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Laryngeal squamous cell carcinoma (LSCC) is an aggressive malignancy which lacks early predictors of prognosis. Here, we
hypothesized that expression and prognostic characterization of the critical mediators of epithelial to mesenchymal transition
(EMT) may provide key information in this regard. Linear regression and multiple correspondence analyses were performed on
immunohistochemical data obtained from 20 invasive tumors. Principal component and unsupervised hierarchical clustering
were used to analyze the dataset patterns associating with LSCC metastatic profile. Survival and death risk assessments were
performed using Kaplan–Meier and hazard ratio tests. Data mining analysis using CHAID decision tree and logistic regression
analysis was applied to define the predictive value of the risk factors of tumor aggressiveness. Our analyses showed, that in invasive
LSCC tumors, cells associating with a mesenchymal profile were likely to exhibit enhanced NOS2, TGF-β, and IL-17A expression
levels, concomitantly to NF-κB nuclear translocation. IHC data deciphering determined that EMTinduction was also linked to the
enrichment of the tumors with CD68+ populations and IL-10 signal. Strikingly, dataset cluster analysis showed that these
signatures could define distinct patterns of invasive tumors, where NOS2 associated with IL-10 expression, and TGF-β and IL-17A
signals associated with MMP-9 activation. Decision tree analysis identified IL-17A as a possible predictor of LSCC aggressiveness.
Altogether, our results show that distinct immunological patterns would support the acquisition of EMTfeatures in invasive LSCC
and suggest that IL-17A may be useful in the early identification of patients “at-risk” of therapeutic failure.

1. Introduction

Laryngeal squamous cell carcinoma (LSCC) is a highly
metastatic malignancy of the head and neck caused by to-
bacco and alcohol intake [1]. +e disease is characterized by
a dismal prognosis and to the best of our knowledge, absence
of predictors of therapeutic failure which may help in im-
proving disease management [2]. +is is mainly due to the
complexity of the molecular aspects of resistance to therapy
and the difficulties in identifying predictive molecular

markers of tumor aggressiveness and lethality by traditional
statistical approaches.

Tumor invasion occurs in the context of smoldering in-
flammation as a consequence of phenotypical alterations
which affect tumor epithelial cells adhesion and attachment to
the extracellular matrix (ECM) [3]. +is process occurs
consecutively to a partial to a full transition of tumor cells
from an epithelial to a mesenchymal phenotype, in a process
known as epithelial-mesenchymal transition (EMT) [4]. +e
downregulation of epithelial cadherin (E-cadherin) represents
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a critical step in epithelial tissue architecture disruption [5].
Loss of E-cadherin has been shown to promote the release of
membranous β-catenin to mediate, dedifferentiation and
activation of the expression of the mesenchymal marker,
vimentin [5, 6]. +ese modifications are believed to constitute
to date a key event regulating themetastatic process [6]. Other
than structural changes, the loss of E-cadherin/β-catenin
complexmay contribute to cancer progression bymodifying a
complex network of pathways that tightly regulate funda-
mental processes as oxidative stress, immune evasion, and cell
metabolism [7–9].

Despite the fact that EMT in head and neck cancers has
recently been associated with metastasis [10], little attention
has been given to date to the possible prognostic value of its
mediators [11–13]. Interestingly, in recent years, a number
of soluble mediators of EMT among which, the reactive
nitrogen/oxygen intermediates (RNI/ROI), matrix metal-
loprotease 9, the immunomodulatory cytokine IL-10, and
TGF-β, as well as the proinflammatory cytokines IL-6 and
IL-17A, have gained increased attention due to their possible
value in cancer management [13–17]. Yet, to the best of our
knowledge, the importance of these biomarkers in LSCC has
remained to date unexplored. Here, we thought to examine
through an integrative analysis and their possible association
to the acquisition of a mesenchymal profile and determined
their possible influence on LSCC lethality risk.

