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Deficient prefrontal-amygdalar connectivity underlies
inefficient face processing in adolescent major depressive
disorder
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Adolescence represents a critical developmental period where the prevalence of major depressive disorder (MDD) increases.
Aberrant emotion processing is a core feature of adolescent MDD that has been associated with functional alterations within the
prefrontal-amygdala circuitry. In this study, we tested cognitive and neural mechanisms of emotional face processing in adolescents
with MDD utilizing a combination of computational modeling and neuroimaging. Thirty adolescents with MDD (age: M= 16.1 SD=
1.4, 20 females) and 33 healthy controls (age: M= 16.2 SD= 1.9, 20 females) performed a dynamic face- and shape-matching task.
A linear ballistic accumulator model was fit to the behavioral data to study differences in evidence accumulation. We used dynamic
causal modeling (DCM) to study effective connectivity in the prefrontal-amygdala network to reveal the neural underpinnings of
cognitive impairments while performing the task. Face processing efficiency was reduced in the MDD group and most pronounced
for ambiguous faces with neutral emotional expressions. Critically, this reduction was related to increased deactivation of the
subgenual anterior cingulate (sgACC). Connectivity analysis showed that MDD exhibited altered functional coupling in a distributed
network spanning the fusiform face area–lateral prefrontal cortex–sgACC and the sgACC–amygdala pathway. Our results suggest
that MDD is related to impairments of processing nuanced facial expressions. Distributed dysfunctional coupling in the face
processing network might result in inefficient evidence sampling and inappropriate emotional responses contributing to
depressive symptomatology. Our study provides novel insights in the characterization of brain function in adolescents with MDD
that strongly emphasize the critical role of aberrant prefrontal-amygdala interactions during emotional face processing.
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INTRODUCTION
Major depressive disorder (MDD) is a severe, highly disabling
mental disorder with drastic impairments in psychosocial func-
tioning causing high social and economic costs [1]. First onset
often coincides with a critical, stress-sensitive period of brain
development during adolescence [2, 3] and at 17–18 years its
lifetime prevalence is up to 13.5% [4, 5]. MDD has one of the
highest disease burden in young people [6] and a dramatically
increased suicidality [7]. A better understanding of the underlying
neurobiology is essential for the improvement of treatment and
prevention of MDD in youth.
Ample evidence suggests that MDD is associated with a

cognitive negative bias associated with maladaptive evaluation
and behavior [8–11]. Especially in youth at familial risk, such bias is
most likely an important vulnerability factor that facilitates the
occurrence of MDD [12]. A growing body of literature has linked
this cognitive bias during emotion processing to a dysregulation
of the prefrontal-amygdala network [13, 14]. During adolescence,
the prefrontal-amygdala network has a stress-sensitive develop-
mental trajectory that is not only associated with increased risk for
depressive symptoms but also with alterations in emotion

recognition and regulation (see Tottenham et al. [15] for review).
Early studies showed that adolescents at risk for [16, 17] and with
MDD [18–23] exhibit increased amygdala reactivity during
emotional face processing. Moreover, adolescent MDD has been
associated with aberrant activity in the subgenual anterior
cingulate cortex (sgACC) [24–26] and the lateral prefrontal cortex
(LPFC) [27] consistent across a variety of emotion processing tasks.
Additionally, similar to adult MDD [28–32], emerging evidence
indicates that the functional coupling within the prefrontal-
amygdala network is disrupted in adolescents with MDD
[25, 33, 34] and depressive symptoms [35]. In particular, findings
of Ho et al. [25] and Musgrove et al. [33] suggest connectivity
alterations between sgACC and amygdala and decreased con-
nectivity between sgACC and fusiform face area (FFA) in youth
with MDD during emotional face processing. In a recent
longitudinal study, Jamieson et al. [34] found that prefrontal-
amygdala interactions not only characterize adolescent depres-
sion but also predict treatment response using an implicit
emotional processing task with sad and fearful faces. Although
the emotional paradigms in these studies slightly varied, these
results indicate a dysbalance that may underpin alterations in
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emotion processing. Nevertheless, it remains unclear whether
connectivity alterations in youth MDD generalize to neutral and
positive valence. Characterizing the function of valence in
prefrontal-amygdala interactions in healthy and affected adoles-
cents, as we have done previously in healthy adults [36], will help
to further improve our understanding of the neural correlates
of MDD.
In pursuit of an integrated and thorough understanding of

cognitive and neural mechanisms, the present study aimed at
harnessing latest methodological advances using a combination
of a choice response time (RT) model and dynamic causal
modeling (DCM) to characterize emotion processing in adolescent
MDD. Choice RT models use both response time and accuracy to
divide the behavioral data of simple decision processes into
individual components (e.g. response caution, processing effi-
ciency). This allows for relating components of the modeled
decision process to functional brain networks, enabling an
abstract, mechanistic interpretation not only on behavioral but
also on a neural level. Recent work has shown that employing
computational choice RT models can reveal latent cognitive
mechanisms in MDD [37], improving the sensitivity of analysis, and
can uncover associations with brain function [38]. Thus, it provides
a unique approach to comprehensively investigate the functional
integration of emotional information in the brain.

