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ABSTRACT
Objective: Venous thromboembolic event (VTE) after spine surgery is a rare but potentially devastating complication. With the advent of 
machine learning, an opportunity exists for more accurate prediction of such events to aid in prevention and treatment.

Methods: Seven models were screened using 108 database variables and 62 preoperative variables. These models included deep neural 
network (DNN), DNN with synthetic minority oversampling technique (SMOTE), logistic regression, ridge regression, lasso regression, simple 
linear regression, and gradient boosting classifier. Relevant metrics were compared between each model. The top four models were selected 
based on area under the receiver operator curve; these models included DNN with SMOTE, linear regression, lasso regression, and ridge 
regression. Separate random sampling of each model was performed 1000 additional independent times using a randomly generated training/
testing distribution. Variable weights and magnitudes were analyzed after sampling.

Results: Using all patient‑related variables, DNN using SMOTE was the top‑performing model in predicting postoperative VTE after 
spinal surgery (area under the curve [AUC] =0.904), followed by lasso regression (AUC = 0.894), ridge regression (AUC = 0.873), and linear 
regression (AUC = 0.864). When analyzing a subset of only preoperative variables, the top‑performing models were lasso regression (AUC = 0.865) 
and DNN with SMOTE (AUC = 0.864), both of which outperform any 
currently published models. Main model contributions relied heavily on 
variables associated with history of thromboembolic events, length of 
surgical/anesthetic time, and use of postoperative chemoprophylaxis.

Conclusions: The current study provides promise toward 
machine learning methods geared toward predicting postoperative 
complications after spine surgery. Further study is needed in order to 
best quantify and model real‑world risk for such events.

Keywords: Big data, machine learning, venous 
thromboembolism, venous thromboembolic events

INTRODUCTION

Venous thromboembolic events  (VTEs) are feared 
complications of spinal surgery.[1‑6] They are associated with 
longer hospital stays, decreased satisfaction, and worse 
outcomes.[2‑12] While undergoing spine surgery is, itself, a 
risk factor for developing VTE, many factors are patient 
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specific.[2‑12] Despite prevalent literature on the issue, 
predictive capabilities remain limited.[13] In the age of big data 
and machine learning, it is now possible to extract previously 
unnoticed trends from large datasets.[13‑18] For spine surgery, 
numerous large studies involving machine learning exist; 
however, few to date have focused specifically on the risk 
of postoperative VTE after spine surgery.[13,19] Those that 
have are confined to low‑power exploratory studies or used 
nongranular national databases. Others have been limited in 
analysis of single procedural types, or have not been designed 
to focus specifically on postoperative VTE.[13,20‑22] To date, this 
study is the first to analyze deep learning as a method to 
predict postoperative VTE after spinal surgery. We present a 
single‑center retrospective cohort of 6869 consecutive spine 
surgeries analyzing trends found through deep learning as 
well as more traditional machine learning methods.

METHODS

All patients who underwent spine surgery at a single 
academic institution between January 1, 2009, and May 31, 
2015, were included. Spine surgeries were detected using 
current procedural terminology codes, and all identified 
primary spine surgeries were included in the analysis. If 
patients had multiple procedures that required different 
admissions, each operation was analyzed separately. We 
excluded any patient who underwent reoperation within 
30 days, minor spine surgery (including electrode placement 
or hardware removal), or a secondary procedure (e.g., surgery 
for wound dehiscence and hematoma evacuation). For each 
surgery included in the study, data about the patient, the 
procedure, and the postoperative management and recovery 
were collected. The study was approved by the institutional 
review board. Database demographics and reference 
outcomes are shown in Tables 1 and 2, respectively. Further 
information regarding demographics and outcomes is further 
noted in Dhillon et al.[23]

Database maintenance and statistical analysis were performed 
using Python 3.9. Key packages used in the analysis included 
TensorFlow, Keras, Matplotlib, Sklearn, and NumPy. For 
phase 1, seven different models were screened using 108 
database variables  [Table  3]. A  separate variable set was 
further selected excluding variables that would have only 
been known postoperatively. In this set, only variables and 
data available at preoperative planning stage were included, 
limiting our dataset to 62 input variables. For each set of 
variables, training and testing data were split (75/25) and each 
model was trained 100 independent times, using a randomly 
generated training/testing set for mean/median performance 
comparison as well as mean and median model weights. 

