8) between proteins. Colors of the lines represent
chromosomal source of the correlated proteins. If proteins were from different chromosomes, the colors were determined by the chromosome
with a smaller ID number
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pairs was 0.146 (Fig. 2c), which is lower than that
(Spearman’s rho = 0.354) of the same genes at the
transcript level in human livers, as reported in GTEx
(Additional file 1: Fig. S1B). There were 104,357
medium-high correlations (i.e., Spearman’s rho > 0.5 or
< − 0.5) involving 1358 proteins. Moreover, there were
4538 high correlations (Spearman’s rho > 0.8 or < − 0.8)
encompassing 501 quantified proteins. Interestingly, the
majority of the genes encoding for the highly correlated
proteins (Spearman’s rho > 0.8 or < − 0.8) were located
on different chromosomes (Fig. 2d), indicating that
trans-regulation mechanisms may play a primary role in
the regulation of protein co-expression in the liver.

Genome-wide pQTL analysis
To investigate the regulatory mechanisms of protein ex-
pression, we genotyped 287 human liver samples and per-
formed a genome-wide pQTL analysis for the 1344
proteins identified in more than 90% of samples. We iden-
tified 6155 pQTL variant-protein interactions having a
genome-wide significance (p value < 2.99 × 10−8), involv-
ing 4886 pQTL variants and 648 proteins (Additional file 4:
Data file S2). The pQTL variants contained 2161 inde-
pendent locus markers after LD pruning. Among the iden-
tified variants, 860 were local pQTL variants and 3986
were distant pQTL variants (Fig. 3a). In addition, 40 vari-
ants acted as either local or distant pQTLs for different
proteins. Among the independent locus markers, 246 were
local pQTLs, 1905 were distant pQTLs, and 10 acted as ei-
ther local or distant pQTLs for different proteins. Among
the proteins with significant pQTL variants, 46 and 574
proteins had only local pQTLs and distant pQTLs, re-
spectively, while 28 proteins were associated with both
local and distant pQTL variants (Fig. 3a). Beyond tran-
scription regulatory regions, such as promoters and en-
hancers, pQTL variants were also found in post-
transcription regulatory regions such as untranslated re-
gions (UTRs) and coding sequence (CDS) (Fig. 3b) [4].
Surprisingly, local pQTL variants were mostly enriched
within the intronic regions of the neighboring genes, while
distant pQTL variants predominated in the introns of dis-
tant genes (Fig. 3b), which implies an important role for
introns in the regulation of protein expression. Most
pQTL variants were associated with the expression of a
single protein, but 730 pQTL variants were associated
with multiple proteins, including 67 local pQTL and 623
distant pQTL variants and 40 SNPs acting as both local
and distant pQTLs (Fig. 3c, left; Additional file 5: Fig. S3).
In an extreme case, the SNP rs78209928 was a pQTL vari-
ant for 24 proteins. Most proteins had more than one
pQTL variant; the median number of pQTL variants per
protein was 4 (Fig. 3c, right) (4 and 4.5 for distant and
local pQTL variants, respectively) (Additional file 5: Fig.
S3). The Spearman’s correlation between the effect size

(beta value) and minor allele frequency (MAF) of pQTL
variants was − 0.111, indicating that pQTL variants with
lower MAF tend to have a greater impact on protein ex-
pression. The correlations between the beta value and
MAF for coding, non-coding, local, and distant pQTL var-
iants were − 0.163, − 0.109, − 0.246, and − 0.081,
respectively.
We retrieved human liver eQTL results from four

published datasets [8–11], including 12,481 eQTLs for
12,481 genes from Innocenti et al. [11], 1027 eQTL for
337 genes from Schroeder et al. [9], 6754 eQTL for 6089
genes from Schadt et al. [8], and 323,428 eQTL for 4000
genes from GTEx (version 7) [10]. The datasets contain
both local eQTLs and distant eQTLs. Given that many
eQTL SNPs were not identified in our study because of
different genotyping arrays and populations, and protein
levels of many previously reported regulated genes were
under the detection limit of our proteomics assay, we fil-
tered eQTLs by focusing on SNPs genotyped in both
eQTL and pQTL studies and genes with both mRNA
and protein quantifications. A total of 256 genes were
found to have both eQTLs and pQTLs, while 266 and
392 genes had only eQTLs and pQTLs, respectively
(Additional file 6: Fig. S4A). Across all genes, 1373
eQTL and 2750 pQTL associations were identified, but
only 296 were shared associations found in both previ-
ous eQTL studies and the present pQTL investigation
(Additional file 6: Fig. S4B). The shared associations
contained 256 variants (Additional file 6: Fig. S4C), and
all variants were local QTLs, which is consistent with a
previous study and suggests that local QTLs tend to
affect both mRNA and protein abundance [6]. Of note,
most of the eQTLs were local eQTLs whereas the identi-
fied pQTLs were more evenly distributed between local
and distant pQTL regions (Additional file 6: Fig. S4D-E).
We further analyzed the colocalization of primary

pQTL and eQTL signals and found that the lead pQTL
variants of GMPPB, QPRT, DECR2, ETHE1, HAAO,
DDAH2, GSTA2, and CNDP2 were colocalized with the
previously reported eQTL variants (Additional file 7:
Table S1) [8–11].

