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Abstract

Cancer is a disease driven by a combination of inherited risk alleles coupled with the acquisition of somatic mutations,
including amplification and deletion of genomic DNA. Potential relationships between the inherited and somatic aspects of
the disease have only rarely been examined on a genome-wide level. Applying a novel integrative analysis of SNP and copy
number measurements, we queried the tumor and normal-tissue genomes of 178 glioblastoma patients from the Cancer
Genome Atlas project for preferentially amplified alleles, under the hypothesis that oncogenic germline variants will be
selectively amplified in the tumor environment. Selected alleles are revealed by allelic imbalance in amplification across
samples. This general approach is based on genetic principles and provides a method for identifying important tumor-
related alleles. We find that SNP alleles that are most significantly overrepresented in amplicons tend to occur in genes
involved with regulation of kinase and transferase activity, and many of these genes are known contributors to
gliomagenesis. The analysis also implicates variants in synapse genes. By incorporating gene expression data, we
demonstrate synergy between preferential allelic amplification and expression in DOCK4 and EGFR. Our results support the
notion that combining germline and tumor genetic data can identify regions relevant to cancer biology.
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Introduction

Cancer is a disease of two related, but karyotypically distinct

genomes: germline and somatic. Researchers typically focus on

identifying genetic alterations by exclusively studying either the

germline genome or the somatic genome. Germline genetic

variants that play key roles in tumor biology (e.g., risk alleles) have

typically been discovered using linkage and, more recently,

association studies. On the other hand, somatic genetic elements

important for tumor biology, such as amplifications, deletions, and

point mutations, are usually identified by patterns of recurrence

across tumor samples. Given the kinship between these two

genomes, however, studies of cancer biology should be amenable

to population genetic analysis, since the tumor cells can be

considered descendants of a progenitor cell. In the population of

tumor cells, lineages are subject to somatic versions of mutation,

drift and selection [1]. We hypothesize that integrating germline

allelic (i.e., genotypic) information with somatic amplification

events could yield novel insights into the alleles that undergo

selection during tumor evolution.

Associations between cancer risk alleles and somatic patterns are

beginning to appear in the literature with increasing frequency.

Preferential allelic amplification at candidate risk loci has been

convincingly demonstrated in several mouse studies [2,3] as well as

in the analysis of the AURKA oncogene in humans [4,5].

Additionally, a germline risk allele for colorectal cancer was

demonstrated to be preferentially amplified (relative to the wild

type allele) in tumors that were heterozygous for this single

nucleotide polymorphism (SNP) [6]. More recently, a somatically

acquired mutation in JAK2 for myeloproliferative disorders was

shown to arise preferentially on a particular haplotypic back-

ground [7–9]. These targeted studies of specific loci provide

compelling evidence for the relationships between the germline

and somatic genomes. One of the goals of our study is to perform a

genome-wide query for such relationships.

We have developed a battery of statistical methods to query

tumor DNA data for preferential allelic amplification [10]. These

methods are designed to identify alleles that have likely been

positively selected during tumor evolution within areas of copy

number gain (Figure 1; Materials and Methods). One of these

statistical tests, termed the amplification distortion test (ADT), is

closely related to a well-known genetic test of association and

linkage, the transmission disequilibrium test (TDT) [11]. Consider

an example where N = 100 tumors harbor an amplification and

are heterozygous at a particular SNP locus (whose alleles are

arbitrarily labeled A and B). Under the null hypothesis, on average
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50 tumors will amplify one allele, and the other 50 will amplify the

alternate allele since tumors typically amplify one of the two

parental chromosomes [12]. In this sense, amplification is a

somatic analog of Mendelian 50:50 transmission in germline

genetics. Significant deviations from a 1:1 ratio (Figure 1B) are

inconsistent with this null hypothesis and suggest that the

particular allele – or a variant linked to that allele within the

same amplified region – is advantageous to the tumor when

amplified. Formally, we compare the observed number of

germline heterozygotes amplifying the A allele to the Binomial(N,

p = 0.5) distribution to obtain a two-sided P-value (Materials and

Methods and [10]). Similar to the TDT, the ADT is robust to

population stratification because the non-amplified homolog

provides a perfectly matched control.

The recent National Cancer Institute-directed initiative, the

Cancer Genome Atlas (TCGA; [13]), provides an ideal resource to

test our hypothesis, furnishing SNP array data from multiple

platforms across hundreds of glioblastoma multiformae tumors

and matched normal samples. Since SNP arrays contain both the

allelic and amplification information at hundreds of thousands of

loci across the genome, the data are well-suited for our allelic

distortion analysis. For each patient in the study, we made use of

TCGA-generated SNP genotypes in the germline, as well as

amplification status (generated on three separate probe hybrid-

ization-based platforms) and allelic amplification status for

matched tumor DNA.

