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Prader-Willi syndrome (PWS) is caused by the loss of function of the
paternally inherited 15q11-q13 locus. This region is governed by genomic
imprinting, a phenomenon in which genes are expressed exclusively from
one parental allele. The genomic imprinting of the 15q11-q13 locus is estab-
lished in the germline and is largely controlled by a bipartite imprinting
centre. One part, termed the Prader-Willi syndrome imprinting center
(PWS-IC), comprises a CpG island that is unmethylated on the paternal
allele and methylated on the maternal allele. The second part, termed the
Angelman syndrome imprinting centre, is required to silence the PWS_IC
in the maternal germline. The loss of the paternal contribution of the
imprinted 15q11-q13 locus most frequently occurs owing to a large deletion
of the entire imprinted region but can also occur through maternal uniparen-
tal disomy or an imprinting defect. While PWS is considered a contiguous
gene syndrome based on large-deletion and uniparental disomy patients,
the lack of expression of only non-coding RNA transcripts from the
SNURF-SNRPN/SNHG14 may be the primary cause of PWS. Patients with
small atypical deletions of the paternal SNORD116 cluster alone appear to
have most of the PWS related clinical phenotypes. The loss of the maternal
contribution of the 15q11-q13 locus causes a separate and distinct condition
called Angelman syndrome. Importantly, while much has been learned
about the regulation and expression of genes and transcripts deriving from
the 15q11-q13 locus, there remains much to be learned about how these
genes and transcripts contribute at the molecular level to the clinical traits
and developmental aspects of PWS that have been observed.
1. Overview
Prader-Willi Syndrome (PWS) is a neurodevelopmental disorder with hallmark
traits of hypotonia, hypogonadism and hyperphagia/obesity. It affects approxi-
mately 1 out of 15 000 live births and currently has no known cure [1–3].
Although patients universally possess the hallmark traits, they can also demon-
strate growth hormone deficiency, characteristic facial features, developmental
delay and behavioural problems. The onset of various neuroendocrine pheno-
types suggests that PWS primarily impacts the hypothalamus although other
organs might still be affected. Patients are diagnosed at birth and are followed
by endocrinologists throughout their lives. Despite several advancements in
clinical care, the majority of individuals with PWS have a life expectancy of
29.5 years with the most common causes of mortality being from respiratory,
cardiac and gastrointestinal failures [4].

PWS is caused by the loss of function of the paternally inherited 15q11-q13
locus. This region is governed by genomic imprinting, a phenomenon in which
genes are expressed exclusively from one parental allele. The genomic imprint-
ing of the 15q11-q13 locus is established in the germline and is largely
controlled by a bipartite imprinting centre. One part, termed the Prader-Willi
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Figure 1. The chr15q11-q13 region is genomically imprinted, with some
genes only expressed from the paternal chromosome and some only from
the maternal chromosome. Prader-Willi syndrome is associated with loss of
expression from the paternal chromosome. This can occur either through
paternal deletion, uniparental disomy (UPD) or an imprinting defect (ID).
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syndrome imprinting centre (PWS-IC) [5–7], comprises a
CpG island that is unmethylated on the paternal allele and
methylated on the maternal allele. The second part, termed
the Angelman syndrome imprinting centre (AS-IC), is
required to silence the PWS_IC in the maternal germline
[8,9]. The loss of the paternal contribution of the imprinted
15q11-q13 locus most frequently occurs owing to a large del-
etion (LD) of the entire imprinted region (LD approx. 5 Mb,
65%-75%) [10,11] but can also occur through maternal uni-
parental disomy (UPD, 20%–30%) [12–14] or an imprinting
defect (ID) (1%–3%) [15,16] (figure 1). Large deletions typi-
cally occur between five common breakpoint regions
illustrated in figure 2. While PWS is considered a contiguous
gene syndrome based on LD and UPD patients, the lack of
expression of only non-coding RNA transcripts from the
SNURF-SNRPN/SNHG14 may be the primary cause of
PWS. Patients with small atypical deletions (SD) of the
paternal SNORD116 cluster alone appear to have most of
the PWS related clinical phenotypes [17–22]. However, the
milder phenotypes present in these patients probably indicate
that concurrent absence of other regions in the locus may con-
tribute to greater severity of PWS phenotype. The loss of the
maternal contribution of the 15q11-q13 locus causes a separ-
ate and distinct condition called Angelman syndrome [23].
Importantly, while much has been learned about the regu-
lation and expression of genes and transcripts deriving
from the 15q11-q13 locus, there remains much to be learned
about how these genes and transcripts contribute at the mol-
ecular level to the clinical traits and developmental aspects of
PWS that have been observed.
2. Clinical features
2.1. Diagnosis
Patients suspected of having PWS are often first screened
using a DNA methylation assay for the PWS-IC [24–26]
(figure 3). Unaffected individuals will show one unmethy-
lated allele and one methylated allele. However, the vast
majority of PWS patients will show only a methylated
allele. The PWS subtype can be differentiated further through
additional assays. The deletion subtype can be identified by
chromosomal microarray or DNA fluorescence in situ hybrid-
ization (FISH). The former assay can also identify the precise
deletion breakpoints as well as microdeletions involving the
IC and SNORD116 cluster, depending on the size limitations
of the microarray analysis. The UPD and IC defect subtypes
are determined by interrogating the parental inheritance of
the two chromosome 15 alleles [27]. The parents of the pro-
band are typed to identify their specific microsatellite
marker alleles. If the proband has microsatellite marker con-
tribution from one parent, the proband has UPD, whereas
contributions from both parents indicate ID. Rare cases of
chromosomal rearrangements such as translocations and
inversions are detected by using both FISH and chromosomal
karyotyping. A very rare cohort of patients with PWS owing
to deletions involving the SNORD116 cluster may not test
positive using the DNA methylation test. Therefore, if PWS
is suspected and the DNA methylation test is negative, a
chromosomal microarray may still be warranted.

Advanced diagnostics tools such as methylation specific-
multiplex ligation-dependent probe amplification allow for
simultaneous evaluation of DNAmethylation and the presence
of deletions [28]. The probe targets five different differentially
methylated regions (DMR) in the locus and can help identify
both IC and SNORD116 cluster microdeletions. If no deletions
are detected,DNApolymorphismassay stillmust be conducted
to differentiate between UPD and ID subtypes.