2. Materials and Methods

2.1. Study Subjects and Biological Material Preparation.
Twenty LSCC patients (16 males and 4 females, median age
62 years) and 9 age-matched healthy donors (HD, 7 males,
and 2 females) were enrolled at the M. Pacha Hospital
between 2012 and 2013. All patients were at stage III-IV
based on the TNM staging (UICC 2002). +e tumor was
located in the glottis in 13 patients. +e tumor invaded the
glottis and the supraglottic area in 5 patients and affected the
three laryngeal regions in 2 cases. Tumor samples were
collected prior to chemotherapy or radiotherapy.

+e study was approved by the ethics committee of the
National Agency for Research Development in Health
(ATRSS). Written informed consent was obtained from all
subjects before participating in the study. Specimen col-
lection was performed prior to treatment. Biopsies were
fixed in 10% formol, dehydrated, and embedded in paraffin.
HE-stained sections were evaluated for the presence of in-
vasive LSCC. Adjacent normal epithelium and in-situ car-
cinoma analysis were used for comparisons. Peripheral
blood was collected on lithium heparin and centrifuged at
2,000 rpm for 10min. Plasma was collected and stored at
− 20°C until use.

2.2. Immunohistochemistry (IHC). Tissue sections of 5 μm
were tested against E-cadherin (NCH-38, prediluted for-
mat, Dako), β-catenin (17C2, prediluted format, Novo-
castra), vimentin (V9, 1/500 Novocastra), NOS2
(SAB4502012, 1/1000, Sigma), NF-κB (p65, 2A12A7, 1/500,
Invitrogen), TGF-β (TB21, 1/1000, +ermofisher), IL-6

(10C12, 1/100, Novocastra), IL-17 (50104, 1/100, Invi-
trogen), IL-10 (945A2A5, 1/100, Invitrogen), CD68 (KP1,
prediluted format, Dako), and MMP-9 (2C3, 1/200, Santa
Cruz Biotechnology). Formalin-fixed, paraffin-embedded
sections were deparaffinized, hydrated, and treated using a
high temperature for antigen retrieval in EnVision™ FLEX
Solution (Dako). After blocking of endogenous peroxidase,
sections were incubated 1h at 37°C with appropriate pri-
mary antibodies. Immunorevelation and counterstaining
were done with EnVision™ FLEX (Dako). +e sections
were observed and photographed using an Olympus mi-
croscope CX41 equipped with a DP21 Olympus digital
camera.

2.3. IHC Scoring. All scoring methods were based on re-
ported literature. E-cadherin, β-catenin, and NOS2 scores
were assessed following Acs et al. [18] by an evaluation of the
estimate of the percentage of stained cells (%SC) and the
intensity of staining scored on a 4-tiered scale intensity of
staining (IS; 0–3) (IHC score� IS×%SC). Vimentin scores
were expressed as the percentage of labeled tumor epithelial
cells. +e signal in the stromal and the endothelial cells was
taken as an internal control [19]. For epithelial IL-6 and
nuclear NF-κB, stainings were scored 0 or 1 [20]. TGF-β
expression was scored for intraepithelial IS [21]. Since IL-6,
IL-17A, IL-10, CD68, and MMP-9 stainings were located in
tumor and stromal areas, the markers were quantified in
both compartments; Stromal IL-6 signal was scored as % of
stained cells at high-power field (HPF). IL-17A, CD68, and
MMP-9 signals were evaluated as % of stained cells in
different epithelial and stromal HPFs [22]. Stromal IL-10
positivity was quantitatively expressed as % of stained cells in
HPF. IHC score was used for tumoral IL-10 [23]. For all
slides, 5 representative microscopic fields were randomly
and independently evaluated by two investigators.

2.4. Griess Reaction. Nitric oxide (NO) in plasma was
assessed by nitrites (NO2

− ) quantification using Griess re-
action [24].

2.5. Enzyme-Linked Immunosorbent Assay. Plasmatic cyto-
kines levels were determined at 450 nm using ELISA kits
(Invitrogen). Sensitivity levels were 2 pg/mL for IL-6 and IL-
17A, <1 pg/ml for IL-10, and 15.6 pg/ml for TGF-β.

