
Journal of Alzheimer’s Disease 66 (2018) 429–437
DOI 10.3233/JAD-180772
IOS Press

429

Review

Tau Protein Dysfunction after Brain
Ischemia

Ryszard Plutaa,1,∗, Marzena Ułamek-Kozioła,b,1, Sławomir Januszewskia and Stanisław J. Czuczwarc

aLaboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish
Academy of Sciences, Warsaw, Poland
bFirst Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
cDepartment of Pathophysiology, Medical University of Lublin, Lublin, Poland

Accepted 29 August 2018

Abstract. Brain ischemia comprises blood-brain barrier, glial, and neuronal cells. The blood–brain barrier controls perme-
ability of different substances and the composition of the neuronal cells ‘milieu’, which is required for their physiological
functioning. Recent evidence indicates that brain ischemia itself and ischemic blood-brain barrier dysfunction is associated
with the accumulation of neurotoxic molecules within brain tissue, e.g., different parts of amyloid-� protein precursor and
changed pathologically tau protein. All these changes due to ischemia can initiate and progress neurodegeneration of the
Alzheimer’s disease-type. This review presents brain ischemia and ischemic blood-brain barrier as a trigger for tau protein
alterations. Thus, we hypothesize that the changes in pattern of phosphorylation of tau protein are critical to microtubule
function especially in neurons, and contribute to the neurodegeneration following brain ischemia-reperfusion episodes with
Alzheimer’s disease phenotype.

Keywords: Blood-brain barrier, brain ischemia, dementia, experimental, gene expression, human, neurodegeneration, neu-
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INTRODUCTION

Ischemic stroke in humans is the second cause
of death and the third cause of disability, and may
soon become the leading cause of death worldwide
[1, 2] and dementia of the Alzheimer’s disease (AD)
phenotype [3–11]. Acute brain ischemia in patients
refers to focal brain infarction that causes sudden
neurological deficits and accounts for approximately
87% of all strokes [2]. The latest epidemiological
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data indicate that about 17 million people suffer
from ischemic stroke every year [1, 8]. The number
of survivors of ischemic stroke has doubled in
1990-2010 and has now reached 33 million patients
[1, 8]. According to epidemiological forecasts,
this figure will increase to 77 million by 2030 [1].
Furthermore, stroke survivors are at an increased
risk of developing cognitive impairment. Physical
impairments following ischemic stroke tend to
improve to a greater or lesser degree. However, for
reasons unknown, the impairment of cognitive func-
tions is gradually deteriorating. Every year, about
6 million stroke subjects die all over the world [1].
An effective treatment of ischemic stroke involves
the use of thrombolysis, but thrombolysis has a
limited window of therapeutic time and a potential
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risk of symptomatic hemorrhagic conversion [2].
Now ischemic stroke exerts a large burden on global
public healthcare and clinical practice.

Brain ischemia reduces the supply of oxygen,
energy substrates, and nutrients to the brain tissue. In
addition, such defects impair the removal of neuro-
toxic substances, such as the amyloid-� (A�) peptide,
which accumulates in non-neuronal brain cells, neu-
rons, and extracellular space in animals and humans
[12–19]. Recent evidence suggests that ischemia
leads to acute and chronic neuronal dysfunction and
death, and may contribute to the deposition of var-
ious types of neurotoxic proteins, such as various
parts of the amyloid-� protein precursor (A�PP), the
A� peptide, and dysfunctional tau protein, in brain
neurons and cerebrovascular system [17, 20, 21].
Such changes include brain amyloidosis and cere-
bral amyloid angiopathy, which are caused by the
progressive accumulation of the A� peptide in the
brain tissue and vessel wall, respectively, and are
recognized as features of AD [17, 22, 23]. It has
been suggested that the history of ischemic stroke
in humans and experimental brain ischemia are asso-
ciated with the subsequent development of AD [4,
12, 17, 20, 21, 24–42]. An insidious consistency of
post-ischemic brain changes is a slow and progres-
sive development of post-ischemic dementia with
AD phenotype [3, 5–11, 43–52]. Patients with AD,
who had ischemic injuries, were found to have more
intense dementia [53]. Pre-existing ischemic brain
damage can further increase the likelihood of AD
development by increasing the extent of injury by
triggering the genomic and proteomic cascade of AD
[20, 32–42]. Thus, the knowledge of the underly-
ing progressive neuropathological mechanisms in the
consequences of brain ischemia is urgently required.
In this review, we discuss ischemic pathways to the
neurodegeneration of the AD phenotype, focusing
on the expression of the tau protein gene and its
dysfunctional product. This is due to the fact that
there is a lot of new information in the literature on
genomic and proteomic changes in the tau protein
after brain ischemia-reperfusion injury. Presentation
of increased expression of the tau protein gene after
brain ischemia sheds new light on a better under-
standing of dysfunctional tau protein as the cause of
the effects of ischemic disease [42]. Although signif-
icant advances have recently been made in studies on
the pathogenicity of tau protein following ischemia,
the underlying mechanisms of tau protein-induced
post-ischemic neurodegeneration are unclear. Below
is an overview of the association of tau protein