pQTL hotspot analysis
Protein expression correlation analysis revealed that
1358 out of the 1508 quantified proteins correlated with
the expressions of other proteins (Spearman’s rho > 0.5
or < − 0.5). We identified 53 pQTL hotspots for these
correlated proteins (Fig. 4, Additional file 8: Data file
S3). The largest one is hotspot 22 (chr5: 45320127-
46298172), while the smallest one is hotspot 2 (chr2:
190452249-190452250). Of note, the pQTLs in hotspot
53 (chr22: 25781394-25781897) were associated with ex-
pressions of 12 proteins, and all of them are involved in
mitochondrial ATP synthesis. The median value of
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Spearman’s rho among proteins associated with pQTLs
in hotspots was 0.826 (Additional file 9: Fig. S5), which
is significantly higher than the median value of Spear-
man’s rho (0.146) between all proteins. Moreover, shared

hotspots are significantly enriched (p value 2.2 × 10−16)
in highly correlated protein pairs (Spearman’s rho > 0.5
or < − 0.5) relative to protein pairs with low correlations
(Spearman’s rho < 0.5 and > − 0.5). These results suggest

Fig. 3. Statistics of pQTLs discovered in human livers. Venn plots of the identified local and distant pQTL variants (a, top) and proteins with local
pQTLs and/or distant pQTLs (a, bottom). A pQTL variant associated with multiple proteins was counted once. Distribution of local and distant
pQTL variants in genomic regions (b). The number placed on the top of a column indicates the number of pQTL variants found in the specific
genomic region. A pQTL variant associated with the expression of multiple proteins can be counted multiple times. For example, if a local pQTL
variant was associated with the expression of two proteins, and the variant was located in the CDS region of one protein and the promoter
region of another protein, then the variant was counted twice as a local pQTL in both CDS and promoter regions. The number of pQTLs found
to be associated with various number of proteins (c, left). Violin plot of the number of pQTL variants per protein (c, right). The median number of
pQTL variants per protein was 4
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that pQTLs in the hotspots might be involved in some
essential regulatory mechanisms of protein co-
expression.
We also identified 12 eQTL hotspots for the correlated

proteins (Spearman’s rho > 0.5 or < − 0.5) using pub-
lished human liver eQTL data [8–11] (Additional file 8:
Data file S3). Interestingly, one eQTL hotspot (chr22:
24237463-24240340) was also a pQTL hotspot. The e/

pQTLs in this hotspot were associated with both mRNA
and protein expressions of DDT and MIF.

Networks regulating protein expression in human livers
To investigate the potential mechanisms underlying the
associations between protein expression and pQTLs, es-
pecially the pQTLs in hotspots, we mapped the identi-
fied pQTL variants to transcriptional regulatory regions,

Fig. 4. Genome hotspots for pQTL and eQTL identified in human livers. A pQTL hotspot was identified where genome distance between pQTLs
is less than 1 Mb, and the Spearman’s rho values of the associated proteins were > 0.5 or < − 0.5. eQTL hotspots were identified with
the same method

He et al. BMC Biology           (2020) 18:97 Page 6 of 16



such as promoters, CCCTC-binding factor (CTCF) bind-
ing sites, and enhancer regions. A total of 1133 pQTL
variants were found to be located in these transcriptional
regulatory regions (Additional file 4: Data file S2) and as-
sociated with the expression levels of 399 proteins.
Among these, the metabolism of cobalamin associated B
(MMAB) protein had the largest number of pQTL vari-
ants in the transcriptional regulatory regions, all of
which were local pQTL (Additional file 4: Data file S2).
Our results imply that transcriptional regulation of hep-
atic protein expression is a complex yet precisely regu-
lated process, as exemplified by the pQTL variants of
the macrophage migration inhibitory factor (MIF)
(Fig. 5a) and D-dopachrome tautomerase (DDT) proteins
(Fig. 5b), which appear to be co-regulated proteins
associated with pQTLs in hotspots 51 and 52
(Additional file 8: Data file S3). DDT is a cytokine and a
functional homolog of MIF [18]. Levels of MIF and
DDT proteins were highly correlated (Spearman’s rho =
0.800, p value < 0.001, Fig. 5c), and they shared eight
local pQTL variants including rs5760096 and rs5760124
(Fig. 5d). rs5760096 is located in a TF binding site in an
enhancer region and positively associated with the ex-
pression of both DDT (beta = 0.997, p value = 1.4 ×