2.2. Nutritional phases
The different stages of PWS can be divided into phases 0–4
based on the onset of specific nutritional phenotypes [29]
(figure 4). Seven distinct phases were identified by Miller et al.
Individuals with PWS demonstrate decreased fetal movements
and present at birth with unexplained failure to thrive and
severe hypotonia (phase 0). These traits continue in the
newborn phase (phase 1a: 0–9 months) and are followed by
approximately a 17-month period of normal development
(phase 1b: 9–25 months). In the childhood years, PWS patients
begin to developmetabolic syndromewith weight gain despite
the absence of additional food consumption (phase 2a: 2.1–4.5
years). The patients then begin to develop hyperphagia with
some satiety (phase 2b: 4.5–8 years). Through adolescence
and into adulthood, the patients’ metabolic syndrome and
hyperphagia continue to worsen and peaks around this time
(phase 3: 8 years–adulthood). The appetite is reported to be
impossible to satiate for some patients during this period. The
hyperphagic drive begins to decrease and becomes satiable
again for some patients (phase 4: adulthood). Many behaviour-
al and cognitive problems that are present through the clinical
phases are heavily correlated to the degree of patients’
hyperphagia [30].

2.3. Hallmark traits
Hypotonia is most prominent in the neonatal phase. Patients
demonstrate severe weakness, poor reflexes, decreased arou-
sal and poor suck/appetite [29,31]. These traits lead to failure
to thrive and often require patients to be placed on feeding
tubes for various amounts of time. The cause of hypotonia
is central in nature (deficiencies in growth hormone (GH),
thyroid stimulating hormone, and cortisol) [32] as neuromus-
cular studies yield insignificant findings [33]. Hypotonia
begins to improve once the patients are able to feed
themselves and becomes mild in adulthood [29,31]. The
lower muscle tone in patients leads to decreased energy
expenditure and lower overall caloric requirements.
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Figure 2. Overview of the chr15q11-q13 region. Genes in blue are expressed only from the paternal chromosome (PAT) and genes in red are expressed only from
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Figure 3. Workflow for PWS diagnosis. See text for details.
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Hypogonadism is noted at birth and is present throughout
the patient’s lifetime. Patients of both sexes demonstrate genital
hypoplasia, incomplete puberty, underdevelopment of second-
ary sexual characteristics and infertility later in life [34,35].
Hypogonadism was initially believed to be entirely owing to
hypothalamic deficits. However, decrease in levels of hormones
directly synthesized by the gonads in non-hypogonadotropic
patients indicate that both the hypothalamus and the primary
gonads may be involved [35–38].

Obesity accompanied by hyperphagia is perhaps the
most recognizable feature of PWS. The degree and onset of
hyperphagia and obesity depend on the nutritional phases
mentioned in the previous section. PWS patients’ food-
seeking behaviour is thought to be lack of satiety owing to
hypothalamic dysfunction. Both children and adults with
PWS have been found to have significantly elevated levels of
the orexigneic hormone ghrelin [39–41]. However, short and
long-term pharmacological interventions that lowered ghrelin
to physiological levels failed to improve hyperphagia and obes-
ity in children (age 11–14) and adults (age 25) [42–44]. Thus it is
unlikely that a single pathway controls appetite in PWS
patients. The lack of satiety, metabolic syndrome in phase 2a
and lower caloric requirements (see hypotonia) are believed
to be primary contributors to the observed obesity in patients.

2.4. Other endocrinologic traits
PWS is also associated with a number of other traits, including
hypothalamic dysfunction, respiratory distress, sleep disturb-
ance, type 2 diabetes, musculoskeletal issues and behavioural
problems (figure 4). PWS patients suffer from growth hormone
deficiency and demonstrate reduced growth hormone secretion
both in childhood and adulthood [32,45]. Patients have short
statures in childhood and the absence of a growth spurt
during puberty results in more pronounced phenotype in
adulthood [46]. Central hypothyroidism is reported in a quarter
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of children with PWS. The lower circulating levels of T3 and T4
[47,48] are believed to compound patients’ symptoms such as
hypotonia and obesity. Later in life, the incidence of hypo-
thyroidism drops to comparable levels to that of unaffected
populations [49]. Central adrenal insufficiency (CAI) is also
noted in some PWS patients. The lower levels of cortisol are
believed to disturb the metabolism of carbohydrates, proteins
and fats in PWS patients. The precise prevalence of CAI is to
be determined as one study reported prevalence up to 60%
[50] while others reported much lower prevalence [45,51].
type 2 diabetes is observed in a quarter of PWS patients and
is a secondary complication of obesity [52]. However, it is
rarely observed in the absence of obesity in PWS patients [47].
Maintenance of an appropriate caloric diet, growth hormone
therapy (GHT), and counselling can dramatically reduce the
incidence of obesity and type 2 diabetes in PWS patients.

2.4.1. Respiratory distress

Respiratory distress in PWS patients is multifactorial in
origin. During a normal physiological response, the hypo-
thalamus helps adjust the respiratory rate to compensate for
increase in carbon dioxide and decrease in oxygen levels.
However, PWS patients often show an imbalance in this
response owing to hypothalamic dysfunction and do not
compensate adequately to hypercapnic states [53,54]. The
hypotonia associated with PWS can also lead to poor respir-
atory muscle tone and depressed respiratory response [55].
This feature can lead to increased aspiration and respiratory
infection owing to weaker respiratory musculature. Lastly,
obesity can lead to obstructive sleep apnea [56].

2.4.2. Sleep disturbances

Alterations in sleep patterns arewell reported and can be caused
by both hypothalamic dysfunction and respiratory distress [56–
59]. Disturbances in crucial hormones such as orexin and acetyl
cholinergicneurons in thepedunculo-pontine tegmentalnucleus
lead to abnormalities in the circadian rhythm, sleep/wake cycles
and sleep architecture [57,60,61]. Abnormalities in respiratory
response and illnesses such as obstructive sleep apnea can
further compound sleep disturbances in patients [57,58].