We aimed to study the functional architecture of the prefrontal-
amygdala circuitry in adolescent MDD using a dynamic emotional
face matching task. An effective connectivity analysis was
performed to investigate the neural dynamics associated with
information processing difficulties in patients with depression. We
hypothesized that adolescents with MDD show aberrant emotion
processing, reflected by differences in evidence accumulation [38].
In addition, we tested whether this deficiency in perceiving
emotions is related to altered connectivity within the prefrontal-
amygdala network. We expected to find (a) disrupted connectivity
between cortical regions sgACC, LPFC and fusiform face area (FFA)
[25, 33], and (b) reduced top-down influence of prefrontal regions
to the amygdala in MDD [32]. Finally, in concordance with
previous work in adults [36], we hypothesized that negative and
positive valence engage the prefrontal-amygdala network
differentially.

METHODS AND MATERIALS
Participants
Thirty MDD patients and 33 healthy individuals matched for age, IQ, sex,
and handedness participated in this study (Table 1). We conducted a
semistructured clinical interview (Schedule for Affective Disorders and
Schizophrenia for School-Age Children–Present and Lifetime Version,

Table 1. Clinical and demographic characteristics of study participants.

Controls MDD Test statistic p valuea

Age (years), range (min-max) 16.2 (1.9), 11.2–18.8 16.1 (1.4), 12.8–18.7 U= 553.5 0.425

Sex (males), No. (%) 10 (30%) 10 (33%) χ2(1)= 0.07 0.796

Handedness (right), No. (%) 32 (97%) 28 (93%) χ2(1)= 0.46 0.500

In-scanner movement (FD, mm) 0.16 (0.06) 0.17 (0.06) t(61)= 0.69 0.492

CD-RISC 72.9 (10.1) 38.6 (15.6) t(58)= 10.16 <0.001

CDI 8.4 (6.6) 29.6 (9.3) U= 38.0 <0.001

Anhedonia 2.3 (2.2) 10.5 (2.8) U= 13.5 <0.001

Negative mood 2.2 (2.0) 6.4 (2.4) U= 88.0 <0.001

Negative self-esteem 1.0 (1.2) 5.0 (1.7) U= 42.0 <0.001

Ineffectiveness 1.2 (1.2) 5.0 (1.9) U= 54.5 <0.001

Interpersonal problems 1.1 (1.2) 3.7 (1.5) U= 74.5 <0.001

Stomach 0.6 (0.6) 1.1 (0.8) U= 301.5 0.018

RIAS IQ 104.5 (6.9) 108.0 (8.7) t(60)=−1.75 0.079

PSS 22.4 (6.6) 28.8 (7.7) t(57)=−3.44 0.001

SDQ 8.8 (5.3) 16.3 (5.6) t(56)=−5.26 <0.001

WISC-IV Digitspan (forward) 8.9 (2.1) 8.8 (2.0) t(60)= 0.32 0.747

WISC-IV Digitspan (backward) 8.6 (1.6) 9.4 (2.0) t(60)=−1.70 0.094

WISC-IV Mosaic 57.0 (5.7) 59.0 (6.2) t(56)=−1.27 0.208

Current Medication, No. (%)

No medication 33 (100%) 10 (33%) NA NA

SSRI 0 18 (60%) NA NA

Dual-action antidepressantb 0 2 (7%) NA NA

NERI 0 2 (7%) NA NA

Antipsychoticc 0 2 (7%) NA NA

Methylphenidate 0 2 (7%) NA NA

Data are presented as mean (SD) if not indicated otherwise.
CD-RISC Connor-Davidson Resilience Scale, CDI Children Depression Inventory, FD framewise displacement, NERI Norepinephrine reuptake inhibitor, PSS
Perceived Stress Scale, RIAS Reynolds Intellectual Assessment Scales, SDQ Strength and Difficulty Questionnaire for Children, SSRI Selective serotonin reuptake
inhibitor, WISC Wechsler Intelligence Scale for Children.
aUncorrected p values for between-group comparisons; significance threshold p < 0.05.
bSerotonin-noradrenalin reuptake inhibitor.
cUsed for behavioral control.
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Kiddie-SADS [39], or Mini-International Neuropsychiatric Interview for
Children and Adolescents, MINI-KID [40]) with all participants. For control
subjects, exclusion criteria included any current psychiatric disorder or
other major medical illnesses, drug abuse, any MRI contraindication,
pregnancy, and a history of brain injury. Patients received individual
psychotherapeutic support as needed during the time of the study. All
participants gave their written informed consent and were financially
reimbursed at the end of the study. The authors assert that all procedures
contributing to this work comply with the ethical standards of the relevant
national and institutional committees on human experimentation and with
the Helsinki Declaration of 1975, as revised in 2008.