Results

TCGA recently published (TCGA, 2008) the first report from a

pilot study of over 200 human glioblastoma samples. As part of that

study, the tumor DNA was interrogated at some 1.8 million loci using

the Affymetrix SNP array 6.0, over 236,000 loci using the Agilent

CGH microarray 244A, and at about 550,000 loci using the Illumina

HumanHap550 array. We restricted our analysis to the 178

individuals for whom both germline and tumor array data from the

Illumina platform were available. From these data, we extracted

allelic copy number on a SNP-by-SNP basis; that is, for each

individual, we inferred amplification status at each SNP locus, also

identifying the amplified alleles in amplicon SNPs. As shown in

Figure S1 (and observed in the TCGA manuscript), commonly (.5%

of samples) amplified loci are restricted to several discrete – but wide –

genomic regions. Such regions have a median length of 166 kb, and

regions amplified in at least 15% of samples are usually even longer

(median length 382 kb). Such broad regions of recurrent amplifica-

tion can make it difficult to identify the target of these amplifications.

From a statistical standpoint, although we apply our test

statistics across the genome, the ADT is not a genome wide test in

the conventional sense because statistical power is expended only

in a fraction of the genome. In practice, we only test loci with an

amplification frequency sufficiently large to detect allelic selection.

The power to detect selected allelic amplification of a SNP

depends on its amplification frequency as well as its heterozygosity

Figure 1. Biological rationale for selected allelic amplification
in the tumor. (A) The individual inherits an oncogenic variant from the
maternal chromosome M (top). This variant is not directly typed, but is
captured via linkage disequilibrium by surrounding array SNPs (labeled
with nucleotide residue). The paternal chromosome P harbors the wild-
type allele. In the tumor environment (bottom panel), the oncogenic
allele is activated via amplification, which confers a selective growth
advantage to the cell. The amplified haplotype is detected from the SNP
array data, and its preferentially amplified state is revealed through
analysis of data from hundreds of patients. (B) In SNP array data, the
underlying biological phenomenon will manifest itself in an abundance
of amplicons harboring alleles that tag the inherited variant that
provides a selective advantage when amplified. The ADT tests for over-
transmission of a particular allele from heterozygous ‘‘parent’’ cells to
the ‘‘affected’’ (amplified) homolog in the tumor cell and examines
deviations from the null hypothesis of a 1:1 transmission ratio.
doi:10.1371/journal.pgen.1001086.g001

Author Summary

Cancer is a disease of two distinct, but related, genomes:
the inherited genome and the tumor genome. Despite the
fact that the tumor genome arises from the germline, the
genomes are typically studied as separate entities. For
example, germline genetic studies focus on how inherited
variation is related to a particular trait such as disease risk,
whereas tumor genetic studies focus on areas of recurrent
aberrations such as amplifications to identify genes
involved in tumor biology. In this study, we integrated
both germline and tumor genetic information to pinpoint
areas of the human genome that are likely undergoing
selection during the evolution of the tumor. Our results
support the notion that combining germline and tumor
genetic data can identify regions relevant to cancer
biology.

Integrating Germline and Tumor Genomic Data

PLoS Genetics | www.plosgenetics.org 2 September 2010 | Volume 6 | Issue 9 | e1001086



rate in the sample set [10]. For example, in the ADT, only SNPs

with at least nine heterozygote calls in amplified samples have a

chance of achieving a nominal two-tailed P-value ,0.005. By

deciding a priori that P-values above this level will not be

considered significant in downstream analysis, we dramatically

reduced the candidate loci under interrogation (Figure S2),

decreasing the de facto number of SNPs to be tested by 91.9%

from 547,458 to 44,132. This represents a far smaller multiple

testing burden than in germline genome wide association studies

(GWAS). Such reduction in testing burden improves our power to

detect true effects.

Figure 2A presents the amplification distortion signals for SNPs

tested along the genome. The statistical association for all but the

top-scoring SNPs closely follows the distribution expected under

the null hypothesis (Figure 2B), attesting to the validity of the

assumptions. Although no single SNP achieves genome-wide

significance, our results do yield a larger number of SNPs with

lower P-values than would be expected by chance. Specifically,

given the distribution of amplified heterozygotes in our data, we

would expect an average of 114 SNPs to attain a P-value below

0.005 (95% confidence interval 98–132) under the null hypothesis

of no random allelic amplification (Materials and Methods). In the

actual data, 139 SNPs surpass this threshold (Table S1). This

suggests that a subset of the SNPs among these top 139 is likely

subject to selective allelic amplification. We checked the level of

linkage disequilibrium (LD) these SNPs possess in HapMap CEU

data (Table S1); 40 of these 139 SNPs are in strong LD in

HapMap (r2$0.7) with at least one other SNP within this set of 40

(Table S1, Figures S3, S4, S5). Note that our permutation scheme

preserves LD structure, so that blocks of SNPs in LD can jointly

contribute much of the signal not only in the actual data, but also

during each permutation. Therefore, the 139 SNPs are still indeed

more than expected by chance.