2.4.3. Behavioural problems

PWS patients demonstrate both hyperphagia related and
non-hyperphagia related behavioural problems. Non-
hyperphagia related problems include tantrums, stubbornness,
obsessive compulsive disorder and skin picking [62–66]. These
behaviours are heavily correlated with the patient’s degree of
obesity and hyperphagia [63]. Food seeking behavioural
problems such as stealing, manipulative behaviour and self-
injury are also well documented [62]. A subset of PWS patients
are also diagnosedwith autism spectrumdisorder (ASD), atten-
tion deficit hyperactivity disorder, and psychosis which can
further compound behavioural problems [67–70].

2.4.4. Prader-Willi syndrome facial features

PWS patients present with distinct facial features such as
narrow temple and nasal bridge, almond shaped eyes, thin
upper lip and downturned mouth (collectively referred to
as PWS facial features). It is reported that PWS facial features
may not be present at birth and may develop over a patient’s
life. In addition, PWS patients have small hands and feet
from GH deficiency [46] Osteoporosis leading to fractures
and scoliosis is also a concern for some patients [71].

2.4.5. Life expectancy

The average life expectancy for PWS patients is currently 29.5
years and the causes of mortality differ greatly between adult
and child patients [4]. Cardiac, pulmonary and gastrointestinal
failures are the leading causes of death. However, complications
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fromtype 2diabetes and infections are also reported. Inpediatric
patients, themost common cause ofmortality is respiratory fail-
ure and infections [72]. PWS patients are also vulnerable to
sudden and unexpected death (SED). A myriad of studies have
attempted to identify the cause of SED in PWS patients.
Although nodirect causewas identified, cardiovascular disease,
respiratory illness and thrombosis were identified as potential
risk factors for increased SED [4]. The role of CAI in SED is less
certain as a few studies have found lower incidences of CAI in
PWS patients [45,51] than previously reported [50].

2.5. Genotype–phenotype correlations
Several correlations between different PWS genetic etiologies
and clinical phenotypes have been noted. More studies
are required to truly elucidate the extent and significance of
these correlations (figure 5).

2.5.1. Effects of large deletions

Deletion patients are reported to have increased occurrence of
PWS facial features [12,13], hypopigmentation (owing to del-
etion of one copy of Oculocutaneous Albinism II gene
(OCA2)) [13,73,74] and intellectual disability [74]. Some studies
report that type Ideletionpatients (BP1 toBP3)have exacerbated
cases of intellectual disability and compulsory behaviour com-
pared to type II deletion patients (BP2 to BP3) [75,76].

2.5.2. Uniparental disomy

UPD patients are reported to have less PWS facial features
[12,13] and little to no hypopigmentation [13,73,74]. However,
they are reported to have increased risk for psychosis [67,70]
and ASD [68,69]. Interestingly, PWS UPD patients are also
reported to have less compulsory and behavioural problems
despite these increased risks [76,77]. The differences observed
between UPD and LD patients may potentially be owing to
expression of two copies of UBE3A in UPD patients.

2.5.3. Small deletions

PWS patients with SD in the proximal SNHG14 tran-
script encompassing the SNORD116 cluster are reported to
demonstrate milder phenotype and absence of some clinical
traits associated with PWS [17–22]. These patients still
possess the hallmark traits of hypotonia, hypogonadism
and hyperphagia/obesity albeit in milder forms. Some
patients had normal to tall stature and absence of PWS
facial features [19–22]. These findings might indicate that
the absence of SNORD116 plays a crucial role in the develop-
ment of PWS phenotype. However, the absence of other
surrounding regions may play a role in the severity of the
phenotypes as seen in LD and UPD patients.

2.6. Current clinical interventions
Current treatments address a particular phenotype and are
not aimed to cure the disorder.

2.6.1. Hypotonia: growth hormone therapy

The natural history of PWS can be significantly improved with
clinical interventions. Endocrinologists in almost all instances
administer GHT for PWS patients from infancy. GHT improves
the body composition by increasing muscle mass, reducing
body fat while normalizing height [78,79]. It is also reported
that GHT improves cognitive function and IQ scores for
patients [80–82]. In adults, GHTwas also shown to be beneficial
by improving body composition, muscle mass and sleep-disor-
dered breathing [83]. The impact of GHT on body mass index,
hyperphagia and food-seeking behaviour is reported to be
minimal but more future studies are warranted. Along with
GHT, physical therapy can greatly aid PWS patients develop
and maintain muscle tone in childhood and adulthood [84].

Although GHT provides tremendous benefits, each patient
must be monitored carefully for potential side effects. PWS
patients with CAI may experience an adrenal crisis owing to
increased metabolism of cortisol [85]. Those with respiratory
illness may risk hypoxemia and sleep disturbance owing to
increased basal metabolism in the absence of respiratory com-
pensation [86]. Patients with diabetes may also experience
worsening of their symptoms owing to antagonism of insulin
[87]. Thus endocrinologists must closely monitor each individ-
ual PWS patient based on their response to treatment. Despite
these potential adverse effects, the long-term benefits of GHT
are still considered to outweigh the potential risks [88,89].

2.6.2. Hypogonadism

Sex hormone therapy is administered and often helps patients
develop secondary sex characteristics [34]. The dosage of
testosterone and oestrogen has to be carefully monitored with
eachpatient to avoid anynegative side effects.With testosterone
treatment, exacerbation of behavioural problems such as
aggressionmay be noted.With oestrogen treatment, osteoporo-
sis and possible fertility must be considered. Fertility was
reported in some female PWS patients and thus sex education
has to be emphasized [90,91].

2.6.3. Hyperphagia/obesity

Pharmaceutical interventions are currently unavailable to
address hyperphagia. PWS patients are followed by both endo-
crinologists and dietitians. Caloric requirements are set at 60%
to 80%of the age-appropriate regular daily allowancewith vita-
min supplementation (Miller diet) [92]. Additionally, parents
and carers are coached on exercise programmes and ways to
limit alternate food access by PWS patients.
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2.6.4. Sleep disturbances

A sleep study is recommended for most PWS patients to moni-
tor for both potential respiratory distress and effects of GHT
[86]. Interventions such as tonsillectomy and continuous posi-
tive airway pressure/bilevel positive airway pressure are
available for patients with obstructive sleeping difficulties [93].