Experimental task
In this study, healthy controls and participants with MDD performed a
dynamic face- and shape-matching task, that has higher ecological validity
and has been shown to yield stronger prefrontal-amygdala network
activation [41, 42] than the often-validated static task [43] (Fig. S1). The
probes at the bottom were matched to the dynamic stimulus slowly
changing from a neutral expression to the target emotion at the top.
Subjects were presented with 4 blocks of 5 trials each for each condition
(positive, negative, neutral, shapes) in randomized order, resulting in 80
trials in total. To create the neutral condition, we presented faces that were
rated either as neutral (valence rating from Langner et al. [44], scale: 1
(negative) – 5 (positive); M= 2.95, SD= 0.02) or contemptuous (M= 2.79,
SD= 0.05), to ensure a set of nuanced dynamic neutral expressions. For
the positive condition, we used happy faces (M= 4.60, SD= 0.15) and the
most positively rated surprised faces (M= 3.04, SD= 0.06). Sad (M= 1.80,
SD= 0.05) and disgusted (M= 1.83, SD= 0.11) categories were used for
the negative condition. In the shape condition, participants were engaged
in matching the number of vertices of the objects. Dynamic target objects
(top) evolved to polygons starting from a circle shape, while probe images
(bottom) remained static.
All participants were instructed to use the two-button fibre-optic

response pad (Current Design Inc., Philadelphia, PA) with their dominant
hand to make a selection (left/right) as soon as they recognized the
matching probe. Before the scanning sessions, a short practice run (2 min)
was performed to ensure the participants understood the task. In the
scanner, we presented the task using video goggles (VisuaStimDigital,
Resonance Technology, Northridge, CA) with a resolution of 800 × 600px.
After scanning, participants were asked to rate the face triplets for arousal
(“How aroused do the faces look?”) and valence (“Do the people feel
positive or negative?”) using a continuous slider.

Computational modeling of the face-matching process
The information accumulation process was modeled using the R
implementation of a hierarchical linear ballistic accumulator (LBA) model
distributed with the Dynamic models of Choice toolbox [45] (DMC, https://
osf.io/pbwx8/) by fitting the response data for correct and incorrect trials.
Here, the LBA contains two evidence accumulators gathering information
for the two possible responses (left or right face). The drift rate parameter v
quantifies the speed of the evidence accumulation and thus the
information processing efficiency. Drift rates for correct and error trials
are drawn from a normal distribution with the separately estimated
between-trial variability sv. To make the model identifiable, typically the sv
for error responses is fixed at 1. A button press is initiated as soon as one
accumulator surpasses the response threshold reflected by the parameter
B. Lastly, the parameter t0 captures any effects of non-decision processes
(e.g. motor preparation) and the parameter A encodes the starting point of
the accumulation process (Fig. 1).
We assumed that either the drift rate (i.e. processing efficiency) or the

decision threshold (i.e. the evidence required for a response, response
caution) are influenced by the different conditions. Thus, we created two
models that allowed (a) the drift rate v and (b) the threshold parameter B
to vary as a function of condition. In addition, we created a null model,
where both parameters were constant across conditions. In total, three
models were fitted to the response data of healthy adolescent controls and
participants with MDD separately with Differential Evolution Markov Chain
Monte Carlo simulations (DE-MCMC). Thirty-six chains (three times the
subject-specific parameters) were used for sampling the posterior
distribution of the parameters thinned by keeping only every 10th sample.
Initial values for the hierarchical sampling were determined using fixed-
effects fits. In the burn-in period, we used a 5% probability of migration for
individual and group levels. After burn-in, only the crossover steps of the
DE-MCMC algorithm were performed during subsequent sampling. Mixing

of chains and stationarity were checked simultaneously by splitting the
chains in half and calculating the multivariate potential scale reduction
factor [46] R̂ (convergence threshold R̂ < 1:1, Figs. S6, S7).
To determine the best model, we performed model selection using the

expected log pointwise predictive density (ELPD). We assessed group
differences by comparing the posteriors of the group-level distributions of
the best hierarchical model. If the 95% credible interval of the difference
distribution of the groups did not include zero, the difference was
considered significant.
We validated the LBA model by simulating data and repeating the raw data

analysis on the synthetic data. For this, we simulated data for 2000 subjects
(1000 per group) for 20 trials for all conditions and compared the response
time distributions with the empricial RTs from our participants (Fig. S5). Then,
we randomly selected 33 synthetic controls and 30 patients and mimicked the
conventional analysis of log-transformed response times (logRT, see below) by
entering them in a linear mixed effects model as in the raw data analysis. The
analysis pipeline is presented in Fig. 2.