A deep neural network (DNN) consisting of two dense layers of 
five neurons and one neuron, respectively, was trained, using 
Adam optimizer and binary cross‑entropy as a loss function. 
Sigmoidal activation was used in the final layer to simulate 
binary outcomes. The model was trained for 10 epochs and all 
training was performed using a batch size of 300. The above 
architecture was selected through a trial‑and‑error method 
of bootstrapping as is the current standard of practice using 
such DNNs. Given the relatively low probability of any given 
procedure having a VTE, a second DNN was trained using 
a similar architecture and synthetic minority oversampling 
technique (SMOTE) to synthetically balance class sizes during 
the training process and not bias the model toward negative 

Table 1: Preoperative characteristics of patients

Variables Nonchemoprophylaxis 
group

Chemoprophylaxis 
group

P

Number of patients 4965 1904
Age (years), mean 51.86 59.7 <0.001
Sex (male) (%) 56 47 <0.001
BMI (kg/m2), mean 28.11 29.31 <0.001
Smoking 
(% current smoker)

15 12 <0.001

VTE history (%) 2.10 5.80 <0.001
Epidural hematoma 
history

0.07 0.13 0.4

Bleeding disorder 
history

2.20 3.60 <0.001

Neurological 
deficit (%)

4 6 0.004

Number of 
comorbidities 
(mean)

1.89 2.69 <0.001

BMI  ‑ Body mass index; VTE  ‑  Venous thromboembolism

Table 2: Procedure characteristics

Characteristics Nonchemoprophylaxis 
group

Chemoprophylaxis 
group

P

Timing of 
anticoagulant 
use (days)

‑ 1.46

IVC filter placed 1.93 8.56 <0.001
Surgical site (%)

Cervical 26.5 24.2 <0.001
Thoracic 3.7 11.2
Lumbar 69.3 62.8
Other 0.5 1.79

Fusion (%) 24.7 46.1 <0.001
Decompression (%) 33.5 37.3 <0.001
Staged (%) 44.3 62.5 0.013
Surgical 
time (min), mean

145.66 278.59 <0.001

Anesthesia 
time (min), mean

205 363 <0.001

EBL (cc), mean 447.98 994.77 <0.001
ICU admission  (%) 10.4 39.4 <0.001
IVC  ‑  Inferior vena cava; EBL  ‑  Estimated blood loss; ICU  ‑  Intensive care unit
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predictions due to frequency. Likewise, further models were 
trained using the same variables including simple logistic 
regression, linear regression, and penalized linear regression 
using both L1 (lasso) and L2 (ridge) regressions, as well as 
a gradient boosting classifier  (α =0.01). Relevant metrics 
were compared between each model including area under 
the receiver operator curve, sensitivity, specificity, as well as 
mean squared error for each model.

For phase 2, the top four models were selected based on 
a metric of area under the receiver operator curve. These 
models included a DNN with SMOTE, a linear regression 
model, a lasso regression model, and a ridge regression model 
as noted above. Separate random sampling of each model was 
performed 1000 additional independent times, again using 
a randomly generated training/testing distribution for each 
run. For the DNN model, to best understand the relationship 
between variables, a mean relative weight assignment was 
created for the DNN. For each of the linear models, mean 
and median coefficients were retrieved for each variable for 
comparison. For linear models, all variables were ranked using 
the absolute value of each mean and median coefficient. For 
each of the three linear models, each variable magnitude 
was placed in ascending order and the median rank for each 
variable was obtained in order to best analyze variable weight 
across models.