2.6. Zymography. Plasmatic metalloproteinase activity was
assessed in all our samples by gelatin zymography after
protein concentration normalization. Following de-
naturation under nonreducing conditions and electropho-
resis (10% gel, 0.2% gelatin), the samples were renatured in
2.5% Tx-100 and incubated in 50mM Tris-HCl (pH 7.4),
5mM CaCl2, and 20mM NaCl buffer for 17 h at 37°C. +e
gels were stained with Coomassie blue (R250) and destained
in 10% acetic acid/40% methanol. Gelatinolytic bands in-
tensity were evaluated using ImageJ.

2 Journal of Oncology



2.7. Statistical Analysis. All data were tested for normality
using the D’Agostino–Pearson Omnibus test. One-way
ANOVA test was used to compare the means of more than
two groups followed by the Bonferroni’s multiple com-
parisons test. Mann–Whitney or unpaired-t-test were used
to compare the means two groups and Spearman or Pearson
correlation tests were carried out for bivariate correlations.
Continuous data were expressed as mean± standard de-
viation and p values ≤0.05 were accepted as statistically
significant. Data were analyzed with GraphPad Prism 6.0.1.

2.8. Survival Analysis and Data Mining. All compared pa-
tients received a similar combined regimen of cisplatin,
fluorouracil, and docetaxel. Overall survival (OS) over 36
months was estimated using Kaplan–Meier and log-rank
test. +e relative risks (RR) were assessed using the Cox
proportional hazards regression model. Forest plots were
done using GraphPad Prism. Chi-squared automatic in-
teraction detection (CHAID) was used for decision tree
prediction of resistance to therapy. Data were analyzed with
XLstat 2017.7.

2.9.MultivariateAnalysis. Multiple correspondence analysis
(MCA) was used to test the relation between EMT and the
immunological biomarkers. +e qualitative variables were
ranked in function of the % positive cells as follows: NOS2,
E-cadherin, β-catenin, and TGF-β, 0≤ 5%, 1� 5–25%,
2� 25–50%, and 3� 50%; Vimentin 0< 5%, 1� 5–25%, and
2> 25%; IL-17A 0 <1%, 1 >1–5%, and 2> 5%; NF-κB 0-
cytoplasmic and 1-nuclear; IL-6 0-negative and 1-positive.
Principal component analysis (PCA) was used to identify the
principal components which accounted for the majority of
the variation within the dataset. All quantitative variables
were centered and normalized before test.

2.10. Hierarchical Clustering and Heat Mapping. Heat
mapping and unsupervised hierarchical clustering were
performed using centered and normalized data with Genesis
1.8.1.

3. Results

3.1. EMTFeatures Are Prominent in Invasive LSCC. First, we
examined the expression of EMT markers (E-cadherin,
β-catenin, and vimentin) in invasive LSCC (n� 20), adjacent
in-situ carcinoma (n� 9), and normal epithelium (n� 10).
Representative immunohistochemical sections for EMT
markers expression are shown in Figure 1(a). Interestingly,
loss of E-cadherin and gain of cytoplasmic β-catenin and
vimentin were observed in invasive carcinoma compared
with adjacent in-situ carcinoma and normal epithelium
(Figure 1(b)).

3.2. NOS2-Associated NF-κB Activity Is Linked to EMT
Induction in Invasive LSCC. Production of nitric oxide (NO)
via nitric oxide synthase (NOS2) plays a key role in in-
flammation-dependent head and neck cancer progression

[25]. Yet, that production has shown to exert controversial
effects on EMT [26, 27]. To explore if a possible link pre-
vailed between NOS2 with EMT in LSCC, we analyzed the
profile of association of NOS2 with EMT by IHC. To our
surprise, we observed that the tumoral NOS2 signal was
enhanced in the invasive tissues in comparison with the
normal epithelium and in-situ carcinoma (p≤ 0.0001,
Figure 2(a)-2(b)). Interestingly, NOS2 upregulation strongly
associated with a shift from an epithelial to a mesenchymal
profile (NOS2/E-cad: r� − 0.41, p � 0.07; NOS2/Vim:
r� 0.57, p � 0.007; Pearson) (Figure 2(c)). Of note, a con-
comitant increase in NOS2 dependent nitrites synthesis was
also observed in patients with invasive LSCC (Figure 2(d)).
We concluded that NOS2 mediated chronic inflammation is
positively associated with EMT in invasive LSCC.