Behavioral data analysis
For the behavioral raw data analysis, we performed linear mixed effects
model analyses of the logRT, the accuracy and the number of omissions. In
addition, we performed a linear mixed effects model analysis on the
ratings of valence and arousal for each trial. In all models, condition and
group were treated as fixed factors and subject was treated as a random
effect. Finally, individual mean ratings were correlated with the subject-
wise parameters of the LBA model. The significance level for all statistical
tests of the behavioral analyses was p < 0.05, two-tailed.

Neuroimaging data acquisition and preprocessing
MRI recordings were conducted on an Achieva 3T scanner (Philips Medical
Systems, Best, the Netherlands) using the manufacturer’s 32-channel head
coil array. Functional T2*-weighted image acquisition was performed using
a multi-slice echo-planar images (EPI) sequence [335 volumes per session,
TR=1600ms, TE= 35ms, 50 slices, voxel size =2.4 × 2.4 × 2.2 mm3, matrix
size= 76 × 78px, flip angle= 75°, gap = 0.35mm, SENSE-factor= 2, MB-
factor= 2]. Field of view was tilted 15° downwards of AC-PC to improve
signal quality in the ventral brain. The first five dummy scans were
discarded. A T1-weighted structural scan was acquired for each subject
[MP-RAGE, aligned at AC-PC, flip angle= 9°, voxel size= 1.05 × 1.05 ×
1.2 mm3, field of view= 270 × 253mm2, 170 sagittal slices]. The functional
data was first slice-time corrected, then realigned and unwarped using the
B0-field map and coregistered to the T1-weighted image. The deformation
fields derived from the segmentation of the T1 image were used for
normalization to the Montreal Neurological Institute (MNI)-152 template
space. The normalized volumes were spatially smoothed using a 6 mm full-
width-half-maximum kernel. All steps were conducted in SPM12 (7771). We
censored volumes that exceeded a framewise displacement [47] greater
than 1mm using a binary motion scrubbing regressor (% volumes
censored per subject M= 0.70, SD= 1.41%).
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Fig. 1 Behavioral parameters. Patients exhibited slower informa-
tion processing efficiency represented by the lower drift rate during
the face matching of neutral faces (Table S4).
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Functional MRI data analysis
The task-relevant regions for the dynamic causal modeling (DCM) analysis
were identified using a general linear model (GLM) in SPM. We used a
combination of the conventional faces vs shapes contrast and a regression
of LBA model parameter vneutral to guide the localization of regions that
comprised the task- and disorder-relevant network for the connectivity
analysis (see LBA results). The first-level GLM inlcuded an individual
regressor for each face condition (negative, positive, neutral) and one for
the shapes using the onsets of each trial convolved with the hemodynamic
response function. Moreover, six realignment parameters derived from
preprocessing and the motion scrubbing regressor were used as nuisance
regressors. The fMRI time series data were high-pass filtered with a 128s
cut-off and whitened with an AR(1) model. A second-level one-sample t-
test was used to localize the effects of the task conditions with the scores
on the Children’s Depression Inventory as covariate. Linear regression
analyses were performed to assess the association between the behavioral
model parameters and whole-brain activity. For these analyses we used a
cluster-extent threshold to perform family-wise error correction using an
uncorrected voxel-wise threshold of pCDT= 0.001. To derive the cluster size
we used Monte Carlo Simulation [48, 49], running 10,000 iterations
resulting in a minimum cluster-size of k > 440 mm3 corresponding to 55
contingent voxels, pFWE < 0.05. Labels for brain regions are based on the
Automated Anatomical Atlas [50].
The selection of the regions for the DCM analsyis was motivated by

previous studies of adolescent MDD [25, 33, 35] and our model-based SPM
analyses (Fig. 3, Tables S5, S6). We extracted the timeseries from active
voxels (p < 0.05) within a spherical search volume (r= 6mm) around the
group maxima from the faces vs shapes contrast (amygdala [x= 19, y=
−8, z=−18mm]; FFA [x= 41, y=−52, z=−24mm]; LPFC [x= 53, y= 32,
z= 0mm]) and the linear regression BOLDneutral ~ vneutral (sgACC [x= 1; y
= 24, z=−4mm]). Because of the proximity of other active regions, the
search volume of the sgACC was additionally constrained with an
anatomical mask derived from the meta-analytical coactivation map
retrieved from neurosynth [51]. We centered the individual spheres around

each participant’s maximum, extracted the first eigenvariate of the time
course of active voxels (p < 0.05), and regressed out motion parameters.
The connectivity analysis was constrained to regions in the right
hemisphere, since there is evidence that it preferentially processes
emotional faces [52, 53] (Figs. S8, S9). For this analysis, we excluded one
patient and one control who did not have any significant voxels in the
amygdala, and, additionally, one patient who did not disclose their
medication status.
As in previous work [36], the mean-centered driving input (all faces)