10−26) and MIF (beta = 0.490, p value = 2.3 × 10−18)
(Fig. 5a, b, Additional file 4: Data file S2). rs5760124 re-
sides in a CTCF binding site in an open chromatin re-
gion and was negatively associated with the expression
of both DDT (beta = − 1.143, p value = 7.7 × 10−46) and
MIF (beta = − 0.607, p value = 5.6 × 10−36) (Fig. 5a, b;
Additional file 4: Data file S2). The binding of CTCF to
an open chromatin region can form a potent inhibitor of
transcription [19]. Thus, an antagonistic transcriptional
mechanism is likely involved in the regulation of MIF
and DDT protein expression. This unique regulatory
mechanism might be necessary for more precise expres-
sion control, given that the two proteins need to work in
concert in various biological processes [20].
Another interesting example of the protein expression

regulation network can be found in the regulation of 2,
4-dienoyl-CoA reductase 1 (DECR1) and proteasome
26S subunit, non-ATPase 4 (PSMD4) protein expression,
which are co-regulated proteins associated with pQTLs
in hotspots 32 and 33. DECR1 and PSMD4 shared 17
pQTL variants, all of which were local pQTLs for
DECR1 but distant pQTLs for PSMD4 (Fig. 6a).
In addition to transcriptional regulatory factor analysis,

we conducted a genomic region enrichment analysis to

Fig. 5. Protein regulatory networks for MIF and DDT. Manhattan plots of pQTL variants associated with protein levels of MIF (a) and DDT (b).
Protein levels of MIF and DDT were highly correlated in human livers (c). Protein regulatory networks for DDT and MIF (d). The predicted
regulators include protein-coding genes and non-coding RNA genes significantly enriched with pQTL variants (Bonferroni-adjusted p value <
0.05). Regulator nodes are formatted as “regulator: gene name”
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Fig. 6. Protein regulatory networks for DECR1 and PSMD4. Protein regulatory networks for DECR1 and PSMD4 (a). The predicted regulators
include protein-coding genes and non-coding RNA genes significantly enriched with pQTL variants (Bonferroni-adjusted p value < 0.05). Predicted
regulator nodes are formatted as “regulator: gene name”. Co-regulation of DECR1 and PSMD4 in human livers (b). Chromosome positions of NBN,
DECR1, and PSMD4 (b, top-left). Genomic region enrichment analysis predicted NBN to be a regulator of DECR1 and PSMD4. Protein levels of
DECR1 and PSMD4 were highly correlated in human livers (b, top-right). Manhattan plots of pQTL variants associated with DECR1 (b, bottom-left)
and PSMD4 (b, bottom-right). The missense variant rs1805794 of NBN is in a binding site of the HOXB2::NHLH1 transcription factor complex (b,
top-left). The rs1805794 was also one of the top pQTL variants significantly associated with the protein expressions of DECR1 (b, bottom-left) and
PSMD4 (b, bottom-right)
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further investigate the potential regulators of protein ex-
pression. The analysis predicted 595 regulators within
protein-coding genes and non-coding RNA genes for
394 proteins (Additional file 10: Data file S4). The UTRs,
CDS, and exonic and intronic regions of the predicted
regulators were significantly enriched with pQTL vari-
ants (Bonferroni-adjusted p value < 0.05). As an example,
we found pQTL variants for MIF and DDT to be
enriched in the exon regions of several non-coding RNA
genes, such as AP000350.2, MIF-AS1, and AP000350.6
(Fig. 5d). Besides non-coding RNA genes, some protein-
coding genes were also enriched for pQTL variants. For
example, pQTL variants of DECR1 and PSMD4 were
significantly enriched (Bonferroni-adjusted p value <
0.05) in the UTRs, exons, and introns of the nibrin
(NBN) gene (Fig. 6a). DECR1 and PSMD4 were almost
perfectly correlated (Spearman’s rho = 0.974, p value <
0.001) (Fig. 6b, top-right) and shared 29 pQTL variants
(Additional file 4: Data file S2). Of these pQTL variants,
rs1805794 is a missense variant of NBN (Fig. 6b, top-
left). Meanwhile, rs1805794 is within the binding site of
the HOXB2:NHLH1 transcription factor complex and
was one of the top pQTL variants negatively associated
with protein levels of DECR1 (beta = − 0.535, p value =
1.6 × 10−10) and PSMD4 (beta = − 0.110, p value = 5.8 ×

10−12) (Fig. 6b). These results imply potential relation-
ships between NBN, DECR1, and PSMD4.

Genome-wide pQTL analysis filled the gap between
variants and associated traits
To date, tens of thousands of associations between gen-
etic variants and clinical traits, such as diseases and drug
responses, have been uncovered by numerous associ-
ation studies. However, understanding the molecular
mechanisms underlying the observed associations re-
mains a challenging task. Given that pQTLs are more
predictive of gene functions than eQTLs, we expect that
pQTL analysis can help reveal the mechanisms govern-
ing the interactions between genetic variants and clinical
traits. Accordingly, we collected published association
data from GWAS Catalog, ClinVar, PharmGKB data-
bases, and mapped pQTLs to clinical traits via rs num-
bers. We found that 131 pQTL variants mapped to 201
traits (Additional file 11: Data file S5), suggesting 252
protein-trait interactions (Fig. 7a). The results shed light
on the mechanisms underlying the associations between
SNPs and clinical traits. For example, rs698 is a missense
variant in alcohol dehydrogenase 1C (ADH1C), which is
involved in alcohol metabolism [21]. This variant is asso-
ciated with susceptibility to alcohol dependence [22]. In