Considering that NOS2 activity can influence EMT
through signaling via NF-κB [28], we next tested the oc-
currence of these events in the invasive tumors. As most of
the invasive tissues displayed nuclear NF-κB immuno-
staining (60%) (Figure 2(e)), we observed with interest that
presence of a trend towards a moderate correlation between
NOS2 to an active NF-κB signal (r� 0.38, p � 0.1; Pearson).
In turn, nuclear NF-κB signal significantly associated with
loss of E-cadherin expression (r� − 0.57, p � 0.008)
(Figure 2(f)). A multiple correspondence analysis (MCA)
was next conducted to determine the patterns of association
occurring between EMT biomarkers, NOS-2, and NF-κB
(p65N) status. Data analysis revealed the presence of two
factorial axes explaining 58.36% of the total inertia. A dual
pattern particularly segregated along the first eigenvector
and represented 38.17% of the total variance. On the positive
side of the axis, tumors with a strong epithelial pattern
clustered together and associated with variables indicating
low levels of tissular inflammation and NF-κB activation. By
contrast, on the negative side of the axis, a cluster of variables
indicating a pronounced mesenchymal profile cosegregated
with variables relating to enhanced NOS2 signaling and NF-
κB activation (Figure 2(g)). Taken together, these data
suggested that NOS2/NF-κB activity would significantly be
linked to EMT induction in invasive LSCC.

3.3. IL-17A/TGF-β Enriched LSCC’s Inflammatory
Microenvironment Prevail to EMT Induction in Invasive
LSCC. Considering that IL-17A has been shown to mediate
EMT in lung cancer [28] and that IL17/+17 cells would
accompany LSCC development [29, 30], we next evaluated
the profile expression of IL-17A which may prevail to EMT
dependent LSCC invasiveness. Taking into account that
TGF-β is a determinant inducer of EMT and of IL-17A
expression in presence of IL-6 [31], we firstly investigated the
pattern of expression of these cytokines in invasive LSCC
patients. Our observations showed a significant increase in
TGF-β, IL-6, and IL-17A levels in patients’ plasma
(Figure 3(a)). In the tumor biopsies, the expression of these
cytokines was notable at the level of the invasion front of the
tumors for TGF- β and in the tumor (40% cases) and in the
stromal areas (100% cases) of the invasive tissues for IL-6
(Figure 3(b)). Interestingly, while IL-17A could be normally
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detected at the superficial layers of the normal tissues, an
enhanced signal accumulated at the level of the tumoral
areas of the invasive tissues, in the stroma, and in cells
surrounding the blood vessels (Figure 3(b)). TGF-β ex-
pression in the invasive tumors significantly correlated with

a mesenchymal profile (TGF-β/Vim: r� 0.46, p � 0.04;
Pearson). Interestingly the analysis also showed that IL-17A
expression in the tumor and the stromal cells influenced
particularly a loss of E-cadherin expression (r� − 0.35,
p � 0.12; Pearson), thereby pointing to a possible
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Figure 1: Epithelial-mesenchymal transition is prominent in invasive LSCC. (a) Representative immunohistochemical sections for EMT
markers expression in normal epithelium, in situ carcinoma and invasive carcinoma (magnification ×40) (yellow arrow: normal epithelium,
black arrow: tumor cells, and green arrow: stomal cells). (b) Immunohistochemical scoring comparison for EMT markers expression in
normal epithelium (n� 10), in situ carcinoma (n� 9), and invasive carcinoma (n� 20). Data are shown asmean± SD. One-way ANOVA test
was used for multiple group comparisons (∗∗∗∗p≤ 0.0001) followed by Bonferroni’s multiple comparison test (∗∗p≤ 0.01).
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Figure 2: Continued.
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collaborative implication of IL-17 and TGF-β to EMT in-
duction (Figure 3(c)).