entered the FFA. We set up a fully connected model with modulations of
positive and negative valence on all interregional connections. The
analysis was conducted within the Parametric Empirical Bayes (PEB)
framework where the full DCM model was estimated in an empirical
Bayesian inversion scheme for each participant [54]. Group effects on the
DCM parameters (i.e. connectivity strengths) were analysed with a PEB
model to find group differences between patients and controls within
the prefrontal-amygdala network. In brief, the PEB model takes the
individuals' connectivity parameters to the second-level using a GLM
that partitions the between-subject variability into random effects and
explained effects using a design matrix and taking into account the
posterior covariance of each parameter. A Bayesian model reduction
procedure discarded the model parameters not contributing to the
model evidence in a greedy-search by comparing the negative free
energies of reduced models [55]. The greedy-search stops, when
discarding of any parameter results in a decreased model evidence.
Intrinsic connections (A-matrix) and contextual modulations (B-matrix)
were individually analyzed for group differences with selective serotonin
reuptake inhibitors (SSRI) medication status, sex, age and handedness as
mean-centered covariates. Model parameters were averaged across the
best 256 nested models (weighted by their posterior probability) and
considered significant when exceeding a 95% posterior probability of
being present vs absent based on the model evidence. Finally, we
performed a leave-one-out cross-validation (LOOCV, spm_dcm_loo.m) to
assess the predictive validity of the dynamic causal model using its

Fig. 2 Analysis pipeline. The analysis harnessed generative models of participants’ behavior and neural dynamics. The decision components
for the face matching task (e.g. drift rate) were used to identify a network of brain regions from which we were able to derive a mechanistic
understanding of behavioral differences. These regions were then used to establish a DCM that describes functional coupling within the
network circuitry. Statistical inference was performed separately on LBA and DCM parameters.
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accuracy for classification of diagnostic status. This procedure iteratively
fits the PEB model to all but the left-out subject and evaluates the
posterior belief of the predictor for the unseen participant, i.e. the
probability of the diagnostic status. In other words, this procedure swaps
the roles of the second-level predictor (diagnosis) and the first-level
parameter estimates (connectivity) from the PEB model. When repeating
the LOOCV procedure for each subject, a list of probabilities is
generated, which can be subsequently used to retrieve the Receiver
Operating Characteristic (ROC) curve and the Area Under the Curve
(AUC) with 95% confidence bounds across the cross-validation runs
(MATLAB perfcurve).

RESULTS
Balanced performance measures for both groups
The analysis with a linear mixed-effects model of logRTs showed a
significant effect of valence, F(3, 4666.9)= 510.07, p < 10−15.
Participants were fastest when presented with positive faces, then
negative faces, and slowest in the neutral (i.e. ambiguous emotion)
condition. Neither the main effect of group, F(1, 61) = 0.26, p=
0.615, nor the interaction term, F(3, 4666.9)= 0.91, p= 0.424,
reached significance. The number of incorrect responses showed
no main effect of group, F(1, 61)= 0.46, p= 0.499, and no
significant group-by-condition interaction, F(3, 183)= 0.04, p=
0.989. Across conditions, however, there was a significant main
effect, F(3, 183) = 129.94, p < 10−15. Participants were more

accurate when presented with negative or positive faces, or shapes,
compared to neutral faces. The number of response omissions did
not show a significant effect of group, F(1,61)= 1.23, p= 0.272, nor
a significant group-by-condition interaction, F(3,183)= 0.38, p=
0.766. There was a significant main effect of condition, F(3,183) =
38.26, p < 10−15, with neutral faces and shapes having more
response omissions than positive and negative faces. These results
suggest that the face-matching task was equally difficult for both
groups. Results are summarized in Table S1 and Fig. S2.

Biased arousal and valence ratings in MDD
Arousal ratings showed a significant condition-by-group interaction,
F(2,3713)= 22.70, p < 10−9, with patients’ arousal rating for negative
faces being higher than controls’. We also found a significant effect
of condition, F(2,3713)= 565.60, p < 10−15, with arousal ratings
increasing from neutral, positive and negative faces, but no main
effect of group, F(1,61)= 0.002, p= 0.97. Analysis of valence ratings
revealed a condition-by-group interaction, F(2,3713)= 4.34, p=
0.013, with patients having lower valence ratings for positive faces.
The significant main effect of condition, F(2,3713)= 2491.02, p <
10−16, showed that ratings increasing from negative to neutral, and
from neutral to positive (Fig. S2). The main effect of group was not
significant, F(1,61)= 1.209, p= 0.27. Lastly, the valence rating of
neutral faces was negatively associated with the drift rate parameter
vneutral, r(59)=−0.395, p= 0.002 (Fig. S3).