Fig. 7. Genome-wide pQTL analysis filled the gap between genome variants and associated traits. Interaction networks of pQTL variants, proteins,
and traits in human livers (a). The variant-protein-trait interactions were discovered by pQTL and variant-trait integration analysis. Variant-protein,
variant-trait, and protein-trait interactions are marked as blue solid, gray solid, and blue dotted lines, respectively. Variants located in the same
gene are combined and named as “SNP: gene name”. Manhattan plot of pQTL variants associated with S100A11 (b), SERPINC1 (c), and VCL (d)
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this study, rs698 was found to be a distant pQTL variant
negatively associated with protein expression levels of
S100 calcium-binding protein A11 (S100A11) and serpin
family C member 1 (SERPINC1) (Fig. 7b, c;
Additional file 4: Data file S2), and S100A11and SERP
INC1 are potential co-regulated proteins associated with
pQTLs in hotspots 17 and 18 (Additional file 8: Data file
S3). Our results suggest that S100A11 and SERPINC1
may be involved in molecular mechanisms underlying
the association between rs698 and alcohol dependence.
We further performed a colocalization analysis of pri-

mary pQTL and GWAS signals and found that the lead
pQTL variant of AKR1A1 and HAAO were colocalized
with the GWAS variants associated with blood protein
levels and hypospadias, respectively (Additional file 7:
Table S2).

Discussion
As the largest internal organ in the human body, the
liver is involved in numerous critical physiological func-
tions, such as digestion and detoxification. Precise regu-
lation of gene expression is essential for these functions.
For the first time, we conducted a genome-wide pQTL
study to reveal networks regulating hepatic protein ex-
pression in humans. Several studies have identified thou-
sands of eQTL variants in human livers [8–11]. The
comparison between our pQTL and previous eQTL
findings revealed that only a small portion of QTL vari-
ants were associated with both protein and mRNA ex-
pressions, and all of which were local QTLs. Distant
QTLs were associated with either mRNA or protein
levels. Transcriptional regulation often relies on the
binding of transcription factors to a genome position
close to the regulated gene, which makes eQTLs more
likely to be local regulatory elements. Therefore, relative
to pQTL analysis, eQTL studies usually employ more
stringent criteria to identify distant regulatory variants
[8–11]. Thus, the discrepancy in distant variants be-
tween previous eQTL and our pQTL analysis could be
in part due to the differences in data analysis ap-
proaches. However, the greater number of distant
pQTLs identified in our pQTL study may reflect the fact
that protein levels can be affected by additional post-
transcriptional and post-translational regulatory mecha-
nisms, in contract to mRNA levels. The observation sug-
gests the importance of studying the gene expression at
the protein level in order to comprehend the phenotypes
of genetic variants.
In the present study, we discovered 53 genome hot-

spots containing pQTLs for 1358 correlated proteins.
Interestingly, pQTLs for the correlated proteins were
grouped to form a “hotspot” on the genome. Proteins as-
sociated with pQTLs in a hotspot often share the same
function or belong to the same biological pathway

(Additional file 8: Data file S3). For example, pQTLs in
hotspot 53 were associated with the expressions of 12
proteins, including ATP synthase, transporters, and elec-
tron transfer flavoprotein dehydrogenase. All these pro-
teins are involved in the mitochondrial ATP synthesis
pathway, suggesting that the hotspot analysis could help
uncover the co-regulating mechanisms of proteins in a
specific biological process. However, we must take pre-
cautions when interpreting the results from the hotspot
analysis. For example, a hotspot may result from a vari-
ant of a transcription factor that regulates the expression
of multiple functionally unrelated genes.
This study discovered both transcriptional and post-

transcriptional mechanisms involved in regulating pro-
tein expression in human livers (Additional file 4: Data
file S2 and Additional file 10: Data file S4). The data can
help understand the protein co-regulation mechanisms
involving variants in pQTL hotspots. For example, MIF
and DDT protein expressions are associated with pQTLs
in hotspots 51 and 52. Our results suggest that their
protein levels were not only transcriptionally regulated
by the local pQTLs rs5760096 and rs5760124 but may
also post-transcriptionally regulated by the non-coding
RNAs AP000350.2, MIF-AS1, and AP000350.6 (Fig. 5d).
Both rs5760096 and rs5760124 are located in TF binding
sites, but their effects were in opposite directions.
AP000350.2 is a kelch-like 5 (KLHL5) pseudogene and
produces a non-coding RNA. MIF-AS1 encodes a non-
coding antisense RNA. AP000350.6 encodes a long inter-
genic non-coding RNA (lincRNAs). The pQTL variants
associated with DDT and MIF were significantly
enriched (Bonferroni-adjusted p value < 0.05) in exon re-
gions of these three non-coding RNA genes (Fig. 5d,
Additional file 10: Data file S4). Thus, the DDT and MIF
protein levels appear to be co-regulated by these tran-
scriptional and post-transcriptional regulators, leading to
a highly correlated expression pattern (Spearman’s rho =
0.783, p value < 0.001) in human livers. The regulation
of DDT and MIF co-expression demonstrates that hep-
atic protein expression is precisely and efficiently regu-
lated through a complex regulation network at the
transcriptional and post-translational levels.
The complexity of protein expression regulation can

be further exemplified by the co-regulation of the
DECR1 and PSMD4 genes respectively located on
chromosome 8 and 1. DECR1 and PSMD4 protein levels
associated with pQTLs in hotspots 32 and 33
(Additional file 8: Data file S3). Their protein levels were
almost perfectly correlated (Spearman’s rho = 0.974, p
value < 0.001) (Fig. 6b, top-right) and shared 29 pQTL
variants, of which 17 pQTL variants were in transcrip-
tion regulatory regions, 11 pQTL variants were in coding
genes, and 1 pQTL variant was in an intergenic region
(Additional file 4: Data file S2 and Additional file 10:

He et al. BMC Biology           (2020) 18:97 Page 10 of 16



Data file S4). The enrichment analysis of pQTL variants
suggests that the NBN gene is a potential regulator of
both DECR1 and PSMD4 (Fig. 6a). Since NBN protein
was undetectable due to its low expression level in the
liver [23], we were unable to determine the association
between NBN protein expression and the protein levels
of DECR1 and PSMD4. However, the biological func-
tions of the three proteins indicate a potential protein-
protein interaction among NBN, DECR1, and PSMD4.
NBN is a component of the MRE11-RAD50-NBN
(MRN) complex, which plays a critical role in the early
steps of cellular response to DNA damage and repair
[24, 25]. DECR1 participates in the beta-oxidation [26].
PSMD4 is a component of the 26S proteasome, which is
involved in the ATP-dependent degradation of ubiquiti-
nated proteins and DNA damage response [27]. Both
DECR1 and PSMD4 are involved in biological progresses
initiated by NBN in response to DNA damage [28], indi-
cating that DECR1 and PSMD4 could be the down-
stream functional proteins of NBN for DNA damage
repair. Of the identified pQTL variants, rs1805794 is a
missense variant of NBN (Fig. 6b, top-left), and the vari-
ant was associated with altered NBN functions and vari-
ous diseases [29–31]. Interestingly, rs1805794 also
resides in the transcription factor binding site of DECR1
and PSMD4, suggesting that this SNP may directly im-
pact the transcription of DECR1 and PSMD4. However,
functional experiments are needed to verify whether
rs1805794 is involved in the co-regulation of these three
genes.
This study not only uncovered protein regulatory net-

works but also linked proteins to specific clinical traits,
such as diseases and drug responses, through integrated
pQTL and GWAS analysis (Additional file 11: Data file
S5). For instance, we were able to link S100A11 and
SERPINC1, proteins associated with pQTLs in hotspots
17 and 18, to alcohol dependence through their distant
pQTL variants located in ADH1C (Additional file 11:
Data file S5, Fig. 7a). ADH1C protein is involved in alco-
hol metabolism and associated with alcohol dependence
[22, 32]. S100A11 belongs to the S100 protein family
and is a known inflammatory factor [33]. SERPINC1 is a
member of the serpin superfamily and a plasma protease
inhibitor; it inhibits thrombin and acts as an anti-
inflammatory factor [34]. Inflammation is important for
the development of alcohol dependence [35]. However,
the origin and molecular mechanisms of inflammation
in alcohol dependence remain unclear. The study im-
plies that inflammation associated with the development
of alcohol dependence might be partially mediated by
S100A11 and SERPINC1 proteins.
This study also revealed a potential role for metabo-

lites in the trans-regulation of protein production in hu-
man livers. The SNP rs1126671, a missense variant in

ADH4, was found to be a distant pQTL variant for vin-
culin (VCL) (Fig. 7d). ADH4 is a member of the alcohol
dehydrogenase family and participates in the retinoid
metabolism [36]; retinoid can induce significant expres-
sion of VCL [37]. Therefore, rs1126671 may affect the
VCL protein expression by altering the retinoid metabol-
ism via its effect on ADH4 activity. Since the liver is the
largest source of metabolic enzymes, this conclusion
leads to the hypothesis that metabolites could act as in-
termediates for distant pQTLs in the regulation of pro-
tein expression in human livers.

Conclusions
In sum, for the first time, protein expression regulation
networks have been proposed in human livers via a glo-
bal absolute quantitative proteomics-based pQTL ana-
lysis. The expression of hepatic proteins was found to be
tightly regulated by both transcriptional and post-
transcriptional regulatory elements in a complex yet pre-
cise manner. This study has suggested many post-
translational regulatory elements, such as non-coding
RNAs, and protein-protein interactions, which would be
impossible using conventional eQTL approaches. We
also discovered that pQTLs formed many hotspots on
the genome, which may contribute to the co-expression
of proteins. Furthermore, the study sheds light on our
understanding of the mechanisms through which genetic
variants contribute to clinical traits. Finally, the wealth
of data generated by the study (Additional files 2: Data
file S1, 4: Data file S2, 8: Data file S3, 10: Data file S4,
11: Data file S5) provides a valuable resource for the sci-
entific community of investigators in the field of hepa-
tology research. Future functional experiments would be
critical to validate these findings.

Materials and methods
Human liver samples
We obtained normal human liver tissues from three pro-
viders: XenoTech LLC (Lenexa, KS, USA), the University
of Minnesota Liver Tissue Cell Distribution System, and
the Cooperative Human Tissue Network (CHTN). We
randomly selected a subset of samples from the banked
tissues for this investigation. The demographic informa-
tion of the donors is limited, and we summarized the
gender and ethnicity information in Supplementary
Table S3 (Additional file 12). To avoid possible p value
inflation caused by population structure, we performed a
genotype principal component analysis to identify out-
liers (Additional file 12: Fig. S6) and included 287 sam-
ples in the final pQTL analysis.