2.6.5. Behavioural therapy

Speech therapy and special courses are often used to help sup-
plement any learning difficulties [94]. Serotonin reuptake
inhibitors have been reported to be effective for obsessive com-
pulsive disorder [95] and selective serotonin reuptake
inhibitors have been reported to be effective for psychosis [96].

2.6.6. Experimental interventions in progress

Several experimental interventions are currently being
evaluated. These interventions are often designed to address
molecular deficits found in PWS. For example, PWS patients
are reported to have reduced oxytocin secreting neurons
which may help decrease appetite and promote satiety [97].
As a result, oxytocin therapy was developed to address this
deficiency. Upon treatment, patients were reported to have
reduced appetite and improved behaviour [97,98]. For hypoto-
nia, a myostatin inhibitor may promote muscle growth and
tone, and may improve metabolism [99] for hyperphagia/
obesity. There are a number of other experimental interventions
to treat hyperphagia/obesity as well [98,100–104].
3. Prader-Willi syndrome molecular
genetics

The genomic imprinting of the 15q11-q13 locus is established in
the germline and is controlled by the bipartite imprinting
centre. PWS-IC [5–7] (figure 2) comprises a CpG island that is
unmethylated on the paternal allele and methylated on the
maternal allele and includes the first exon of the SNURF-
SNRPN gene. The other part, the AS-IC represses the PWS-IC
in the maternal germline and silences the maternal allele of
chromosome 15q11-q13 in somatic tissues. The PWS-IC serves
as a promoter for the approximately 600 kb long SNRPN tran-
script that serves not only as a pre-messenger RNA (mRNA)
for SNURF and SNRPN but also encodes a non-coding RNA,
SNHG14, which is a host transcript for the production of a
number of both long and short non-coding RNAs such as
SPA1, SPA2, sno-lncRNAs 1–5, SNORD116, IPW, SNORD115
and UBE3A-ATS. The proximal portion of SNHG14, between
SNRPN and IPW is expressed in virtually all cell types in
humans. The distal portion comprised of SNORD115 and
UBE3A-ATS is only expressed in neurons.UBE3A-ATS, silences
paternal UBE3A in neurons. Thus, UBE3A is biallelically
expressed in many tissues but is expressed exclusively from
the maternal allele in neurons [105,106].

3.1. The SNRPN transcript
The bicistronic SNRPN transcript encodes two protein-coding
genes SNURF and SNRPN as well as a approximately 600 kb
long non-coding RNA (lncRNA) termed SNHG14 [107–109].
SNURF is encoded by the first three exons and has unknown
function while SNRPN is encoded by exons 4 through to 10
and produces SMN, a non-essential protein which may be
involved in mRNA splicing [24,25]. The SNHG14 non-coding
RNA initiates at the upstream exons of SNRPN and hosts mul-
tiple RNA species with a diverse range of putative functions.
For example, two clusters of small nucleolar RNAs (snoRNAs)
are processed from the introns of SNHG14. The SNORD116
cluster of 30 box C/D snoRNAs is closer to the PWS-IC and
is expressed in most tissues while the SNORD115 cluster of
45 box C/D snoRNAs are more distal and are expressed
almost exclusively in neurons [105,106]. snoRNA ended, poly-
adenylated RNAs and IPW are processed lncRNAs with
incompletely understood functions. As mentioned earlier, the
distal-most portion of SNHG14 encodes UBE3A-ATS, which
silences paternal UBE3A via transcriptional interference [110].
By RNA FISH, the SNHG14 host gene appears within nuclei
as a large RNA cloud with unknown function that localizes
near its site of transcription on the paternally inherited allele
of chromosome 15 [109].

3.2. Box C/D small nucleolar RNAs
Of more than 100 reported post-transcriptional RNA modifi-
cations [111,112], most are found in ribosomal RNAs (rRNAs),
transfer RNAs (tRNAs) and other small RNAs. However, an
increasing number are becoming identified in mRNAs and
lncRNAs. The most abundant RNA modifications are 20-O
methylation and pseudouridylation. These are mostly directed
by snoRNAs that are usually concentrated in Cajal bodies or
nucleoli where they modify either small nuclear RNAs
(snRNAs) or rRNA, or participate in the processing of rRNA
during ribosome biogenesis [113–115]. There are several hun-
dred known snoRNAs, the majority of which are encoded in
introns of protein-coding genes [116]. Box C/D snoRNAs are
processed from excised and debranched introns by exonucleo-
lytic trimming (figure 6b) [117,118] and carry out their
functions in complex with specific protein components, form-
ing ribonucleoprotein complexes (snoRNPs) consisting of the
proteins NOP56, NOP58, Fibrillarin and 15.5 KD/NHPX
(figure 6a) [113]. Box C/D snoRNAs harbour antisense
sequences that basepair with target RNA substrates and
guide the placement of 20-O-methylation modification on the
fifth basepair upstream of the D and D’ box (figure 6a, blue
star). 20-O methylations directed by box C/D snoRNAs are
biologically important and so far verified to exist internally
only in rRNAs and snRNAs [119] and a substantial portion of
known methylated sites in rRNA lie in close proximity to func-
tional sites such as the peptidyltransferase centre, suggesting
potential involvement in rRNA folding, stability and translation
[119]. Interestingly, 20-O-methylation within coding regions of
artificial mRNAs has recently been reported to disrupt key
steps in codon reading during cognate tRNA selection [120].
Furthermore, snoRNAs may be involved in brain development
or function [121].