Fig. 3 Whole-brain activity analysis. A Brain activity for the task (faces-shapes) across both groups. We found activity in the amygdala, the
fusiform gyrus, the ventromedial prefrontal cortex (vmPFC), ventrolateral prefrontal cortex (vlPFC), and in a cluster comprising the superior
temporal sulcus (STS) and the temporo-parietal junction (TPJ). B Brain activity positively associated with the drift rate (i.e. information
processing efficiency) during the neutrally/ambiguous valenced dynamic face matching. We found that a slower drift rate is related to a
cluster in the subgenual anterior cingulate cortex (sgACC). pFWEc < 0.05, pCDT < 0.001, N= 63.
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Decreased face processing efficiency in MDD
We estimated the parameters of the LBA model using response
time and accuracy data. First, we were interested in how the
parameters were modulated by our different conditions (positive,
negative, neutral faces, and shapes). Model Mv, where the drift rate
was allowed to vary by condition, accounted for the data best in
both groups (Table S2). Subsequently, we tested whether the
parameters in the winning model Mv revealed any group
differences. We found evidence that during matching of neutral
faces, participants with MDD exhibited slower information
accumulation compared to healthy controls, Δvneutral= 0.14, 95%
HPDI (Highest Posterior Density Interval) [0.03, 0.24] (Table S4,
Fig. 1). Furthermore, information accumulation also tended to be
slower for positive, Δvpositive= 0.22, [−0.03, 0.47], and negative
faces, Δvnegative= 0.19, [−0.01, 0.40], however these effects missed
the significance level marginally (Fig. S4). In contrast, we found
only little evidence that drift rate for shapes, Δvshapes= 0.05,
[−0.13, 0.21], overall decision threshold, ΔB=−0.20, [−0.67, 0.24],
bias ΔA= 0.26, [−0.30, 0.88], or non-decision time, Δt0= 0.03,
[−0.06, 0.13], differed between patients and controls.

Posterior predictive checks of the behavioral model
The analysis of the synthetic data using a linear mixed-effects model
of logRTs showed great agreement with the results from the
empirical data. The synthetic data reproduced the significant effect of
valence, F(3, 4971)= 479.23, p < 10−16. Posthoc comparisons corro-
borated that the model captured the fastest responses for positive
faces and the slowest responses for neutral faces. As in the main
analysis, the effect of group, F(1, 61)= 1.42, p= 0.238, and the group-
by-condition interaction, F(3, 4971)= 0.77, p= 0.514, were not
significant. Therefore, we can conclude that the LBA model was
able to capture the effects in our data (Figs. S5–S7).

DCM model structure for emotional face processing
The goal of the DCM analysis was to identify the brain network
dynamics related to the aberrant information accumulation in MDD

patients. The task contrast (faces vs shapes) revealed expected
activation differences in brain areas commonly reported in face-
matching and emotion processing paradigms (Table S5) [36, 56]. The
group comparison for the task contrast revealed no significant
clusters. The rate of evidence accumulation encoded by the drift rate
vneutral (Fig. 3B, Table S6) varied as a function of the sgACC activity
during neutrally (i.e. ambiguously) valenced face matching.

FFA – LPFC – sgACC pathway associated with depressive
status
The overall model structure of the DCM included all connections
within the network, i.e. each connection within the network
contributed significantly to the model evidence. Diagnostic
status had a significant effect on the coupling strength along
the cortical FFA – LPFC – sgACC pathway (Fig. 4, Table S7).
Participants with a clinical diagnosis of MDD showed decreased
bi-directional connectivity between the FFA and the LPFC
(expected values= 0.033 Hz and −0.085 Hz, PP= 1.00). Further-
more, the efferent connectivity from the sgACC to the LPFC was
decreased (expected value=−0.036 Hz, PP= 1.00), whereas the
coupling from the LPFC to the sgACC was heightend (expected
value= 0.054 Hz, PP= 1.00). In addition, we found decreased
connectivity between sgACC and amygdala in patients during
face processing (expected value=−0.035 Hz, PP= 1.00). LOOCV
demonstrated that connectivity within the pathway derived
form the group comparison was able to predict individual group
labels, while controlling for all covariates (AUC= 0.71, 95% CI
[0.56 0.84], Fig. S10). Performing LOOCV on individual connec-
tions showed that the connections from LPFC to sgACC (AUC=
0.67, 95% CI [0.51 0.78]) and FFA to LPFC (AUC= 0.65, 95% CI
[0.51 0.79]) were the most predictive.

Selective serotonin reuptake inhibitor use affects sgACC
function
As the majority of our patients (n= 18) received SSRIs as
treatment during the participation in our study, we included it
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AMY

Increased connectivity
Decreased connectivity
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Modulatory effect of positive valence
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Fig. 4 DCM analysis of the prefrontal-amygdala network. A The common effect represents the overall model structure for the baseline
(neutral faces) across all participants. B Group differences were primarily found in the bidirectional cortical pathway FFA-LPFC-sgACC for the
average connectivity across conditions. In addition, connectivity between sgACC and the amygdala was decreased in patients. C, D Efferent
connectivity from the amygdala was modulated by positive (C) and negative (D) valence. In addition, processing of positive valence was
associated with altered LPFC—amygdala connectivity and the LPFC—sgACC—amygdala pathway. Detailed results are reported in Table S7.
AMY amygdala, FFA fusiform face area, HC healthy controls, LPFC lateral prefrontal cortex, MDD major depressive disorder, sgACC subgenual
anterior cingulate cortex.
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as covariate in our model and assessed its effect on connectivity.
We found that patients with SSRI intake had a decreased self-
connection in the sgACC (expected value=−0.145 Hz, PP= 1.00,
Table S7). The lower this parameter, the more readily the region is
excited by the network inputs, i.e. SSRI intake was related to
increased sgACC input sensitivity.