Liver S9 fraction preparation
We prepared human liver S9 fractions (HLS9) from
about 200mg of frozen liver tissues using a previously
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published method [38, 39]. Briefly, we cut liver tissues
into small pieces (1 × 1 × 1mm) and homogenized them
using a microcentrifuge pestle in 1.5-mL microcentrifuge
tubes with 0.5 mL ice-cold phosphate-buffered saline
(PBS). We centrifuged the homogenates at 9000g for 20
min at 4 °C, and the top lipid-containing layer was re-
moved. This centrifugation and top layer removal were
repeated once, and the resulting supernatants (S9 frac-
tions) were collected and stored at − 80 °C until analysis.

Data-independent acquisition proteomics
We prepared HLS9 samples for proteomic analysis using
the method detailed previously [39]. Briefly, following
protein reduction and alkylation, we first digested pro-
tein samples using lysyl endopeptidase (protein to lysyl
endopeptidase = 100:1) in an orbital incubator shaker at
220 rpm and 37 °C for 6 h. We then performed the sec-
ond step digestion using tosyl phenylalanyl chloromethyl
ketone-treated trypsin at a protein to trypsin ratio of 50:
1 at 220 rpm and 37 °C overnight. We conducted the
LC-MS/MS analysis on a Sciex TripleTOF 5600 plus
mass spectrometer system coupled with an Eksigent 2D
plus LC system. We used a trap-elute LC configuration
for sample separation, which included a trapping column
(ChromXP C18-CL, 120 Å, 5 μm, 10 × 0.3 mm, Eksigent
Technologies) and an analytical column (ChromXP C18-
CL, 120 Å, 150 × 0.3 mm, 5 μm, Eksigent Technologies).
The mobile phase consisted of water with 0.1% formic
acid (phase A) and acetonitrile containing 0.1% formic
acid (phase B). The sample was first trapped and cleaned
on the trapping column with the mobile phase A deliv-
ered at a flow rate of 10 μL/min for 3 min before being
separated on the analytical column with a gradient at a
flow rate of 5 μL/min. The gradient program was set as
follows for the mobile phase B: 0–68min, 3–30%; 68–
73min, 30–40%; 73–75min, 40–80%; 75–78min, 80;
78–79min, 80–3%; and 79–90 min, 3%. We injected
6 μg of peptides into the mass spectrometer and also in-
cluded an injection of 6 μL of water between each sam-
ple to minimize sample carryover. The mass
spectrometer was operated in positive ion mode with the
ion spray voltage floating at 5500 V and the source
temperature set at 280 °C. The DIA scheme included a
250-ms TOF-MS scan from 400 to 1250 Da and MS/MS
scans from 100 to 1500 Da [39]. The MS/MS scans of all
precursors were performed in a cyclic manner using a
100-variable isolation window scheme. The accumula-
tion time was 25ms per isolation window, resulting in a
total cycle time of 2.8 s. We used the Spectronaut™ Pul-
sar software (version 11.0, Biognosys AG, Schlieren,
Switzerland) to obtain MS2 signals of fragment ions
from DIA data with default settings (precursor Q value
< 0.01, protein Q value < 0.01) with an in-house refer-
ence spectral library generated in our previous study

[17]. To generate this library, we used the MaxQuant
(version: 1.5.3, Max Planck Institute of Biochemistry,
Martinsried, Germany) software to analyze the data-
dependent acquisition (DDA) data of HLS9 samples. We
selected trypsin as the digestion enzyme, set peptide-to-
spectrum match (PSM) false discovery rate (FDR) < 0.01
and protein FDR < 0.01, and selected the “match be-
tween runs” during the MaxQuant analysis. We used a
human reference proteome FASTA file containing 21,
010 protein entries and 74,856 additional protein iso-
forms downloaded from Uniprot on February 1, 2018.

Absolute protein quantification
Absolute protein expression levels in human livers were
determined by the DIA-TPA method we recently pub-
lished using MS2 intensity signals obtained from DIA
[17]. We calculated the concentration of protein i [pmol]
in 1mg total input protein with the following equation:

Protein ið Þ ¼ MS2 signal ið Þ
Total MS2 signal�Molecular mass ið Þ � 109

The MS2 signal(i) is the sum of the MS2 peak areas of
all detected peptides from protein i. Total MS2 signal is
the sum of the MS2 peak areas of all peptides reported
by Spectronaut™ Pulsar under default settings (Precursor
Q value < 0.01). Molecular mass(i) is the molecular
weight of protein i. Note that some peptides were shared
by different proteins. We reasoned that the relative MS
signals from unique peptides of different proteins would
reflect the relative abundances of the individual proteins,
and thus, the MS signals of shared peptides can be cor-
rectly distributed among the proteins based on the rela-
tive abundances of unique peptides. Accordingly, we
calculated MS2 signal(i) for proteins with shared pep-
tides using the following equation:

MS2 signal ið Þ ¼
X

MS2 signal ið Þunique
þ
X P

MS2 signal ið ÞuniqueP
MS2 signal Gð Þunique

MS2 signal Gð ÞShared

In this equation, ∑MS2 signal(i)unique is the sum of
the MS2 peak areas of unique peptides from protein
i, and ∑MS2 signal(G)unique is the sum of the MS2
peak areas of peptides unique to a group of proteins
that have shared peptides with protein i. MS2 sig-
nal(G)Shared is the MS2 peak areas of all peptides
shared between protein i and other proteins in the

group. Therefore,
P P

MS2 signalðiÞuniqueP
MS2 signalðGÞunique

MS2 signal

ðGÞShared is the redistribution of the MS2 peak areas
of the shared peptides to protein i.
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Subcellular location and protein expression correlation
We obtained protein subcellular locations from Gene
Ontology (GO) annotation data downloaded from the
GO database on January 24, 2019. We mapped proteins
to subcellular locations using Uniprot IDs. We used R
package Hmisc to determine Spearman’s rank correla-
tions (Spearman’s rho) between different protein expres-
sions. We plotted protein correlation using the Circos
software.

Genome-wide genotyping
We genotyped the 287 human liver samples using the
Illumina Multi-Ethnic Global Array (Illumina, Miami,
USA). This genotyping array contains 1,779,819 markers
with comprehensive genomic coverage for several global
populations. We used Genome Studio (Illumina, Miami,
USA) for SNP calling, while subsequent quality control
(QC) analysis was performed using PLINK (version 1.9).
We removed SNPs with call rates < 0.99, with MAF <
0.01, or deviating from Hardy-Weinberg equilibrium
(p < 0.0001) from the dataset.

Genotype imputation
We used the Michigan Imputation Server (https://impu-
tationserver.sph.umich.edu) to impute SNPs that passed
QC. The Imputation Server is based on the Minimac3
algorithm and the 1000 Genomes Project cosmopolitan
reference panel (Phase 3 v5) [40]. QC analysis was ap-
plied to the imputed genotypes using PLINK (version
1.9) to remove SNPs having an estimated posterior prob-
ability lower than 0.99 in any of the 287 samples, a call
rate < 0.99, MAF < 0.01, or deviation from Hardy-
Weinberg equilibrium with p < 0.0001. SNPs on sex
chromosomes were excluded from the analysis.

pQTL analysis
The genome-wide association study (GWAS) for pQTL
analysis in human livers included a dataset of 1,671,387
SNPs merged from the genotyping array and imputation
analysis. We performed linkage disequilibrium (LD)
pruning utilizing PLINK (version 1.9) with window size
50, step size 5, and R2 threshold 0.8. The analysis identi-
fied 803,444 SNPs as independent locus markers. We
quantified absolute protein expression levels of 1508
proteins in 287 human liver samples using the afore-
mentioned DIA-TPA proteomic method. Among those,
1344 proteins were quantifiable in more than 90% of hu-
man liver samples and were included in the pQTL ana-
lysis. We determined the additive effects of each SNP on
protein expression utilizing PLINK (version 1.9) with a
linear regression model, which used ethnicity, gender,
and the top three principal components identified from
the genotype principal component analysis (Add-
itional file 12: Fig. S6) as covariates. We obtained

ethnicity and gender information from sample providers.
To account for multiple comparisons, we used a p value
threshold of 2.99 × 10−8 based on the number of the
SNPs analyzed, which is equivalent to a FDR of ~ 1%.
pQTL variants within 1Mb of the gene being regulated
were considered local pQTLs, while other pQTL variants
were defined as distant pQTLs [41, 42]. The estimated
false discovery rates of the local pQTLs and distant
pQTLs were 0.005% and 1.3%, respectively. We gener-
ated Manhattan plots of the GWAS results using the R
package qqman.

pQTL hotspot analysis
Two neighboring pQTL variants were selected as a hot-
spot seed if (1) the two variants were associated with the
expressions of different proteins, (2) the distance of the
variants was less than 1Mb, and (3) the absolute value
of Spearman’s correlation (Spearman’s rho) among the
proteins associated with the variants was over 0.5. An-
other neighboring pQTL variant was added to the hot-
spot if the variant was within 1Mb from the hotspot
seed, and the absolute value of Spearman’s correlation
between the protein associated with the candidate vari-
ant and the protein associated with the nearest variant
in the hotspot seed was over 0.5. We repeated this step
until no neighboring pQTL variant met the above cri-
teria. To investigate the function of every hotspot region,
we selected GO annotations annotated to at least half of
proteins in every single hotspot as the annotations of the
hotspot. We performed the enrichment analysis of
shared hotpots among highly correlated protein pairs
(Spearman’s rho > 0.5 or < − 0.5) and protein pairs with
low correlations (Spearman’s rho < 0.5 and > − 0.5) using
the Fisher exact test.

eQTL data and eQTL hotspot analysis
We retrieved eQTL data directly from previous studies
[8–11] without performing additional eQTL analysis.
We remove eQTLfrom the datasets if (1) a SNP was not
genotyped in our study and (2) eQTL is for a transcript
that was not detected by our proteomics assay. We iden-
tified eQTL hotspots using the same method and criteria
for pQTL hotspots as described above.