RESULTS

Phase 1 model results are shown in Figure  1. On initial 
evaluation of model performance over 100 random samples, 
we found that a DNN using SMOTE technique performed the 
best of all models with a mean area under the curve (AUC) 

of 0.902. The linear regression model (AUC 0.866), ridge 
regression model (AUC 0.875), and lasso regression model 
(AUC 0.897) each performed within a reasonable distance of 
the aforementioned DNN with SMOTE model. Notably, logistic 
regression, DNN without SMOTE, and the gradient‑boosted 
classifier significantly underperformed the others, with 
mean AUCs of 0.680, 0.625, and 0.683, respectively. Using 
only preoperative values, similar trends were noted with 
the highest four models being the DNN with SMOTE, lasso 
regression, ridge regression, and linear regression with AUCs 
of 0.865, 0.867, 0.852, and 0.852, respectively. Similar to 
prior samples, DNN without SMOTE, logistic regression, and 
the gradient‑boosted classifier significantly underperformed 
relative to the prior models with AUCs of 0.588, 0.628, and 
0.561, respectively.

Phase 2 model results are shown in Figure  2. After 1000 
random samples, the DNN with SMOTE remained the 
best‑performing model with a mean AUC of 0.904. Lasso 
regression, ridge regression, and linear regression performed 
only slightly worse with mean AUCs of 0.894, 0.873, and 
0.864, respectively. When considering preoperative variables 
only, lasso regression was the top‑performing model, however 
only a margin compared to the DNN with SMOTE (with a mean 
AUC of 0.865 vs. 0.864, respectively). Ridge regression and 
linear regression performed only slightly worse with mean 
AUCs of 0.852 and 0.852, respectively.

Table 4 shows the top 10 variables of the highest magnitude 
based on the median and mean coefficients over the 1000 
random samples contributing to the three linear models 
as described above. The top three coefficients in terms of 
magnitude for the three best‑performing linear models using 

Figure 1: (a) 100 independent random samples for model selection with associated area under the curve (AUC) for all variables (n = 108) and (b) 100 
independent random samples for model selection with associated AUC for preoperative variables only (n = 62). DNN ‑ Deep neural network, SMOTE ‑ Synthetic 
minority oversampling technique, MSE ‑ Mean squared error, GBC ‑ Gradient boosted classifier

ba
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both the mean and median methods were presence of any VTE 
prior to surgery, surgery time in minutes, and utilization of 
any form of chemoprophylaxis after surgery within 30 days. 
The top three variables when considering only preoperative 
factors were not unanimous. Both presence of a deep venous 
thrombosis (DVT) and presence of a pulmonary embolism (PE) 
were consistently in the top three. Using a median method, 
the top contributor was age, whereas using a mean method, 
the top contributor was involvement of surgery in the 
thoracic spine.

The top ten weights in order of magnitude for the DNN 
with SMOTE are shown in Table 5. While many of the top 
ten highest magnitude variables were consistent with 
the linear models, the top three differed in all, except for 
the presence of any VTE prior to surgery  (with the DNN 
model holding the presence of cardiac disease and surgical 
use of decompression/laminectomy at the top two spots, 
respectively). Using only preoperative variables, the model 
focused heavily on history of events with number of VTEs 
over the past 12  months, presence of a DVT in the past 
12 months, and presence of any VTE in the past 12 months 
taking the top three spots, respectively. A full schematic of 
all relative model weights for DNN SMOTE across the 1000 
random samples is further shown in Figure 3.

DISCUSSION

Machine learning has become increasingly relevant with 
the advent of the electronic medical record.[14,15] This study 
presents an example where advanced statistical modeling 
may add value in a clinically relevant scenario. To the authors’ 
knowledge, this is the first study that uses machine learning 
strategies to predict post-operative VTE using a large, single-
center database.[13,20,21] While other national database studies 

have looked into postoperative outcomes after spine surgery, 
and even VTE specifically, no studies have been performed 
using machine learning to evaluate VTE as a primary 
outcome.[13,20,21] The results of this study provide exciting 
evidence that future preoperative risk stratification could be 
undertaken using more tailored machine learning models.