Valence-dependent prefrontal-amygdala coupling
The efferent amygdalar connectivity pattern changed specifically for
emotional context (B-matrix) compared to the average connectivity
across conditions (A-matrix). In particular, we found that during
processing of positive and negative faces, amygdala-FFA (pos:
expected value=−0.434 Hz, PP= 1.00; neg: expected value=
−0.26 Hz, PP= 1.00;) and amygdala-LPFC (pos: expected value=
−0.121 Hz, PP= 0.97; neg: expected value =−0.174 Hz, PP= 1.00)
connectivity showed a stronger negative coupling (Table S7, Fig. 4).
Functional coupling from amygdala to sgACC decreased during
emotional contexts (pos: expected value=−0.308 Hz, PP= 1.00;
neg: expected value=−0.127 Hz, PP= 0.97), whereas the con-
nectivity from FFA to sgACC increased (pos: expected value= 0.228
Hz, PP= 1.00; neg: expected value= 0.095 Hz, PP= 1.00). Only for
positive faces, we found a decrease in connectivity between LPFC
and sgACC (expected value=−0.186 Hz, PP= 1.00) and strength-
ened coupling from sgACC to amygdala (expected value= 0.291 Hz,
PP= 1.00). However, none of the contextual modulations was
different between patients and controls.

DISCUSSION
The assessment of emotional face processing using a model-based
neuroimaging approach was able to identify cognitive and neural
mechanisms that characterize adolescent MDD. Our findings show
that the distributed alterations in brain connectivity within the
prefrontal-amygdala network of adolescents with MDD are strongly
related to decreased processing efficiency of facial affect.
On the behavioral level, our data show that facial affect was

associated primarily with information processing efficiency (i.e.
task difficulty), and not the response threshold (i.e. quantified
caution) of participants. Moreover, decreased face processing
efficiency in MDD was specifically evident in the most
ambiguous valence condition, i.e. neutral faces. Thus, we
showed that evidence accumulation does not only depend on
the contextual factor of facial affect (i.e. valence), but is also
highly sensitive for group differences of more subtle, ambiguous
facial expressions. Perceptual differences were also reflected in
participants’ ratings. Patients showed biases for negative faces
in the form of increased arousal and positive faces in the form of
decreased valence. This suggests that participants with MDD
might struggle with decoding facial emotions, because they are
slower and less accurate and their perception is biased. Our
results provide a novel mechanistic explanation for the
negatively biased evaluation process of emotion in adolescent
[57] and adult MDD [11, 58].
Based on the proposition that the ventral-affective brain

network is vulnerable to such negatively biased processing in
adolescence [13], we sought to identify aspects of the functional
architecture of the prefrontal-amygdala circuitry that could
explain face processing difficulties in MDD. Combining the
behavioral model with fMRI data revealed that a slower evidence
accumulation process was associated with stronger deactivation
in the sgACC. This effect was explained by altered coupling along
the FFA-LPFC-sgACC pathway in patients with MDD. This finding is
in line with earlier studies in adolescents with and at risk of MDD
[25, 26, 33] and adult MDD [24, 59, 60] that implicated functional
abnormalities of the sgACC and the FFA in the etiology of
depression. Specifically, dysfunction of the FFA [38] and increased
functional connectivity between FFA and sgACC [25] have been
reported in adolescent MDD during emotion processing. However,

beyond that, our findings suggest a disrupted top-down
connectivity between sgACC and amygdala for face stimuli.
Altered coupling between perceptual, cognitive and affective
regions is likely to contribute to the decreased processing
efficiency and thus to poor evidence sampling from facial
expressions during the task. Within the prefrontal-amygdala
circuitry, the sgACC acts as gatekeeper between the cognitive
prefrontal and limbic systems [61] and is in a position to adjust
sampling of the sensory evidence [62]. It encodes precise
predictions about changes in the environment and anticipating
emotional situations that eventually generate a bodily response
[62, 63]. In a natural environment, facial expressions represent
noisy sensory information that can be used to deduce a person’s
intention [64]. Therefore, any disruption of sgACC engagement
during ambiguous interpersonal situations might yield maladap-
tive autonomous regulation resulting in inappropriate emotional
responses [65]. An important next step will be to clarify how
differences in top-down vs bottom-up connectivity between the
amygdala and sgACC in our study compared to previous work
[28, 33] are related to specific aspects of the (a) employed stimuli
(e.g. fearful vs. sad faces) or (b) if they represent distinct subtypes
of depression. Importantly, the MDD-specific coupling was
consistent across all facial emotions, that is there was no evidence
for group differences in valence-dependent modulations, suggest-
ing general rather than valence-specific emotion processing
aberrations in this network.
Across healthy controls and patients, we observed an emotion-