We should point out that one potential artifact arises from the

fact that a germline copy number variant (CNV) gain might

appear to be a somatic amplification when compared with the

signal intensities from pooled normal samples. However, our

methodology guards against this artifact in two ways (Materials

Figure 2. Genome wide ADT analysis of 178 TCGA glioblastoma samples. Manhattan-style plot (A) of amplification distortion P-value (y-axis,
log10 scale) along the genome (x-axis). Save for the strongest hits, the ADT statistic follows the distribution expected under the null hypothesis, as
demonstrated by the quantile-quantile plot (B) of P-values (log10 scale). Only SNPs with nine or more amplified heterozygous samples are presented,
to avoid effects of discrete probabilities in a small sample.
doi:10.1371/journal.pgen.1001086.g002

Integrating Germline and Tumor Genomic Data
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and Methods). First, we call amplification in the tumor only if the

intensity is greater than that of all normal samples in the study

(Materials and Methods). Second, we call the amplified allele only

if its allelic intensity is considerably larger in the tumor than in the

matched normal. Finally note that, of our top 139 SNPs, only 23

(16.5%) are harbored in gains reported in the Database of

Genomic Variants (DGV) (http://projects.tcag.ca/variation/),

and of these only 8 are reported in more than three individuals

in the database. Therefore, it is quite unlikely that germline CNVs

significantly contribute to the ADT signal.

To investigate whether certain classes of genes may be driving

our signals, we mapped each of the top 139 SNPs to the nearest

gene (within at most 100 kb), which yielded 73 unique genes

(Table S1). All but 22 of the 139 SNPs fell within 100 kb of a

transcribed region, and 53 of the genes had single SNPs mapping

to them. The largest number of significant SNPs mapping to the

same gene was seven, all lying within the transcribed region of

NSPR1 (see Table S1 for r2 LD values). We performed a gene

ontology (GO) analysis [14] on the gene set to query for

enrichment in specific annotations (Materials and Methods). The

control set of genes for such analysis deserves special attention in

this study, as gene sets may be over represented among our signals

simply because they are over represented in amplified regions. To

distinguish the signal driven by genes undergoing allelic selection

from that driven by more general (non-allelic) amplification, this

analysis was conducted by comparing our gene set with genes

harboring (or near) SNPs that are recurrently amplified in our

data. Thus, any observed enrichment in GO terms is above and

beyond that which is due solely to general somatic amplification.

This analysis allows us to query for signals from the allele-specific

selection, controlling for those due to somatic amplification alone.

The results are shown in Table 1 and Figure S6.

Among our five significant (FDR q-value ,0.1) GO enrich-

ments is the cellular component term synapse (P = 0.0006). Of the

73 genes harboring (or very near) SNPs below the ADT threshold

of P-value,0.005, six (CADPS2, CHRM2, CHRNA4, GRM8,

MAGI2, and SNAP25) possess this annotation. Notably, the

brain-related enrichment is independent of synapse related genes

undergoing amplification in brain tumors, since general amplifi-

cation is controlled for in this analysis. Therefore, the synapse

annotation emerged strictly from the ADT selection signal among

SNPs already in regions amplified in this brain-tissue tumor. This

may be indicative of tumor selection for particular variants in these

specific synapse-annotated genes.

Interestingly, the most significantly enriched GO terms (Table 1)

were positive regulation of kinase activity (P = 9.0361025;

Benjamini-Hochberg corrected q-value 0.0471) and positive

regulation of transferase activity (P = 0.000132; Benjamini-Hoch-

berg corrected q-value 0.0471). The six genes in our gene set

associated with these GO terms are AGK, DGKB, EGFR, INSR,

KIT, and RELN. Each of these genes is the closest to a single

significant SNP, with the exceptions of EGFR with two such SNPs,

and RELN with three such SNPs (see Table S1 for r2 LD values).