3.3. The SNORD116 (HBII-85) cluster
The SNORD116 cluster of box C/D snoRNAs is expressed in
most tissues but their expression is much higher in the brain.
The importance of this cluster to PWS pathology is very high,
because all reported deletions and mutations associated with
PWS lead to loss of expression from this region. A number of
atypical PWS deletions have narrowed the putative PWS
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critical region to approximately 80 kB primarily spanning the
SNORD116 cluster (figure 4) [17–22]. While most known
snoRNAs have been shown to target the modification of
rRNA, the SNORD116 snoRNAs are classified as ‘orphans’
because no known targets have been identified and their
sequences show no significant complementarity to rRNAs.
Thus, it is crucial to identify the targets and functions of
SNORD116 snoRNAs. Mapping sites of 20-O methylation
on RNA molecules is challenging but several groups have
recently developed genome-wide methods to chemically iso-
late and map the positions of sites of 20-OMe [122,123]. With
this technology, it will be important to identify SNORD116
targets by comparing results from human and animal
models that do or do not express SNORD116s, although
such models may not accurately reflect the full spectrum of
human phenotypes. While snoRNAs are present across a
vast spectrum of organisms and often share ancient and
conserved elements [113], SNORD116 and SNORD115, rep-
resent blossoming groups of RNAs that may have lineage-
specific molecular functions. Zhang et al. used a computational
approach, snoSeeker, to investigate the evolution of imprinted
snoRNAs across 12 placental mammalian species [124].
They discovered that the number of copies of the SNORD116
and SNORD115 varied widely with human and rodent
lineages demonstrating the highest gains in snoRNA copies.
For example, primates and rodents all possess greater than 20
copies of the SNORD116 family, while some species such as
cows and elephants possess as few as 12 and 1 copies, respect-
ively. In addition, the birth of new snoRNA copies revealed that
nucleotide substitutions occurred the most within the snoRNA
sequence and not in the flanking regions.

The SNORD116 snoRNA cluster has been further divided
into groups 1–3 (SNOG1, SNOG2, SNOG3) based on sequence
and expression heterogeneity [125]. In the hypothalamus,
SNOG1 (SNORD116-1 to SNORD116-9) is expressed most
highly compared to SNOG2 (SNORD116-10 to SNORD116-24)
and SNOG3 (SNORD116-25 to SNORD116-29). The higher
reported levels of expression may actually be owing to increa-
sed stability of individual snoRNAs mediated by snoRNP
complexes. In Fibrillarin RIP-Seq experiments in ovarian terato-
carcinoma PA1 cells, enrichment was observed over the first
third of the SNORD116 cluster but not the latter two thirds
[126]. Thus, the absence of SNOG1 may play an important
role in PWS. Kocher et al. investigated the sequence similarity
of the SNORD116 family across different primates and rodents
[127]. Between humans and mouse, the authors noted that
SNOG1 and SNOG2 shared greater homology, while SNOG3
possessed smaller overlap in homology. Thus the authors
proposed that the variance phenotype that is observed in
murine models may be explained by the differences in
SNOG3. As primates such as chimpanzees and macaques also
share significant homology in the SNORD116 sequence,
primatesmay ultimatelyoffer bettermodels for PWS thanmice.

Alongwith studies involvingPWSSDpatients, Burnett et al.
demonstrated the importance of SNORD116 in neurons derived
from both PWS patient induced pluripotent stem cells (iPSCs)
and Snord116 knockout (KO) murine models [128]. These
models showed reduced levels of nescient helix loop helix2
(NHLH2) and the prohormone convertase PC1 enzyme
(PCSK1). Nhlh2 is reported to promote Pcsk1 expression which
in turn promotes the conversion of prohormones into mature
hormones. The failure of proper hormone maturation may
explain the various neuroendocrine phenotypes seen in PWS.

Several murine models of PWS have been generated to
study the impact of genes relevant to the disorder. These
include large deletions of the locus as well as individual del-
etion of Snord116 cluster. Each model demonstrates slightly
different phenotypes and severity based on genetic back-
ground of the mouse strain. However, both the LD and
Snord116 deletion models demonstrated the same phenotype
to one another [129–131]. These findings further indicate that
Snord116 may be the critical gene and that its absence can be
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responsible for causing the majority of the PWS phenotype.
Other murine models such as those with Magel2 deletions
also shared some similarities with Snord116 deletion models
and thus the influence of other genes in the locus cannot
entirely be ruled out [132,133].

3.4. Short nucleolar-long non-coding RNAs
The SNORD116 cluster also harbours five sno-lncRNAs. These
unusual RNAs have snoRNA sequences at their 50 and 30 caps
but lack 50-cap structures and poly(A) tails [134] (figure 6c).
The SNHG14 transcript hosts 5 sno-lncRNAs within
the SNORD116 cluster. sno-lncRNA1 spans from SNORD116-6
to SNORD116-7, sno-lncRNA2 spans from SNORD116-13 to
SNORD116-14, sno-lncRNA3 spans from SNORD116-18
to SNORD116-19, sno-lncRNA4 spans from SNORD116-20 to
SNORD116-21 and sno-lncRNA5 spans from SNORD116-26
to SNORD116-27. sno-lncRNAs are strictly retained in the
nucleus and accumulate at or near their site of synthesis [134].
While the complete functions of the sno-lncRNAs are not
known, they harbour multiple consensus binding sites for the
Fox family of splicing regulators, and have been shown to
bindRBFOX2 innuclei and togetherpromote specific alternative
splicing patterns [134]. This and the fact that all sno-lncRNAs
derive from the minimal region associated with PWS (figure 7)
have led to the suggestion that changes in alternative splicing
may underlie at least some of the PWS clinical features. It
should be noted that while sno-lncRNAs are highly expressed
in human and rhesus monkeys, they are undetectable in
mouse [135], perhaps partly explaining the difference in pheno-
types between SNORD116 region deletions in the different
species.

3.5. snoRNA ended, polyadenylated RNAs
SPA RNAs are a newly described class of lncRNA that
possess 50 snoRNA cap and 30 poly(A) tails [126]. Thus,
these novel RNAs, like sno-lncRNAs, lack typical 50-cap
structures that are associated with most RNA polymerase II
generated spliced transcripts. The long SNHG14 primary
transcript houses two SPAs (figure 6d ). SPA1 is approxi-
mately 34 000 bp in length and has seven exons. The 50 end
corresponds to SNORD107 and the poly(A) tail forming the
30 end is located upstream of SNORD109A. SPA2 is
approximately 16 000 bp in length and contains 30 exons.
The 50 cap corresponds to SNORD109A while the 30 end
aligns to the 30 end of IPW. SPA1 was shown to bind to the
RNA binding protein TDP43, while SPA2 binds RBFOX2
and HNRNPM [126]. Like the SNORD116 snoRNAs and
sno-lncRNAs, functions of SPA RNAs are currently not com-
pletely understood. It should be noted that while sno-
lncRNAs are highly expressed in both stem cells and neurons
[134], the expression of SPA1 and SPA2 is much greater in
neurons than in stem cells [126]. SPA1 and particularly
SPA2 are not expressed in PWS patients.