Considering the finding showing that NF-κB activation
is required to IL-17A mediated EMT in lung cancer [28], we
next investigated that eventuality in LSCC.We observed that
IL-17A signal in the tumor and the stromal areas signifi-
cantly associated with nuclear NF-κB staining (r� 0.46,
p � 0.04; r� 0.53, p � 0.01; Pearson) (Figure 3(c)); there-
fore, we concluded that IL-17A/NF-κB axis would be in-
volved in LSCC′ epithelial to mesenchymal transition.

To visualize the pattern of expression of the inflammatory
mediators influencing EMT, we next performed anMCA.+e
model recapitulated almost 66% of the total variance andmost
differences discriminated along the first eingen vector, which
described 59.7% of the total inertia. +e most discriminating
variables were TGF-β, IL-17A, and NOS2, which gradually
modified NF-κB nuclear status and EMTscores (Figure 3(d)).
Collectively, our findings suggested that within LSCC’s mi-
croenvironment, a strong pattern of association prevailed
between the studied soluble mediators of inflammation, NF-
κB, and EMT and also suggested that unexplored variables
would contribute to that event.

3.4. IL-10 and CD68+ Cell Enriched Tumor Microenviron-
ments Associated with the Mesenchymal Shift in Invasive
LSCC. Considering the reports describing IL-10 upregula-
tion in LSCC and its potential role in EMT induction in

cancer [32, 33], we next hypothesized that the cytokine
could, in the context of EMT induction in LSCC, be of
importance. As described by others, we observed that IL-10
was increased at the systemic level (Figure 4(a)). Impor-
tantly, a significant accumulation of the cytokine was noted
at the level of the tumor areas and in cells infiltrating the
epithelium and the stroma (Figure 4(b)). Further analysis
showed that the stromal signal significantly originated from
densely infiltrating CD68 + cells (r� 0.73, p � 0.0002;
Pearson) (Figure 4(c)). Strikingly, whereas stromal IL-10
expression strongly associated with both vimentin expres-
sion and E-cadherin alteration (r� 0.64, p � 0.002; r� − 0.61,
p � 0.004; Pearson), intratumoral IL-10 solely affected the
expression of the epithelial marker (r� − 0.43, p � 0.05;
Pearson) (Figure 4(d)). +us, our findings suggest that IL-10
originating from tumor-associated macrophages’ (TAMs)
and the tumor cells would also likely play a significant role in
the acquisition of the invasive features of LSCC.

3.5. MMP-9 May Influence EMT in the Context of IL-17A,
TGF-β, and NF-κB Signaling. Considering that MMP-9 can
elicit EMT [17], we next explored that relation in LSCC.MMP
activity analysis showed that alongwith a significant plasmatic
expression and activation (Figures 5(a) and 5(b)), a tissular
MMP-9 expression (active and inactive MMP) was detectable
in the epithelial and the stromal areas of the invasive tissues
(Figure 5(c)) (MMP-9 tumor/stroma, r� 0.89, p � 0.001,
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Figure 2: Epithelial-mesenchymal transition is prominent in invasive LSCC tissues under NOS2/NF-κB inflammatory conditions. (a)
Representative immunohistochemical sections for NOS2 expression in normal epithelium, in situ carcinoma, and invasive carcinoma
(magnification ×40) (yellow arrow: normal epithelium and black arrow: tumor cells). (b) Immunohistochemical scoring comparison for
NOS2 expression in normal epithelium (n� 10), in situ carcinoma (n� 9), and invasive carcinoma (n� 20). Data are shown as mean± SD.
One-way ANOVA test followed by Bonferroni’s multiple comparison test. (c) Pearson correlation analysis between NOS2 and EMTmarkers
expression in invasive LSCC (n� 20). (d) Plasmatic NO2