Furthermore (Table S1), each harbors one or more of the 139

SNPs within its transcribed region, with the exception of DGKB

whose associated SNP is 66 kb downstream. To investigate the

relative dependencies between the amplifications of these six

genes, we examined the frequencies of their co-amplifications on a

sample-by-sample basis. Of the six, four (AGK, DGKB, EGFR, and

RELN) are located on chromosome 7. As expected, amplifications

of these genes tend to co-occur far more often than would be

expected by random assortment (Fisher’s exact test P ,10220),

largely due to the fact that amplicons often encompass most or all

genes on the chromosome. The other two genes are located on

chromosomes 4 (KIT) and 19 (INSR). Surprisingly, INSR is co-

amplified with chromosome 7 genes in a statistically significant

manner (Fisher’s exact test P ,1026 for co-amplification with

EGFR, odds ratio 14.2). On the other hand, KIT amplification is

anti-correlated with that of the genes on chromosome 7 (P = 0.05

for anti-correlation with EGFR, odds ratio 0.5). Figure 3 provides

an overview of the amplification association structure among these

Figure 3. Heatmap of correlation, as measured by odds ratio
estimates, between amplification status among six kinase/
transferase activity genes showing signs of somatic allelic
selection. Values above one indicate amplification correlation, below
one anti-correlation. Fisher’s exact P-values are given in each heatmap
pixel.
doi:10.1371/journal.pgen.1001086.g003

Table 1. Gene ontology analysis results.

GO term P-value q-value Population Count Study Count

positive regulation of protein kinase activity 9.03E-05 0.0471 30 6

phosphatase binding 3.20E-04 0.074 6 3

peptidyl-tyrosine phosphorylation 3.46E-04 0.074 14 4

synapse 6.24E-04 0.0851 42 6

positive regulation of catalytic activity 6.37E-04 0.0851 76 8

All terms showing enrichment (q-value ,0.1) among genes identified by ADT analysis, as compared to the reference set of recurrently amplified genes, are shown.
doi:10.1371/journal.pgen.1001086.t001
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six genes. These correlation patterns may point to interdependent

and/or alternative pathways that a tumor engages.

Given the preferential allelic amplification observed in some

SNPs, we reasoned that an allele undergoing selection when

amplified in a tumor may have an effect on disease risk as a

germline predisposition variant. This principle has been previously

demonstrated in mice [3] and in humans [6–9]. We therefore

compared our list of the top 139 SNPs from our ADT analysis with

the 406 SNPs reported in a recent GWAS for glioblastoma [15].

The rationale is that the variant that is selectively amplified in

glioblastoma tumors may actually predispose the carrier to the

initiation of the tumor, and thereby occur at a higher frequency in

cases as compared to controls.

A pair of SNPs, rs4367471 and rs4132013 (r2 = 0.78 in CEU

HapMap population, Table S1) within a single haplotype block (in

the European populations) in an intron of the LHFPL3 gene,

appears on both lists. Permutation analysis shows that an overlap of

two or more SNPs between lists of these sizes (Materials and

Methods) would be expected by chance only 2.1% of the time

(P = 0.021). This is remarkable since the ADT makes use of no

population control genotypes, while the GWAS study does not take

tumor DNA into account. For both SNPs, the minor allele is

overrepresented on amplified chromosomes (in the present study)

and among glioblastoma cases (in the Wrensch et al GWAS).

Among 24 amplified heterozygotes for rs4367471 in our study, 20

amplify the minor allele (P = 0.0015), while 27 of 32 amplified

heterozygotes for rs4132013 amplify the minor allele (P = 0.00011).

In the GWAS study, the rs4367471 minor allele frequency was 0.28

for glioblastoma cases, as compared to 0.23 for the disease-free

controls (P = 0.00022). Similarly, the rs4132013 minor allele

frequency was 0.24 for cases as compared to 0.19 for controls

(P = 0.00042). The odds ratios were 1.28 for both SNPs after

adjusting for population structure with the Eigenstrat software [16].

The selective advantage gained by a cell amplifying a specific

allele of a gene may be acting through direct changes in a gene

product (e.g., a missense SNP) or by regulatory changes that

modulate the quantity of gene product. The latter option is a

testable hypothesis – it predicts that the amplification of the

selected-for variant will be associated with elevated transcript

expression levels. To investigate whether any of the detected

signals of selected allele-specific amplification associates with

expression, we integrated the expression data from the tumor

samples with the genotype and amplification status. We considered

Affymetrix U133A expression array data from the 154 individuals

in our sample set for which the data was available from the TCGA

website. Our list of top SNPs includes 65 whose nearest (as

measured by base pair distance to transcribed region) gene is

represented on the expression array. Of the 65 SNPs, only 28 had

at least 5 examples of each SNP allele being amplified among the

154 samples, and were thus available for testing this association.