3.6. The SNORD115 (HBII-52) cluster
The SNORD115 cluster of box C/D snoRNAs consist of 45
copies and is expressed almost exclusively in neurons [107].
Unlike SNORD116, these snoRNAs are almost identical to
one another and have an 18 bp complementarity to the sero-
tonin 2c receptor (HTR2C) mRNA. This interaction has been
reported to promote alternative splicing and production of
mature HTR2c spliceform [107].

The HTR2C transcript has been reported to undergo three
possible post transcriptional modifications. First, exclusion of
exon 5b results in a shorter protein that is retained in the endo-
plasmic reticulum Second, the incorporation of exon 5b
produces a fully functional receptor [136]. Third, the HTR2C
transcript can undergo A to I editing to generate a product
that includes exon 5b, but confers lower receptor activity
[137,138]. It has been proposed that SNORD115 promotes the
generation of the fully functional HTR2C receptor transcript
by blocking of splicing silencing factors and competing with
deaminases for the binding of the HTR2C transcript [139].
Because they are expressed in some PWS patients, these snoR-
NAs are not likely a major cause of PWS clinical
manifestations but still may worsen symptoms.

3.7. The partial short nucleolar RNA debate
ThroughRNA-Seq, several studies identifiednewRNAspecies
that are produced from further processing of snoRNAs
(psnoRNAs) [140,141]. The psnoRNAs are reported to have
miRNA-like properties and can affect the mRNA abundance
of specific transcripts. Kishore et al. used MBII-52 (Snord115)
overexpression construct in a mouse neuroblastoma cell line
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and observed that psnoRNAs are preferentially generated over
traditional canonical snoRNAs [142]. The group also report
that their overexpression construct led to the expression of
snoRNAs that fail to associate with classic snoRNP proteins
and instead associate with splicing factors. The same group
also reported that Snord116may undergo the same processing
as Snord115 [143].

In contrast to these above studies, other groups have
failed to find the presence of abundant psnoRNAs. Borto-
lin-Cavaillé et al. found that the majority of SNORD115
RNA species are the full length variant [144]. A smaller trun-
cated species (larger size than psnoRNAs) was found in small
abundance in mouse brain samples but completely absent in
human brain samples. Both the truncated and full length
SNORD115s were found to associate with the canonical
snoRNP complex member fibrillarin. Thus these authors
argued that the psnoRNAs observed in the Kishore studies
were probably degradation products stemming from
snoRNA overexpression. Galiveti et al. also failed to observe
psnoRNAs across several human samples in their Northern
blot experiments [145]. Consequently, the discrepancy in
results from these experiments drives uncertainty about the
abundance of psnoRNAs and their role in PWS.

3.8. SNORD107, SNORD64, SNORD108, SNORD109A,
SNORD109B and IPW

Several single-copy Box C/D snoRNAs lie within the SNHG14
transcript. These snoRNAs are SNORD107, SNORD64,
SNORD108, SNORD109A and SNORD109B. Like the
SNORD116 snoRNAs, these appear to be orphans with no
known targets in identified rRNA and other RNAs.

IPW is annotated as a lncRNA that was initially thought
to have no functional role. In one study, however, IPW was
reported to have a trans-regulatory role on the DLK1-DIO3
imprinted region on chromosome 14 [146]. Upon overexpres-
sion of IPW in PWS iPSCs, the maternally expressed genes in
the DLK1-DIO3 imprinted locus was significantly downregu-
lated. Of interest, this element also harbours a poly(A) site
which serves as the termination site for the SNHG14
transcript in stem cells [105] as well as for SPA2 [126,147].

3.9. UBE3A
UBE3A encodes an E3 ubiquitin ligase that places a ubiquitin
mark on proteins targeted for degradation by the proteasome
[148,149]. It is known to target itself and RING1B, as well as
several other putative proteins in vitro, but other targets,
including bona fide in vivo targets, remain unknown.
UBE3A is biallelically expressed in most tissues. However, it
is imprinted in neurons by the expression of UBE3A-ATS
from the paternal allele. It is expressed exclusively from the
maternal allele in most neurons in the central nervous
system [108]. The loss of function of UBE3A results in a
separate disorder called Angelman syndrome [23].

3.10. ‘The left field genes’ - MKRN3, MAGEL2 and NDN
Threegenomically imprintedandpaternallyexpressed intronless
genes MKRN3, MAGEL2 and NDN lie approximately 1.3 Mb
upstream of SNPRN. These genes may play a role in PWS
based on the phenotypes that are observed upon their loss.
However, some studies also report that the deletion of MKRN3,
MAGEL2 and NDN alone do not cause a PWS phenotype [150].

MKRN3 encodes a zinc finger protein and is believed to play
a role in puberty. Three frameshift mutations leading to trunca-
tion of the protein as well as a missense mutation have been
reported in patients with central precocious puberty [151].
The precise function of MKRN3 is yet to be elucidated.

MAGEL2 encodes a protein that enhances the activity of an
E3 ubiquitin ligase complex [152]. It is a part of the MUST com-
plex composed of MAGEL2, USP7 and TRIM27 [153]. The
complex activates the WASH complex by ubiquitination and
promotes retrogradeandendosomal transport of targetproteins.
In addition, MAGEL2 has also been reported to interact with
proteins involved in the regulation of circadian rhythm [133].

Patientsharbouring truncatingmutationsofMAGEL2havea
distinct disorder called Schaaf-Yang syndrome (SYS) [154,155].
The majority of truncating mutations arises in the region of
nucleotides 1990–1996 which is described as a mutational
hotspot. SYSpatientshave some features, suchas intellectualdis-
abilityandhypotonia that overlapwithPWS.However, theyalso
present with ASD, contractures and other dysmorphic features
which are not common to PWS. Surprisingly, deletion of
MAGEL2 has been reported to cause little to no phenotype
[154,155]. These findings indicate that the truncating mutations
of MAGEL2 may encode a defective protein which acts in a
dominant negative fashion [155].