− levels in healthy donors (HD) (n� 9) and invasive LSCC patients (n� 20) were
assessed using the Griess method, and t-test was performed for statistical analysis; data are shown as mean± SD. (e) Representative
immunohistochemical sections for NF-κB (p65) expression in normal laryngeal tissues and in invasive carcinomas (magnification ×40)
(yellow arrow: normal epithelium and black arrow: tumor cells). (f ) Pearson correlation analysis between NF-κB (p65) nuclear status and
EMT markers expression in invasive LSCC (n� 20). (g) MCA of the relation between EMT, NOS-2, and NF-κB (p65).
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Figure 3: TGF-β and IL-17A expression associated with EMT features in invasive LSCC. (a) Plasmatic concentrations of TGF-β, IL-6, and
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Pearson). Interestingly, a trend towards a negative link as-
sociated E-cadherin with MMP-9 expression in the stroma
and the tumor areas (r� − 0.34, p � 0.14; Pearson)
(Figure 5(d)). To determine if this effect would associate with
a pattern of interaction between MMP-9 and the above-ex-
plored inducers of EMT, we next performed an unsupervised
multivariate analysis (PCA) to take into account the overall
structure of the analyzed dataset and the levels of dependence
between the analyzed quantitative variables. +e analysis
recapitulated 47.45% of the total variance and demonstrated
that whereas frequent MMP-9 activation associated with IL-
17A and TGF-β synthesis, increased NOS2-dependent in-
flammation tended to associate with IL-10 expression
(Figure 5(f)). Importantly, Pearson analysis also showed that
MMP-9 activation would occur in presence of low plasmatic

nitrite levels and concomitantly to NF-κB nuclear trans-
location (Figures 5(d) and 5(e)).

3.6. PatternAnalysis of theEMTBiomarkers IdentifiesDistinct
Immune-Inflammatory Signatures of Tumor Aggressiveness.
To further characterize the patterns of expression of the
soluble inducers of EMT associating with tumor in-
vasiveness, a PCA was performed. 3 distinct clusters of
patients separated from the initial population (n� 20). Be-
sides, a minor cluster of patients (20%) which shared
similarity with the controls, 2 other clusters, representing
65% and 15% of the cohort diverged from the initial pop-
ulation (Figure 6(a)). A heat map analysis of the analyzed
biomarkers by unsupervised hierarchical clustering
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supported the PCA analysis and showed that the distinct
clusters of patients segregated based on neighboring bi-
ological patterns. +e signature found in cluster 1 patients
resembled that of healthy individuals; cluster 2 is associated
with NO and IL-10-increased expression; and cluster 3 is
associated with elevated levels of IL-17A, TGF-β, and
MMP-9 activity (Figure 6(a)). +is suggested that distinct
patterns of EMT inducers would associate with LSCC
invasiveness.

3.7. High IL-17A Expression Associated with a Less Favorable
Prognosis in LSCC. To verify if the distinct identified pat-
terns would influence response to therapy, the associated
overall survival (OS) and death risk were analyzed.While the
OS of the cohort reached 40%, we observed that patients in
clusters 2 and 3 tended to associate with shortened survival,
as well as those having undifferentiated tumors, high IL-17A
(>42pg/ml) or low TGF-β (<543.5 pg/ml) plasmatic con-
centrations (Figure 7). +e multivariate Cox regression
analysis supported these results and indicated that IL-
17Ahigh, TGF-βlow, and NOlow (<32.69 μM) concentrations
would tend to increase patients’ death risk. +e univariate
analysis showed that high IL-17A would constitute a
good predictor of poor response to therapy (p � 0.06)
(Figure 8(a)).

Lastly, we performed a Chi-squared automatic in-
teraction decision tree in order to verify if our dataset could
predict patients with augmented risk of resistance to ther-
apy. Whereas the specificity of the model reached 91.67%

and the sensitivity 87.50%, the area below ROC curve (AUC)
indicated an accuracy of 0.979. +e predictive model
identified IL-17Ahigh/TGF-βlow association as predictors of
higher risk of death (6/12, 50%). Besides most of cluster 3,
46.15% of cluster 2 patients associated with that model. +e
model also identified IL-17Alow/IL-10low association as the
best determinant for response to therapy (5/8, 62.5%). 75%
of patients of cluster 1 associated with this model
(Figure 8(b)).