Topping this list of 28 SNPs were rs6959338 and rs13222385,

intronic variants in DOCK4 (chr 7q31.1) and EGFR (chr 7p11.2),

respectively: rs6959338 shows amplification of the T allele over the

C allele in 33 of 41 amplified heterozygotes (P = 1.161024);

rs13222385 amplifies the G allele over the A allele in 35 of 45

amplified heterozygotes (P = 2.561024). Intriguingly, the expres-

sion data shows statistically significantly higher expression in

samples amplifying the selected-for allele than in those amplifying

the other allele (Figure 4) in both DOCK4 (P = 0.027) and EGFR

(P = 0.015). To pursue this idea further, we tested the expression

levels of the genes immediately flanking EGFR and DOCK4 for

association with amplification of the selected-for alleles. We were

interested to discover that LANCL2, a gene 158 kb downstream

from EGFR, has statistically significantly higher expression in

rs13222385 heterozygotes amplifying the G allele than those

amplifying the A allele (P = 0.0371). Taken together with the

SNP’s association with EGFR expression levels, this finding could

point to a regulatory element, such as an enhancer for the allele or

a linked variant.

Discussion

We have presented a novel genome wide approach to identify

genetic variants that are preferentially selected, via amplification,

during tumor evolution. The ADT approach is statistically

rigorous and is robust to the confounding effects of population

stratification. The non-amplified chromosomal homolog provides

the ideal matched control for the amplified homolog, as it comes

from the same individual. Although no single SNP individually

achieves genome-wide significance under the ADT (likely due to a

lack of power owing to limited sample size [10]), our data does

show enrichment in strong ADT signals as compared to chance.

Currently, we are performing similar analyses in areas that have

undergone copy number loss.

Our integrated analysis of genes harboring (or near) SNPs

undergoing apparent allelic selection has revealed intriguing

pathways and annotations. As revealed by the GO analysis, many

of the variants showing ADT signals with P-values ,0.005 are

located within genes related to kinase activity. The fact that both

the EGFR and KIT kinases reach statistical significance is of

particular interest. KIT expression is often observed in gliomas,

and imatinib (which is known to inhibit c-Kit) is currently being

evaluated in clinical trials [17–21]. The correlation/anti-correla-

tion relationships among these implicated genes may highlight

glioblastomas that utilize different pathways and may therefore

represent distinct subtypes of tumors that may be clinically

relevant as has been recently described [22].

We also observed particular instances of the selectively

amplified alleles driving higher expression in DOCK4 and EGFR.

DOCK4 was originally isolated in a screen to identify homozygous

genomic deletions during tumor progression in a mouse model and

is part of a larger family of atypical guanine exchange factor (GEF)

for Rho family GTPases [23]. Rho GTPases are highly conserved

molecular regulators of cytoskeletal dynamics and influence many

cellular processes including cell polarity and migration [24].

Interestingly, it has been previously shown that suppression of

DOCK4 RNA reduces dendritic growth and branching in

hippocampal neurons, while overexpression enhances these

processes [25]. Moreover, increases in Dock180 levels, another

Dock family member, enhanced migratory and invasive capacity

in vitro, while inhibition of expression significantly reduced glioma

cell invasion in vitro [26]. Therefore, we speculate that DOCK4

influences the invasive potential of gliomas and that the DOCK4

alleles may differentially modulate this potential. The role of EGFR

in glioma biology is well established [27] (and references therein).

Somatically acquired mutations of EGFR are commonly (,40%–

50%) observed in gliomas, and the EGFR pathway is commonly

targeted in this disease [13,28–32]. Our results further substantiate

the importance of EGFR and demonstrate that particular alleles

play important roles in determining EGFR expression levels. It will

be of interest to study if expression differences in this gene lead to

amplified or diminished phenotypic consequences. Indeed, a

recent article demonstrates that subtle alterations in expression

levels can lead to dramatic phenotypic consequences [33].

The apparent selection of specific inherited alleles when

amplified is consistent with several biological interpretations.

The data can be considered in the context of Knudson’s two-hit

hypothesis [34] in that the associated SNP alleles are inherited

Integrating Germline and Tumor Genomic Data
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variants (or capture variants via linkage disequilibrium) that

provide a selective advantage when amplified. Indeed, it has been

demonstrated that inherited alleles of a locus (e.g., the Arg72 and

Pro72 variants of TP53) can have differential mechanistic effects

(e.g., apoptotic potential) [35]. Another explanation is that cis-

acting germline determinants influence the acquisition of somatic

mutations, which are subsequently acted on by selection. Elegant

experiments supporting this hypothesis in mice and humans have

recently been published [7–9,36]. Third, one may hypothesize that

a somatic mutation provides a selective advantage only when

amplified on a specific haplotypic background, or is selected

against if the mutation arises on other allelic backgrounds; that is,

only certain alleles will tolerate the somatic mutation.