with post-ischemic neurodegenerative processes. The
present review aims at updating knowledge about the
connection between brain ischemia and development
of AD neuropathology. Therefore, understanding the
neuronal mechanisms associated with ischemic brain
damage and identifying potential new pathological
processes after ischemic stroke is critical to effective
therapy for the consequences of stroke. Such studies
can help determine the requirements for the imple-
mentation of new therapies for ischemic stroke and
may be of importance in the conduct and assessment
of future prevention priorities.

PROPERTIES OF TAU PROTEIN

Tau protein, a microtubule-associated protein, is
present mainly in neurons and at lower levels in
oligodendrocytes and astrocytes. Tau protein is coded
by a gene on chromosome 17. There are six major
isoforms of tau protein in the human brain. Tau
protein combines microtubules together and helps
stabilize their structure. Microtubules are involved in
maintaining the morphology of neurons and creating
axonal and dendritic processes, and play an important
role in vesicular transport, polarity, and signal trans-
duction. Tau protein may regulate axonal transport
by binding to the microtubule surface. Recent reports
have revealed several novel functions of tau protein,
such as regulation of neuronal activity, maintenance
of the integrity of genomic DNA, neurogenesis, iron
export, and long-term depression [54, 55]. Under-
standing the additional functions of tau protein is not
only essential to elucidate the tau protein pathogen-
esis, but it is also necessary to ascertain tau protein-
based treatment strategy. Tau protein is natively
unfolded with a low content of secondary structure
and is divided into an N-terminal domain, a proline-
rich region, a repeatable domain, and a C-terminal
domain. Tau protein contains a large amount of ser-
ine and threonine residues (>80), which are potential
phosphorylation sites, and the phosphorylation state,
which is controlled by the balance of kinase and phos-
phatase activity, affects the affinity of microtubule
binding. Therefore, the physiological action of tau
protein seems to favor the formation of microtubules
and stabilize microtubule networks with phospho-
rylation regulating these functions. In pathological
conditions, the tau protein undergoes hyperphospho-
rylation, and the tau protein binding balance with
the microtubule surface is disrupted, resulting in a
decrease in affinity for the microtubules [54, 55].
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CHANGES IN GENE EXPRESSION OF
THE TAU PROTEIN AFTER BRAIN
ISCHEMIA-REPERFUSION

Only one existing report in the literature indicates
the relationship between the ischemic CA1 region of
the hippocampus and the expression of the tau protein
gene after transient 10-minute global brain ischemia
in rats with a survival of 2, 7, and 30 days [42]. In
the hippocampal region of CA1, the expression of
the tau protein gene increased to a maximum of 3.3-
fold change on the second day after brain ischemia
[42]. After 7 days from ischemic episode, the expres-
sion was between 0.2 and -0.5-fold change [42]. On
the 30th day of survival after ischemic damage to the
brain, the expression of the tau protein gene decreased
to -0.4-fold [42]. Statistical significance of changes
in gene expression of the tau protein following global
brain ischemia in rats was between 2 and 7, and
between 2 and 30 days of survival [42].