4. Discussion

In this study, we show, through an ensemble analysis of the
soluble mediators of EMT, that heterogeneous immuno-
logical patterns drive the development of the invasive fea-
tures of LSCC. We report that the acquisition of tumor
aggressiveness in patients is dependent on close associations
prevailing between NOS2 and IL-10 synthesis and between
IL-17A, TGF-β, and MMP-9 and identifies IL-17A as a
possible key predictor of LSCC aggressiveness and resistance
to therapy.

At the opposite of Bonavida’s report suggesting that
transient exposure to NO inhibits NF-κB induced EMT [26],
we show the chronic activation of NOS2 in invasive LSCC
leads to a positive regulation of both events [27, 34]. +is
original finding requests further investigations to determine
the grounds of these differences and determine possible
differences in Snail activation capacities. We speculate that
the hypoxic conditions prevalent in LSCC’s environment
would also be determinant to that process [10, 13].
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Our analysis determining that IL-10 associates with EMT
induction by NOS2 and NF-κB activity is in line with the
reports on the regulatory function of IL-10 on that pathway,
which otherwise would lead to NOS2 deleterious function
[35, 36]. Our observation showing that exacerbated NOS2
expression associated with tumor necrosis (data not shown)
reinforces that interpretation. Considering recent reports,
we speculate that the synthesis of NO and IL-10 by tumor-
infiltrating macrophages and Tregs [32, 37, 38] would
constitute the ground to the inhibition of a protective +1
response and the condition to the development of IL-10-
associated LSCC’s loco-regional metastases risk [36, 39]. In
turn, in these conditions, coexpression of IL-6 would in-
crease the risk of lymph node metastases by eliciting MDSCs
activity and suppressing cytotoxic T-cell function [40, 41].

We also showed that IL-17A synthesis would be strongly
involved together with TGF-β, and MMP-9 in priming EMT
and metastasis. +is interpretation is compatible with early
reports linking IL-17A in LSCC to tumor angiogenesis and

metastasis [22, 29, 30]. Surprisingly, we observed that despite
a strong context of +17 differentiation, IL-17A expression
would mostly rely on a tumoral origin; therefore, we hy-
pothesize that distinct conditions prevailing in the milieu,
including hypoxia, would be involved in that synthesis
[29, 30, 42]. In this context, TGF-βwould likely contribute to
LSCC survival by inhibiting antitumoral T cells [43, 44]. To
improve our understanding of the molecular interactions
determining the development of either immune-in-
flammatory patterns supporting EMT, next investigations
should analyze the background of NO and IL-10 synthesis in
patients, and determine the possible implication of NO-
producing Treg cells in the regulation of a +17/IL-17A
response and EMT [45–47].

+e univariate analysis of the prognostic value of EMT
drivers showed that pretherapy plasmatic IL-17A may
constitute a significant determinant of poor prognosis. +is
observation is in agreement with reports on the function of
IL-17A in laryngeal cancer [30] and is concordant with the
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notion that the cytokine may mediate its pathogenic func-
tion, by mediating EMT and metastasis as described for
colorectal carcinoma [48]. As IL-17A, as previously re-
ported, did not show to be an independent prognostic factor
[30], we report that IL-17A in presence of TGF-β would
constitute a superior predictive biomarker of LSCC lethality.
+is result is to our knowledge the first to determine the
conditions under which IL-17A would mediate therapeutic
failure [30].

5. Conclusion

In conclusion, our findings support the notion that LSCC
aggressiveness would rely on distinct interactions associat-
ing different sets of inflammatory and immunomodulatory
molecules supporting EMTandmetastasis. Besides requiring
to be confronted to a larger cohort, our results underline the
necessity to assess the functional relevance of the detected
correlations and to explore the cellular and the genetic
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grounds of the observed tumoral heterogeneity more deeply.
Considering the value of IL-17A in predicting therapeutic
failure, next investigations should assess in priority if IL-17A
functional signaling may also affect disease’ development.
Taken together, our findings might provide new insight into
the influence of immunological regulators of EMTon LSCC
development and serve as a ground for the development of
new strategies for disease management.
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