Since selection implies function, the loci identified in this study

are high-priority candidates for further investigation. The results

may provide a way to rationally identify subtypes of cancers that

are driven by distinct risk loci. If this is the case, then genome wide

association studies for cancer risk may benefit from typing

matched tumor DNA samples, in addition to germline DNA,

and performing an integrative analysis. Alleles that do not affect

risk predisposition may still yield important clues with respect to

acquired tumor traits, such as angiogenesis, tissue invasiveness,

evasion of apoptosis, etc. Functional studies, such as allele specific

RNA interference for protein coding regions or somatic cell knock-

in of alleles, may shed light on the mechanistic consequences of the

alleles.

In summary, we demonstrate that integrating information from

germline and tumor genomes can reveal aspects of tumor biology

that are not readily identified by studying each genome in

isolation.

Materials and Methods

Data sets
We obtained glioblastoma array data (GBM Publication Data

Freeze) from the ftp site of TCGA. We utilized three different data

types – germline genotypes, amplification status, and allelic

imbalance – from various hybridization-based platforms, down-

loaded from the TCGA ftp site. First, germline SNP genotypes

(Illumina platform) for all normal samples were obtained. Second,

we accessed copy number segmentation data (from Affymetrix

SNP array 6.0, Illumina HumanHap550, and Agilent CGH array

244A) for tumor samples, providing genomic regions for each

individual that are inferred to have constant copy number along

with the estimated ‘‘raw’’ (non-integer) copy number of that

segment. Third, we obtained the raw allelic A and B signals for all

samples (Illumina BAF measure), tumor and normal. This

provides a raw measure of allelic imbalance, commonly termed

Figure 4. Selective allelic amplification and expression of SNPs in DOCK4 and EGFR. The SNP rs6959338 in DOCK4 shows preferential
amplification of the T allele (upper left), as well as higher expression levels in samples amplifying T instead of C (upper right). Similarly, rs13222385
shows preferential allelic amplification (lower left) and expression (lower right).
doi:10.1371/journal.pgen.1001086.g004

Integrating Germline and Tumor Genomic Data
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the ‘‘B allele frequency’’ (BAF), defined as

BAF~ Bsignalð Þ= sumofAandBsignalsð Þ:

We also obtained Supplementary Table 7 from the Wrensch et al

GWAS [15], which lists 406 SNPs with p,0.001 for association

with high grade glioma comparing cases from San Francisco

Bay Area Adult Glioma Study, 1997–2006 (AGS) and the

Cancer Genome Atlas (TCGA) to AGS and Illumina controls

(iControls).

Calling amplification
For each of the three platforms (Affymetrix, Agilent, and

Illumina), we first inferred amplification at all 1.3 million

autosomal SNPs represented by the Affymetrix and Illumina

arrays combined, as follows. First, for each sample, all SNPs

harbored in each genomic segment from the sample’s copy

number segmentation file (see above) are assigned that segment’s

raw copy number. A SNP is called amplified by the platform in a

tumor sample if its raw copy number in that sample exceeds its

raw copy number in all normal samples. This conservative

amplification calling procedure accounts for local probe intensity

effects, and avoids miscalling germline copy number variants as

somatic amplifications. Note that this procedure, while conserva-

tive, is designed to include single-copy gains as well as high-level

amplification events. Finally, for all downstream analyses, a sample

is considered to harbor an amplification at a SNP if it is called

amplified by at least two of the three platforms.

Calling the amplified allele
For each SNP, we restrict the remainder of our analysis to

individuals that are both heterozygous in the germline and

amplified in the tumor at the SNP site. For each of these samples,

we aim to determine which of the two alleles is amplified. Towards

this end, we exploit the BAF measure described above. Since each

sample is heterozygous in the germline, we expect the SNP’s BAF

measure to be near 0.5 in the germline. A tumor BAF larger than

0.5 is indicative of B allele amplification, and a BAF smaller than

0.5 is indicative of A allele amplification. However, bias in A and B

intensity measures can result in deviations from these expectations.

We therefore rely on the deltaBAF measure, defined as

deltaBAF~BAFtumor-BAFmatchednormal:

The expectation here is that A (respectively, B) allele amplification

will result in a negative (respectively, positive) deltaBAF value. To

avoid erroneous deltaBAF calls due to noisy probe intensities, we

only have confidence in allele calls where |deltaBAF| .0.05.

That is, for heterozygous (in the germline) samples that are

amplified (in the tumor), we call A allele amplification if deltaBAF

,20.05 and B allele amplification if deltaBAF .0.05.