Model selection
Significant research remains ongoing regarding how to most 
accurately select model type. While some advocates argue for 
a “kitchen sink” model, more data are not always “better” for 
a model.[24‑26] Current research in advanced statistics instead 
focuses on tradeoffs between marginal added predictive value 
and data size.[24‑26] There are pros and cons to each approach, 
and as such, many different models and applications need to 
be explored.[24‑26] For the current article, we elected to use 
a “kitchen sink” approach as a starting point. Furthermore, 
current tendencies are to explore and attempt to use “new 
or novel” models whenever possible, such as convoluted 
neural networks, DNNs, and even generative adversarial 
networks. While these models are interesting, there remains 
a tradeoff between complexity and increasing model data 
requirement.[24‑26] As the use of machine learning models 
becomes increasingly prevalent, it becomes crucial to 
critically evaluate whether or not a complex machine learning 
model adds value over traditional statistical approaches.[27,28] 
Current literature, likewise, employs traditional linear 
regression and/or logistic regression as a commonly used gold 
standard.[29,30] As such, we elected to use traditional linear 
regression as a baseline for added model value.

We found that DNN using SMOTE, ridge regression, and lasso 
regression all outperformed traditional linear regression 
models for both phase 1 and phase 2. For phase 1, using all 
variables within the database, our top‑performing model 

Figure 2: (a) 1000 independent random samples for the top four selected models using all variables (n = 108) and (b) 1000 independent random samples for 
the top four selected models using preoperative variables only (n = 62). DNN ‑ Deep neural network, SMOTE ‑ Synthetic minority oversampling technique, 
MSE ‑ Mean squared error

ba
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boasted an AUC of 0.904 predictive of 30‑day VTE after spinal 
surgery when averaged over  1000 independent random 
samples. For phase 2, using only variables known prior to 
surgery, our top model had an AUC of 0.865 predictive of 
30‑day VTE after spinal surgery when averaged over 1000 
independent random samples. Both inclusion and exclusion of 
postoperative variables drastically outperform prior literature 
models on assessment of VTE (with the next highest reported 
AUC in the literature reporting 0.80).[13,19‑22]

Inferences from model performance
One of the challenges associated with newer machine 
learning methods is understanding how to interpret results. 
While excellent at predicting outcomes, newer models 
have notoriously difficult‑to‑understand variable‑to‑variable 
interactions.[31,32] Despite this, there are a number of surrogate 
techniques that provide at least some interpretation.[32] For 
our DNN using SMOTE, we took the average weights of each 
of the first layers and analyzed them, as shown in Table 5 and 
Figure 3. While this is a commonly used surrogate for variable 
importance, it is not entirely reflective.[33] While understanding 
the input layer is helpful, it in no way gives insight into how 
nodes affect each other further down the network as a near 
infinite number of possible modifications could be made as 

Table 3: List of database variables used in model

Preoperative variables  (n=62) Additional variables for all 
variable models  (n=108)

Age Date/time of warfarin first dose 
postoperatively

Presence of DVT within previous 12‑month 
period

Warfarin first dose (mg)

Presence of PE within previous 12‑month 
period

Utilization of chemoprophylactic 
agents within 30 days (yes/no)

Presence of VTE within previous 12‑month 
period

Utilization of chemoprophylactic 
agents within 30 days (coded)

BMI Utilization of chemoprophylactic 
agents within 3 days

Staged procedure (yes/no) Transfusion (yes/no)
Cyst/abscess (yes/no) Total surgery time 

(included all stages)
Anterior involvement (yes/no) Total anesthesia time 

(included all stages)
Smoking status (current, former, never) Timing of warfarin (days)
Fusion (yes/no) Timing of onset of any 

anticoagulant
Decompressions or laminectomies (yes/no) Timing of heparin (days)
Foraminotomy (yes/no) Timing of fondaparinux (days)
Cancer (yes/no) Timing of enoxaparin (days)
Gender (female or male) Timing of dalteparin (days)
Ever smoker (yes/no) Time in ICU (h)
Department (neurosurgery/orthopedic surgery) Surgery time (min)
Race Stage III surgery time
Number of comorbidities (based on CCI) Stage III surgery stop
Cervical involvement (yes/no) Stage III surgery start
Endoscopic (yes/no) Stage III anesthesia time
Number of stages Stage III anesthesia stop time
Presence of hematoma within previous 
12‑month period