The potential role of Necdin (NDN) has been most
studied in murine models. It encodes a DNA binding protein
reported to be involved in neuronal maturation by promoting
cessation of cell division and promoting axonal outgrowth
[156,157]. NDN has several known interacting partners.
It binds the intracellular domain of the nerve growth
factor receptor along with MAGEH1 and it interacts with
MAGEL2 to prevent the degradation of FEZ1, an important
promoter of axonal outgrowth.

Ndn may play an especially important role in gonado-
tropin releasing hormone (GnRH) neurons [158].
Overexpressed NDN protein in murine models was shown
to co-immunoprecipitate with a known GnRH repressor
MSX. In addition, NDN was also shown to be crucial for
the generation of all subtypes of GnRH neurons and their cor-
rect projections. For this reason, NDN is thought to play a role
in hypogonadotropic hypogonadism seen in PWS patients.

3.11. Other genes of unknown significance
Several genes of unknown significance lie in the 15q11-q13
locus. These genes are also imprinted and expressed from
the paternal allele. NPAP1/C15ORF2 is an imprinted and
intronless gene that lies upstream of SNRPN and may
encode a protein [159]. Two additional loci, PWRN1 and
PWRN2 are annotated and lie upstream of NPAP1 and the
SNRPN. These genes appear to be non-coding [160].

4. Prader-Willi syndrome epigenetics
4.1. Epigenetic regulation of the 15q11-q13 locus
Understanding the mechanism of repression of the maternal
15q11-q13 locus is critical from a therapeutic point of view.
PWS patients lack paternal contribution of the 15q11-q13
locus but possess an intact but epigenetically silent set of
genes on the maternal chromosome. The regulation of gene
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expression at the 15q11-q13 locus is largely controlled by the
PWS-IC. The PWS-IC is themaster regulator and also influences
DMRsatMKRN3,MAGEL2 andNDN,which are unmethylated
on the paternal allele andmethylated on thematernal allele.The
differential methylation at the PWS-IC is established in the
germline. The paternal allele remains unmethylated, perhaps
owing to the maintained expression from the major SNRPN
promoter (PWS-IC) in sperm [160]. Thematernal allele becomes
methylated as the result of transcriptional activation of an
oocyte-specific promoter(s) upstreamof SNRPN. This transcrip-
tion leads to gene body methylation as it transcribes across the
PWS-IC [9,161]. The PWS-IC, and therefore the major SNRPN
promoter is then repressed in somatic cells. How the PWS-IC
influences methylation at the DMRs in MKRN3, MAGEL2 and
NDN is not known. Thismechanism establishes the initial silen-
cing of the maternal chromosome. In recent studies, however,
the existence of separate somatic imprints in silencing the
maternal allele has been discovered [162].

One of the first therapeutic proof of principle studies used
the global DNA methyltransferase inhibitor 5-azadeoxycyti-
dine (5-aza-dC) in PWS patient derived lymphoblastoid
cells [163]. This compound was shown to be able to demethy-
late the PWS-IC leading to activation of the maternal genes.
Thus the activation of the normally silent maternal genes
may offer a potential therapeutic option for PWS patients.
4.2. The role of ZNF274 in repressing the maternal
15q11-q13 allele

Zinc Finger Protein 274 (ZNF274) is composed of a SCAN
leucine rich domain, one or two Krüppel associated box
(KRAB) domains, and five C2H2 zinc finger domains and
also has four isoforms (a-d) using different polyadenylation
signals [164]. Isoforms b and d are shorter and possess one
KRAB domain. Isoforms a and c possess two KRAB domains
and are longer. The DNA sequence specificity is conferred by
the five zinc finger domains. ZNF274 forms a silencing com-
plex with SET domain bifurcated 1 (SETDB1) to deposit the
repressive histone mark, H3K9me3 [165]. It is reported to
co-bind to multiple genomic loci with ZNF75D but also has
approximately 1000 independent binding sites across the
genome [166].

Cruvinel et al. previously discovered that ZNF274 binds to
six sites within the maternal allele of SNORD116 [167]. Along
with the enrichment of ZNF274 on the maternal allele, the
enrichment of H3K9me3 was also observed on the maternal
allele. After knockdown of SETDB1, activation of maternal
SNORD116 in iPSCs from patients with PWS was seen. These
results led to the proposal of a model in which ZNF274 recruits
SETDB1 to maternal SNORD116, where it deposits H3K9me3
and contributes to repression of the maternal allele.

In subsequent studies, ZNF274 was knocked out in iPSCs
from PWS patients. Although the activation of the maternal
genes was modest in iPSCs, SNORD116 was fully activated
in neural precursors and neurons differentiated from them
[162]. This finding suggests that ZNF274 mediated repression
of maternal SNORD116 may represent a role for ZNF274 in
maintaining a neuron-specific somatic imprint rather than a
germline imprint. Interestingly, the activation of SNORD116
initiated from the upstream, neuron-specific exons and not
the PWS-IC, which remained fully methylated. These find-
ings also reinforce the idea that this additional somatic
imprint is required to maintain the repression of the maternal
genes in the neural lineage.

4.3. G9a and GLP
G9a (Euchromatic histone lysine N-methyltransferase-2) and
GLP (Euchromatic histone lysine N-methyltransferase-1) may
also play an important role in establishing imprinting at the
15q11-q13 locus. G9a was previously reported to be crucial in
establishing CpG methylation at the PWS-IC and catalysing
the placement of H3K9me2 marks on histones in mouse
embryonic stem cells [168]. Interestingly, DNA methylation
was unchanged at the PWS-IC at E9.5 uponG9aKO. The precise
interplay between H3K9me2 and DNA methylations is not
known. However, it is believed that H3K9me2 marks help
recruit DNAmethyltransferases to the target locus and catalyse
the methylation of CpG islands [169].

More recently, Kim et al. identified two inhibitors of G9a
in a screen to identify activators of maternal Snrpn in mouse
fibroblasts [170]. They observed partial activation of the nor-
mally silent maternal genes such as SNORD116 in both
mouse and human fibroblasts PWS models and demonstrated
improved survival and growth compared to the untreated
when administered by intraperitoneal injection into PWS
mice. These studies revealed that the inhibition of G9a leads
to decrease in H3K9me2 marks but no changes to DNA
methylation at the PWS-IC. A preprint from Wu et al. con-
firmed the ability of G9a to activate maternal SNORD116 in
neural progenitors and neurons derived from human PWS
iPSCs [171]. These results probably indicate that G9a plays an
important role in the establishment of DNA methylation at
the PWS-IC but the activation of thematernal genes are depen-
dent on the status of H3K9 methylation, independent of the
PWS-IC DNA methylation.