ADT P-values
The procedure described above yields sample counts for A

amplification and B amplification at each SNP. Let nA and nB,

respectively, denote these counts. Under the null hypothesis of

random allelic amplification, nA follows a Binomial(nA + nB, 0.5)

distribution. In other words, if there is no causal allele or site

within an amplified region, the distortion signature of each SNP

within the amplified region should conform to the null signature

on the binomial distribution. Therefore, a (two-sided) P-value

testing preferential allelic amplification may be performed by

comparing nA with this distribution in the obvious manner. The

chance of a non-causal/non-associated allele within an amplified

region being randomly selected enough times to result in a

distortion (i.e. false positive) is a, where a represents a chosen level

of significance as described in the following section.

Permutation analysis and quantile-quantile (qq-)plot
Although not a genome-wide association scan, our approaches

comprise many tests whose correlations are manifold and

complicated. Furthermore, some regions harbor more amplifica-

tions than others and therefore have a higher a priori likelihood of

displaying allelic distortion even under the null hypothesis.

Therefore, analytically determining genome-wide significance

from the test statistics is not straightforward. To address this, we

developed a permutation procedure that assesses the significance

of our results. For each run of the procedure, we first randomly

determined – at each sample chromosome pair – whether to swap

amplification status from the amplified allele to the non-amplified

allele at all amplified (in the tumor) SNPs on the chromosome.

This preserves haplotype and amplicon structure while destroying

correlation between the two. We then recomputed the test

statistics across the genome. In this manner, the amplification

status of the samples is preserved, and we are randomly sampling

from the null situation of non-preferential (random) amplification.

For the ADT test, these simulations produced an average of 114

SNPs (95% confidence interval 98–132) surpassing the 0.005

threshold. For the qq-plot, the qth null P-value quantile was

estimated by averaging the qth quantiles of P-values from 1000

permutations. Finally, the significance of the overlap between the

ADT SNPs and the Wrensch et al GWAS SNPs was assessed by

permuting, 1000 times, and retaining the 139 most significant

SNPs for each permutation (since our actual data generated 139

top SNPs). These number of SNPs in each permutation that

intersected with the Wrensch list was tallied for each permutation,

which yielded the expected distribution expected by chance.

GO analysis
For our GO analyses, we compared the gene list with a ‘‘gene

universe’’ comprised of all genes that had any a priori chance of

demonstrating preferential allelic amplification, at the P,0.005

nominal level, in our data. For a given gene, this depends upon

many factors, including amplification frequency and allele

frequencies of nearby array SNPs. We restricted the gene universe

to genes that were within 100 kb of a HumanHap550 array SNP

that is heterozygous and amplified in at least nine of our samples.

This is reasonable, as these are the only genes (by definition) that

have an a priori chance of having an associated SNP with ADT P-

value below 0.005. This left 2696 genes as a reference set. Using

the Ontologizer [37] software, we assessed our gene lists for

enrichment in GO terms, as compared with this reference gene

universe, using the Term-For-Term method and Benjamini-

Hochberg correction.

Gene co-amplification analysis
For each pair of genes, we constructed a 262 table of counts for

number of samples in each category of amplification/non-

amplification status for each gene. Using this table, we computed

the odds ratio estimate for correlation between amplification of the

genes, and assessed its significance using Fisher’s exact test. For

genes X and Y, this corresponds to the ratio of the odds of gene X

being amplified in a sample with gene Y amplified to the odds of

gene X being amplified in a sample without gene Y amplified.
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Incorporating expression
Expression levels from the Affymetrix 133A array were

downloaded from the TCGA website. For each gene/SNP

combination, expression differences between samples expressing

each of the two alleles were computed using the non-parametric

Wilcoxon rank sum test. The test was one-sided, since there was an

a priori hypothesis that the preferentially amplified allele would

result in a higher expression level.

Supporting Information

Figure S1 Proportion of individuals (out of 178) amplified in the

tumor, at each Illumina HumanHap550 SNP.

Found at: doi:10.1371/journal.pgen.1001086.s001 (1.01 MB TIF)

Figure S2 The number of individuals (out of 178) heterozygous

in the germline and amplified in the tumor, at each Illumina

HumanHap550 SNP.

Found at: doi:10.1371/journal.pgen.1001086.s002 (1.13 MB TIF)

Figure S3 (A) Chromosome 7: Condensed Haploview r2 LD

Plot for the three ADT hits (rs10255873, rs10267828, rs1557841)

in NXPH1. This condensed plot does not display SNPs in the

region that are not ADT hits. The plot indicates that the SNPs are

in LD in HapMap CEU data. (B) Chromosome 7: Condensed

Haploview r2 LD Plot for the five ADT hits (rs6963353, rs40,

rs2107479, rs1467344, rs10950366) in THSD7A. This condensed

plot does not display SNPs in the region that are not ADT hits.