Stage III anesthesia start time

Diabetes (yes/no) Stage II surgery time
Thoracic involvement (yes/no) Stage II surgery stop
Autograft use (yes/no) Stage II surgery start
Allograft use (yes/no) Stage II anesthesia time
Osteotomy (yes/no) Stage II anesthesia stop time
Presence of hypertension (yes/no) Stage II anesthesia start time
Intraoperative neuromonitoring use (yes/no) Use of red blood cell 

transfusion (yes/no)
Presence of neurological deficit 
preoperatively (yes/no)

Number of stages (range)

Endocrinology disease (yes/no) Date/time of heparin first dose 
postoperatively

Surgical duration >6 h (yes/no) Heparin first dose (mg)
Presence of diagnosis of HTN with previous 
12‑month period

Date/time of fondaparinux first 
dose postoperatively

Corpectomy (yes/no) Fondaparinux first dose (mg)
Levels unspecified Date/time of enoxaparin first 

dose postoperatively
Worker’s comp (yes/no) Enoxaparin first dose (mg)
Facetectomy (yes/no) EBL >750
Lumbar involvement (yes/no) EBL >500 (coded)
Surgical duration >4 h (yes/no) EBL >500
Fracture (yes/no) EBL >1000
Tumor  (yes/no) EBL  (numeric)

Contd...

Table 3: Contd...

Preoperative variables  (n=62) Additional variables for all 
variable models  (n=108)

ICU admission (yes/no) Date/time of dalteparin first 
dose postoperatively

MIS/percutaneous (yes/no) Dalteparin first dose (mg)
Presence of renal disease Date/time of aspirin first dose 

postoperatively
Presence of diagnosis of bleeding disorders 
with previous 12‑month period

Aspirin first dose (mg)

Preoperative scoliotic deformity (yes/no) Anesthesia >6 h
Medicare (yes/no) Anesthesia >4 h
Involvement of kyphoplasty and/or 
cement (yes/no)

Anesthesia stop time

Private insurance (yes/no) Anesthesia start time
Lateral approach (yes/no) Anesthesia length (min)
Posterior approach (yes/no) Amount transfused
Number of levels
Medicaid/public aid (yes/no)
Number of surgical stages if >1
Presence of diagnosis of bleeding disorders 
with previous 12‑month period
Cardiac disease
Pulmonary disease
Number of VTEs in previous 12 months
Stenosis present (yes/no)
Discectomy  (yes/no)
DVT  ‑ Deep venous thrombosis; PE  ‑ Pulmonary embolism; VTE  ‑ Venous thromboembolic 
event; BMI  ‑  Body mass index; ICU  ‑  Intensive care unit; HTN  ‑  Hypertension; 
EBL ‑ Estimated blood loss; MIS  ‑ Minimally invasive spine; CCI  ‑Charlson Comorbidity Index
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Figure 3: Mean relative weights across 1000 random samples of deep neural network using synthetic minority oversampling technique using all variables. 
BMI ‑ Body mass index, EBL ‑ Estimated blood loss, PE ‑ Pulmonary embolism, VTE ‑ Venous thromboembolism, DVT ‑ Deep venous thrombosis, ICU ‑ Intensive 
care unit, HTN ‑ Hypertension
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soon as one layer deeper within the model.[33] Despite these 
limitations, such evaluations are commonly considered to be 
one of the better available to determine variable importance.[33] 
In our model specifically, for phase 1, we found cardiac disease, 
presence of a decompression/laminectomy, and utilization of 
chemoprophylactic agents to be the top three contributors 
to our model performance. It is not unreasonable that we see 