Transcriptional regulatory region mapping of pQTL
We downloaded data describing the transcriptional
regulatory regions and binding motif features from the
Ensembl database (release 95). The data included 217,
681 CTCF binding sites, 140,648 enhancers, 119,409
open chromatin regions, 149,918 promoters, 110,191
promoter flanking regions, and 385,381,574 TF binding
sites. We mapped the identified pQTL variants to these
regions based on their chromosome positions in the

He et al. BMC Biology           (2020) 18:97 Page 13 of 16

https://imputationserver.sph.umich.edu
https://imputationserver.sph.umich.edu


Genome Reference Consortium Human Build 37
(GRCh37).

Genomic region enrichment of pQTL
We mapped pQTL variants to UTRs, CDS, and the
exons and introns of genes based on GRCh37 chromo-
some positions using the comprehensive gene annota-
tion (v29lift37) downloaded from the GENCODE
database. We used Fisher’s exact test to determine the
enrichment of pQTL variants in UTRs, CDS, exons or
introns of coding genes, and the exons of non-coding
RNA genes. We adjusted the p values of the enrichment
analysis using Bonferroni correction based on the num-
ber of tests. A significant enrichment was reported when
the Bonferroni-adjusted p value was less than 0.05.

Analysis of variant-trait associations
We downloaded published GWAS data from the GWAS
Catalog database (v1.0.2), which includes 104,767
variant-trait associations. In addition, a total of 971,313
variant-trait associations were retrieved from the Clin-
Var database. We downloaded another 3938 variant-trait
associations between variants and drug responses from
PharmGKB. We mapped the identified pQTL variants to
the traits via reference SNP cluster IDs (i.e., rs number).

Colocalization analysis
We performed a colocalization analysis using the
method similar to that implemented by Wu et al. [43].
For the colocalization of eQTL and pQTL signals, we
were unable to determine lead eQTL variants that had
the strongest evidence of association with mRNA ex-
pression because eQTLs were obtained from multiple
studies. Therefore, we calculated pairwise LD r2 between
every eQTL variants and lead pQTL variants that had
the strongest evidence of association with protein ex-
pression. For variant pairs with LD r2 > 0.8, we tested the
changes of the pQTL association for the lead pQTL vari-
ant when conditioned on the eQTL variant. We applied
two criteria to define the colocalization of eQTL and
pQTL: (1) lead variant pairwise r2 > 0.8 and (2) the p
value of the lead pQTL variant to be no longer signifi-
cant after conditional analysis. We further used the same
method to perform the colocalization analysis of GWAS
and pQTL signals.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12915-020-00830-3.

Additional file 1: Fig. S1. Heatmap of quantified proteins in 287
human liver samples.

Additional file 2: Data file S1. Protein concentrations in the 287
human liver samples.

Additional file 3: Fig. S2. Features of the transcripts of the genes with
quantifiable protein expression in the human liver eQTL study. Violin
plots of log10-transformed protein concentrations in major subcellular
locations (A). The analysis was performed using subcellular location data
obtained from the Gene Ontology (GO) database. Violin plot of
Spearman’s correlations (Spearman’s Rho) of transcript levels in human
liver (B). The medium value of Spearman’s Rho was about 0.354.
Transcriptome data were obtained from GTEx. We only analyzed the
transcripts of the genes with quantifiable protein expression in the
present human liver eQTL study.

Additional file 4: Data file S2. pQTL variants discovered in the human
livers.

Additional file 5: Fig. S3. Statistics of distant-pQTLs and local-pQTLs.
Distant-pQTLs (A left) and local-pQTLs (B left) found to be associated
with various number of proteins. Violin plots of number of distant-pQTLs
(A right) and local-pQTLs (B right) per protein.

Additional file 6: Fig. S4. Comparison of eQTLs and pQTLs in human
livers. eQTL data were obtained from published eQTL studies. Venn plots
of eQTL and pQTL associated genes (A), eQTL and pQTL associations (B),
and eQTL and pQTL variants (C). Distribution of local- and distant-QTL
variants across genomic regions (D: eQTLs and E: pQTLs).

Additional file 7: Table S1. Colocalization of pQTL and eQTL signals.
Additional file 7: Table S2. Colocalization of pQTL and GWAS signals.
Additional file 7: Table S3. Gender and ethnicity of human liver samples.

Additional file 8: Data file S3. Genome hotspots for p/eQTL identified
in the human livers.

Additional file 9: Fig. S5. Violin plot of Spearman’s correlations
(Spearman’s Rho) of protein expression levels for hotspot proteins.
Correlations of proteins associated with pQTLs in a same hotspot were
shown in this plot.

Additional file 10: Data file S4. Regulators of hepatic proteins
predicted by genomic enrichment analysis of pQTL variants. Predicted
regulators include protein coding genes and non-coding RNA genes.

Additional file 11: Data file S5. Interactions among pQTL variants,
proteins, and traits. The pQTL variant-protein interactions were discovered
by pQTL analysis. The variant-trait interactions were obtained from the
GWAS Catalog, ClinVar and PharmGKB databases. The protein-trait interac-
tions were discovered by the integrated pQTL and trait-variants analysis.

Additional file 12: Fig. S6. The first three principal components (PCs)
analysis of the genotypes of the 287 human liver samples. The L274 was
the outlier in the PC1 and PC2 analysis, L161 and L464 were the outliers
in the PC1 and PC3 analysis, and L81, L464 and L274 were the outliers in
the PC2 and PC3 analysis. However, there were no outlier samples in all
three PC analyses.
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