The plot indicates that the latter two SNPs are in LD in HapMap

CEU data. (C) Chromosome 7: Condensed Haploview r2 LD Plot

for the seven ADT (rs2530552, rs425990, rs2530571, rs324389,

rs10267134, rs10278663, rs17199888) in NPSR1. This condensed

plot does not display SNPs in the region that are not ADT hits.

The plot indicates that the first three SNPs are in reasonable LD in

HapMap CEU data, and the same holds for the latter three SNPs.

Any blank red blocks indicate r2 = 1.0 (100). (D) Chromosome 7:

Condensed Haploview r2 LD Plot for the three ADT hits

(rs6965611, rs2464946, rs11238181) in a region with no known

gene. This condensed plot does not display SNPs in the region that

are not ADT hits. The plot indicates that the first two SNPs

exhibit some LD in the HapMap CEU data.

Found at: doi:10.1371/journal.pgen.1001086.s003 (1.09 MB TIF)

Figure S4 (A) Chromosome 7: Condensed Haploview r2 LD Plot

for the three ADT hits (rs1963647, rs262375, rs264375) in RELN.

This condensed plot does not display SNPs in the region that are not

ADT hits. The plot indicates that the SNPs display some level of LD

in HapMap CEU data. (B) Chromosome 7: Condensed Haploview

r2 LD Plot for the four ADT hits (rs10273020, rs4730037,

rs4367471, rs4132013) in LHFPL3. This condensed plot does not

display SNPs in the region that are not ADT hits. The plot reveals

that the first two SNPs are in strong LD in HapMap CEU data, as

blank red blocks indicate r2 = 1.0 (100). The latter two SNPs also

show LD in HapMap CEU data. (C) Chromosome 7: Condensed

Haploview r2 LD Plot for the three ADT hits (rs9641684,

rs2189601, rs9969220) in CADPS2. This condensed plot does not

display SNPs in the region that are not ADT hits. The plot reveals

that the first two SNPs are in LD in HapMap CEU data, but they

are not in LD with the third SNP.

Found at: doi:10.1371/journal.pgen.1001086.s004 (0.64 MB TIF)

Figure S5 (A) Chromosome 20: Condensed Haploview r2 LD

Plot for the six ADT hits (rs1923342, rs6131447, rs6109753,

rs6105047, rs13433297, rs6074591) proximal to ISM1. This

condensed plot does not display SNPs in the region that are not

ADT hits. Furthermore, the latter two SNPs (rs13433297,

rs6074591) could not be plotted with the former four due to

Haploview constraints. In any case, r2 values between the former

four and latter two SNPs were negligible in HapMap CEU data.

(B) Chromosome 20: Haploview r2 LD Plot for the four ADT hits

(rs8120608, rs367114, rs453573, rs6043472) within MACROD2.

The SNPs (rs8120608, rs6043472) could not be plotted with the

other two due to Haploview constraints. In any case, r2 values

between these two SNPs and the two plotted SNPs were negligible.

The plot indicates that the two plotted SNPs are in LD in

HapMap CEU data, as highlighted by the yellow circle. (C)

Chromosome 20: Condensed Haploview r2 LD Plot for the three

ADT hits (rs6044739, rs6075193, rs6080665) within PCSK2. This

condensed plot does not display SNPs in the region that are not

ADT hits. The plot clearly indicates that the first two SNPs are in

LD in HapMap CEU data, as any blank red blocks indicate

r2 = 1.0 (100). The first two are in very weak LD with the third.

(D) Chromosome 20: Condensed Haploview r2 LD Plot for the

three ADT hits (rs4812744, rs6124601, rs6130470) proximal to

TOX2. This condensed plot does not display SNPs in the region

that are not ADT hits. The SNP rs4812744 could not be plotted

with the other two due to Haploview constraints. The plot clearly

indicates that the two plotted SNPs are in LD in HapMap CEU

data.

Found at: doi:10.1371/journal.pgen.1001086.s005 (0.67 MB TIF)

Figure S6 Gene Ontology acyclic directed graph showing the

most enriched terms and their ancestor terms. The significant

terms are colored in green, with darker shading indicating greater

statistical significance. The arrow colors indicate type of

relationship between the GO categories, with black signifying ‘‘is

a’’ and green signifying ‘‘regulates.’’

Found at: doi:10.1371/journal.pgen.1001086.s006 (1.16 MB TIF)

Table S1 Top-scoring SNPs using ADT analysis (p#0.005) from

178 TCGA samples.

Found at: doi:10.1371/journal.pgen.1001086.s007 (0.07 MB

XLS)
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