the presence of cardiac disease as the top predictor, as many 
patients with cardiac disease have predisposing ischemic 
changes in coronary vessels which could easily be extrapolated 
to other vasculature.[4,6,34] While the authors do not entirely 
understand laminectomy/decompression being representative, 
we believe that the model could have evaluated the variable as 
a surrogate for simpler/quicker surgeries, therefore allowing 
the model to extrapolate lower risk.[4] Finally, the use of 
chemoprophylaxis agents is no surprise, with its importance 
repeatedly shown in prior literature. For phase 2 variables, we 
found, not unsurprisingly, prior history to be the top three 
most relevant variables with the number of VTEs over the 
past 12 months, the presence of DVT in the past 12 months, 
and the presence of any VTE in 12 months prior to surgery, 
respectively.[35] Other variables of high significance are noted to 
be timing of heparin initiation, intensive care unit admission, 
pulmonary disease, the presence or absence of a transfusion, 
estimated blood loss, the presence of osteotomy during 
surgery, history of epidural hematoma within 12 months prior 
to surgery, extension of surgery to the thoracic spine, and the 
number of stages performed.[35] As many of these have been 
shown over numerous studies to pose a higher risk of VTEs, 
it is not surprising to the authors that the model focused on 
these variables.[35]

When further analyzing trends within the linear models, 
we found similar variables to be of importance with a few 
exceptions. The top three variables after ranking the three 
linear models in phase 1 as described above were consistently 
history of any VTE in the 12 months prior to surgery, length 
of surgery, and utilization of any chemoprophylactic agent in 
the 30 days postoperatively, respectively [Table 4]. For phase 
2, however, we found differences within the above‑noted 
trends. When accessing median variable weights, we found 
the top three most significant variables to be age, history of 
DVT 12 months prior to surgery, and history of PE 12 months 
prior to surgery. When accessing mean variable weights, 
however, we found extension to the thoracic spine, history 
of DVT in 12  months prior to surgery, and history of PE 
12 months prior to surgery to be the largest contributors. 
This suggests that, perhaps, more variability in model variable 
selection existed in phase 2 as the variance in variable weights 
between random samples was higher. As age increases, both 
the likelihood of immobility and the associated VTE rate both 
increase.[35,36] Similarly, as extension of surgery to the thoracic 
spine likely suggests larger surgeries, it is not surprising that 
the model decided to focus on this variable as a relevant 
predictor.[35,36] Furthermore, VTEs after traumatic injuries 
are more common than elective procedures.[36‑38] Likewise, 
as the thoracic spine is a common location necessitating 
surgical spinal evaluation and fixation, it is further possible 

Table 5: Deep neural network with synthetic minority 
oversampling technique performance variables

All variables  ‑  Top 10  (DNN) Preoperative variables only  ‑  Top 
10  (DNN)

Cardiac disease Number of VTEs 12 months prior to surgery
Decompression/laminectomy DVT 12 months prior to surgery
Utilization of any 
chemoprophylaxis weeks/in 
30 days (formula)

Presence of VTE 12 months prior to surgery

Timing of heparin (days) PE 12 months prior to surgery
ICU admission Staged
Pulmonary disease Osteotomy
Transfusion Number of stages
DVT 12 months prior to surgery Thoracic
EBL Epidural hematoma 12 months prior to 

surgery
Osteotomy Scoliosis
DNN  ‑ Deep neural network; EBL  ‑ Estimated blood loss; VTEs  ‑ Venous thromboembolic 
events; DVT  ‑ Deep venous thrombosis; PE  ‑ Pulmonary embolism; ICU  ‑  Intensive care 
unit

Table 4: Linear models’ coefficient rank

All variables
Top 10  (median) Top 10  (mean)
Any VTE 12 months prior to surgery Any VTE 12 months prior to surgery
Surgery time (min) Surgery time (min)
Utilization of any chemoprophylaxis 
weeks/in 30 days (coded)

Utilization of any chemoprophylaxis 
weeks/in 30 days (coded)

Timing of heparin (days) Timing of heparin (days)
Stage II surgery time Timing of onset of any anticoagulant
EBL Total anesthesia time 

(included all stages)
Enoxaparin first dose EBL
Total anesthesia time (included all stages) Stage III surgery start
DVT 12 months prior to surgery Anesthesia length (min)
Diabetes Enoxaparin first dose