The relationship between G9a/GLP and ZNF274/
SETDB1 and whether they share any common pathways is
currently unknown. For example, SETDB1 may depend on
G9a/GLP to establish H3K9me2 before it can catalyse the
placement of H3K9me3. The inhibition of G9a/GLP would
thus also indirectly inhibit SETDB1 by limiting the amount
of available H3K9me2 substrates. It is also possible that the
G9a inhibitors also directly inhibit SETDB1. Additionally,
experiments to evaluate the recruitment of G9a and
H3K9me2 to the human 15q11-q13 locus are necessary. It is
possible that ZNF274 may co-recruit both G9a/Glp1 and
SETDB1 to the locus. However, the presence of other
transcription factors and recruiters for G9a/GLP cannot be
ruled out.

4.4. SMCHD1
Structural maintenance of chromosomes flexible hinge domain
containing 1 (SMCHD1) encodes an epigenetic repressor.
Its loss is associated with hypometyhlation and an increase
in active histone modifications in its target region through
manipulation of the chromatin architecture [172–175]. Both
human and murine SMCHD1 are critical in the process of
X-inactivation [176,177] while murine Smchd1 is also reported
to act on other loci such as the region upstream of Snrpn and
Igf2r cluster [178]. SMCHD1 is believed to be involved in the
embryonic development of several structures in the head
such as the eyes and the nose. However, its exact involvement
in these developmental pathways is unknown. Mutations of
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SMCHD1 have been implicated in disorders such as Faciosca-
pulohumeral muscular dystrophy [179,180] and Bosma
arhinia microphthalmia syndrome [181,182].

In the PWS locus, SMCHD1 was shown to be responsible
for establishing the methylation imprint at Mkrn3, Magel2
and Ndn [183]. Smchd1 KO cells showed upregulation of
these genes as well as loss of DNA methylation at the respect-
ive CpG sites. ChIP-Seq experiments also showed enrichment
of H3K4me3, indicating active promoters, for Ndn and
Mkrn3. SMCHD1 itself showed enrichment over the three
genes aswell as four other distal sites. The authors interestingly
noted that four of the sites of SMCHD1 enrichment overlapped
with CTCF binding sites. Thus the authors propose that
SMCHD1 may antagonize CTCF mediated chromatin inter-
actions and help establish imprinted repression of the
maternal region.

The role of SMCHD1 has not been as extensively explored
in human systems. It is possible that SMCHD1 may help
establish imprinting for MKRN3, MAGEL2 and NDN in
human cells. However, the PWS-IC is clearly the master
regulator controlling the imprinting of MKRN3, MAGEL2
and NDN along with SNRPN because it has long been
known that the deletion of the paternal PWS-IC is sufficient
to cause the loss of expression of these upstream genes
[164–166,184–186]. This begs the question of how DNA
methylation at the PWS-IC, DNA methylation and/or his-
tone modifications influenced by SMCHD1, and histone
modifications regulated by ZNF274/SETDB1/G9A work
together to repress maternal 15q11-q13.

The role of PWS-IC as the master regulator is also seen in
murine models. Bressler et al. generated a deletion removing
most of the IC in amurinemodel [187]. Thesemodels exhibited
a similar phenotype of hypotonia and failure to thrive at birth
followed by early death in 40% of the mice. The surviving
mice showed developmental delay but did not develop inferti-
lity or hyperphagia/obesity. Themodels with a Snrpn segment
deletion that left the IC intact did not demonstrate any pheno-
types [188,189]. These studies also noted that deletion of the IC
led to the loss of other paternally imprinted genes while Snrpn
deletions sparing the IC failed to show this phenotype.
4.5. Implications for future therapeutics
The studies involving epigenetic regulators on the maternal
chromosome, such as ZNF274 and G9a, may serve as thera-
peutic strategies for PWS (figure 8). The activation of the
maternal allele may provide a permanent solution for PWS
patients missing critical genes and can serve as a potential
cure for the disorder. These approaches need to be further
fine-tuned in the future to avoid potential genome-wide off
target effects from inhibiting these epigenetic regulators.
Thus future studies must explore methods to specifically
exert epigenetic effects within the locus while minimizing
impact at other loci. In addition, 15q11-q13 locus specific
effects such as the potential silencing of UBE3A from
over-activation of UBE3A-ATS also need to be monitored.

5. Concluding remarks
The field of PWS is constantly evolving with new discoveries
driving improved outcomes for patients. Understanding the
molecular underpinnings behind the clinical presentation and
usage of model systems have led to the discovery of treatments
that drastically improved the natural historyof the disorder. For
example, GHT and oxytocin therapy have greatly improved the
qualityof life forpatients byalleviatinghyperphagia andbehav-
ioural problems. However, these therapies address specific
phenotypes and are not permanent cures for PWS. Recent
advancements in genetic diagnosis tools have helped further
pinpoint critical genes in the 15q11-q13 locus. Patients harbour-
ing SD encompassing the SNORD116 cluster present amajority
of the PWS clinical phenotypes. Thus understanding the func-
tion of SNORD116 including the roles of snoRNAs, sno-
lncRNAsandSPARNAsmaybecrucial fordiscoveringmolecu-
lar deficits that may exist between PWS and unaffected cells. In
addition, the silent maternal 15q11-q13 allele may serve as an
intriguing treatment option for PWS. Patients possess an intact
set of genes on the maternal 15q11-q13 allele but are unable to
express them owing to epigenetic silencing. Two promising
silencing factors, ZNF274 and G9a, were identified in previous
studies. The knockout of ZNF274 showed robust activation of
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maternal SNORD116 in neurons derived from PWS patient
iPSCs. The inhibition of G9a also demonstrated activation of
the maternal SNORD116 in PWS patient fibroblasts. These
promising studies provide both molecular precedence and
hope that innovative therapeutics involving SNORD116 and
the maternal allele can be developed in the future.
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