dependent change of prefrontal-amygdala connectivity for negative
and positive faces. Specifically, the excitatory coupling from
amygdala to sgACC became inhibited. This is consistent with
previous studies in adults [66, 67], and underscores the importance
of coupling between these regions to process emotional stimuli in
concert. Coupling from the amygdala to the visual FFA [68] and the
evaluative LPFC [69] became even more inhibitory for positive and
negative faces. Given that these connections have been previously
described as excitatory in healthy adults [36, 70, 71], we hypothesize
that these functional connections are subject to a developmental
change, consistent with maturational fine-tuning of brain connec-
tivity across adolescence [72, 73]. Our results support this notion by
showing that connectivity between these regions increased with
age, and thus, the affective component might be dampened in favor
of increased cognitive control in a more mature state towards
adulthood. Across all participants, LPFC-sgACC-amygdala coupling
was modulated stronger by positive faces compared to neutral and
negative faces. The role of prefrontal-amygdala interactions during
emotion processing, significance detection and the resolution of
uncertainty is well established [74]. In contrast, during the negative
faces condition there were no deviations from the average
connectivity along this pathway. This might be related to the fact
that in our dynamic face and shape-matching task, the conditions
other than positive valence represent an immanent situational
uncertainty or ambiguity with potential demand for action. Thus, the
LPFC-sgACC-amygdala pathway might be engaged for an orienta-
tion response to resolve this uncertainty [75].
Lastly, more than half of the patients included in this study

were treated with SSRIs. We found that patients receiving SSRIs
had increased sgACC input sensitivity. Functional changes of
sgACC in response to SSRI treatment have been reported in
another study of adolescent MDD [22] and could reflect a
potential neural mechanism on how SSRIs alter the functional
brain circuit to help ameliorate depressive symptoms in the long
term. Previous studies using emotion processing paradigms
have shown that prefrontal-amygdala connectivity might allow
treatment prediction in MDD. Jamieson et al. [34] investigated
interactions between amygdala and ventromedial and dorso-
lateral PFC, respectively, and showed that connectivity between
amygdala and PFC during implicit emotion processing have
been predictive for subsequent treatment response to

D. Willinger et al.

7

Translational Psychiatry          (2022) 12:195 



combined cognitive-behavioral therapy and SSRI in youth. Also
in adult MDD, pre-treatment brain connectivity between
amygdala and dorsal ACC has been implicated in predicting
treatment response [76]. Although our results are exploratory,
we believe that this finding blends in with previous work and
may guide future research of suitable biomarkers for the
prediction of SSRI treatment response.
Using behavioral models allows to disentangle distinct

components of cognitive processing and to identify their
neural correlates. The combination of cognitive modeling and
neuroimaging provides a refined understanding of disease
mechanisms in depression and is able to advance our knowl-
edge of how information processing goes awry [77]. For
instance, rather than a dysfunction of one individual brain
region, our results suggest a dysbalance of a functional brain
network. This underscores the utility of new methodological
developments in the field of computational psychiatry that
allow for a comprehensive characterization of cognitive and
neural mechanism which can facilitate the translation of
research into novel clinical tools [77].
Although our study offers compelling mechanistic insights into

altered emotion processing in adolescents with MDD, our data
should be interpreted within the given limitations. Longitudinal
designs will be crucial to gain causal insights of clinical trajectories in
the future. Furthermore, the modest sample size reflects the
recruitment challenges for the study population. Third, in the
current task, our participants achieved a high ratio of correct/error
trials for positive and negative faces. Altough in the Dynamic Models
of Choice framework this can be at least partially accounted for by
including conditions with a sufficient error rate [45], this might have
led to poorer sensitivity to reveal group differences in the positive
and negative face conditions than in the neutral condition. Finally,
due to our study design the origin of the SSRI treatment effect
remains unclear since our evidence is only correlative. It will be
important for future research to investigate whether this effect is
related to a normalization or compensation in patients.
To summarize, this work presented an analytic approach to

study the cognitive and neural mechanisms of emotion proces-
sing in adolescent MDD that revealed diminished cognitive
efficiency and altered function of brain circuits supporting
emotion processing. Thus, the current work provides novel
insights into impairments of emotion processing and significantly
advances our understanding how altered emotion processing is
affected in adolescent MDD. Ultimately, this holds promise to
improve the development of targeted interventions with psy-
chotherapy and pharmacotherapy, and potentially also novel
neurofeedback approaches [78] aiming at cognitive bias modifica-
tion in patients or those at-risk [79].
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