Preoperative variables only
Top 10  (median) Top 10  (mean)
Age Thoracic
DVT 12 months prior to surgery DVT 12 months prior to surgery
PE 12 months prior to surgery PE 12 months prior to surgery
Any VTE 12 months prior to surgery Department
BMI Any VTE 12 months prior to surgery
Staged Foraminotomy
Cyst/abscess BMI
Anterior Fusion
Smoking status Gender
Fusion Endoscopic
VTE  ‑ Venous thromboembolic event; EBL  ‑  Estimated blood loss; DVT  ‑  Deep venous 
thrombosis; PE  ‑  Pulmonary embolism; BMI  ‑  Body mass index
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that thoracic surgeries could further be a marker for sicker 
overall patients.[36‑38]

Limitations of machine learning approaches
While powerful tools, ultimately there are numerous downfalls 
to employing advanced machine learning techniques without 
critical thought and evaluation. Just as with basic statistical 
models, machine learning relies on clean data that adequately 
approximate a global population. As such, machine learning 
models are extremely susceptible to data bias, perhaps even 
more so than traditional statistical models. Furthermore, the field 
of machine learning is relatively new, providing a rudimentary 
foundation and understanding as to how such models handle 
complex statistical problems. In many traditional statistical 
methods, excluding covariant variables and heteroskedastic data 
is required for basic assumptions of modeling. With the advent 
of big data and large models, it becomes significantly trickier 
to tease out such relationships. When implementing models 
with hundreds of variables, inevitably covariance is likely to be 
introduced. Furthermore, in models such as DNNs with hundreds 
to thousands of nodes and connections, it is difficult to ascertain 
whether such data principles are problematic or mitigable. 
In theory, such models should be able to train and minimize 
problematic covariance, with certain models even attempting to 
capitalize on known covariance in order to augment predictions. 
While experimental methods for correcting and mitigating 
these issues within newer models are being suggested, the 
literature is still young on such methods and, as such, caution 
should be employed when making conclusions from such newer 
techniques and models.

Limitations of our models
As described above, class imbalance and covariance are 
definitive limitations to the above noted models. While 
attempts to correct and augment model training to account 
for such problems  (i.e.,  SMOTE, etc.) were performed, 
the nature of the event of interest  (VTE) is naturally rare 
and therefore susceptible to skews in training data and 
bias.[39] Furthermore, our data are collected at a single 
center retrospectively which further adds to question the 
overall generalizability of our data. Despite these limitations, 
the authors believe that the current model serves as a 
useful proof of concept that with extensive data, complex 
relationships and predictions be discovered and elucidated 
through newer machine learning techniques. As such, the 
authors believe that further, more powered, multicentered 
studies are needed to improve clinical practice and find the 
optimal role for machine learning in clinical practice.

CONCLUSIONS

VTE after spine surgery is a rare yet devastating complication, 

leading to considerable comorbidity for patients. As such, 
better predictive methods and surveillance are needed 
to best prevent events during more treatable timepoints 
within the natural history of VTE. With the advent of big 
data and machine learning approaches, an opportunity 
exists for more robust modeling and use of patient data to 
prevent and understand these relatively rare events. Using 
all patient‑related variables over 1000 independent random 
samples, DNN using SMOTE was the top‑performing model 
boasting an AUC of 0.904 in predicting postoperative VTE 
after spinal surgery, with linear regression, lasso regression, 
and ridge regression performing only slightly worse with AUCs 
of 0.864, 0.894, and 0.873, respectively. When analyzing a 
subset of variables known at the preoperative timepoint only 
over 1000 independent random samples, the top‑performing 
model was lasso regression with DNN using SMOTE as a close 
second with AUCs of 0.865 and 0.864, respectively, both of 
which outperform any currently published models within the 
literature to date. Main model contributions relied heavily on 
variables associated with history of thromboembolic events 
and length of surgical and anesthetic time alongside the 
use of postoperative chemoprophylaxis. The current study 
provides promise toward big data and machine learning 
methods geared toward predicting, preventing, and early 
surveillance of postoperative complications after spine 
surgery. Further study is needed to best quantify and model 
real‑world risk for such events.
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