TAU PROTEIN STAINING AFTER BRAIN
ISCHEMIA-REPERFUSION

In recent years, several researchers have noted that
brain ischemia is an important feature in the devel-
opment of AD and plays a key role in genomic
and proteomic (e.g., A�PP, amyloid processing sec-
retases, autophagy, mitophagy, caspase 3, and tau
protein) changes of the disease [20, 32–42, 56, 57].
Early studies revealed that the immunoreactivity of
tau protein in neuronal and glial cells had been
observed in the thalamus, hippocampus, and cor-
tex in both experimental brain ischemia [58–63] and
ischemic stroke in humans [64–66]. Modified tau
protein was furthermore noted in microglial cells at
the ischemic penumbra [65, 67, 68]. The above data
indicate that some neuronal cells display alterations
in tau protein following brain ischemia-reperfusion
injury [60], which may show a prime neuropatholog-
ical stage of the ischemic processes in these cells [62].
Another investigation showed that tau protein itself
could inhibit transport of A�PP in the neuron body
at axons and dendrites, leading to A�PP deposition
in the neuronal cell body [69].

The level of tau protein was observed in blood sam-
ples after global brain ischemia with two peaks after
days 2 and 4, probably indicating the progression of
neuronal changes after recirculation [70]. Observed
bimodal elevation kinetics of tau protein level in
plasma is consistent with two types of neuronal loss:

firstly, by necrosis and next via delayed neuronal
death [71]. It seems likely that the profiles reflect a
time course of primary and secondary ischemic neu-
ronal injury [71]. The above studies suggest that tau
protein level in plasma has the potential to be used
as a predictor for the neurological outcome following
ischemia-reperfusion brain injury [70, 71].

PATTERNS OF TAU PROTEIN
PHOSPHORYLATION AFTER BRAIN
ISCHEMIA-REPERFUSION

Studies have also shown that the phosphorylation
patterns of tau protein differ in different mod-
els of brain ischemia (Table 1). Tau protein was
dephosphorylated following brain ischemia in several
experimental brain ischemia studies (Table 1) [60,
61, 72, 73]. After global brain ischemia and recir-
culation, tau protein was slowly re-phosphorylated
and accumulated (Table 1) [73]. Transient focal brain
ischemia with one-day reperfusion induces locally-
specific hyperphosphorylation of rat tau protein [74].
In delayed neuronal death in the CA1 region of
the hippocampus after transient forebrain ischemia,
hyperphosphorylation at serine 199/202 of tau protein
is regulated by MAP kinase, CDK5, and GSK3 activ-
ities [75]. Also, it was documented that microglia
tau protein undergoes phosphorylation-independent
modification after brain ischemia in humans (Table 1)
[65]. The current investigations indicate that after
ischemia, hyperphosphorylated tau protein domi-
nates in cortical neuronal cells and accompanies
apoptosis [67, 68, 74, 76–78]. The above-mentioned
results indicate that following brain ischemia neu-
ronal apoptosis is straightway associated with tau
protein hyperphosphorylation. Wen et al. [74, 76,
77] provided evidence that reversible ischemic brain
injury was engaged in neurofibrillary tangle-like
development at the rat focal brain ischemia.

In addition, the combination of global brain
ischemia with hyperhomocysteinemia in rats leads
to massive neuronal pathology in the hippocampus
and cortex [79]. In the above experimental conditions,
695-fold higher number of hyperphosphorylated tau
protein-positive neurons in the cerebral cortex was
found compared to the control conditions [79].
Finally, tau protein, a core hallmark of AD, exac-
erbates brain parenchyma injury in experimental
brain ischemia models through tau protein-mediated
iron export [80] and tau protein-dependent exci-
totoxicity [81, 82]. The above results provide a
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Table 1
Various patterns of tau protein dysfunction after brain ischemia-reperfusion

Tau protein state Ischemia Animal/Human References

Neurofibrillary tangle formation Ischemic stroke Human [83]
Dephosphorylation Complete brain ischemia Rat [61, 101]
Dephosphorylation Focal brain ischemia Rat [60]
Rapid dephosphorylation, differential
re-phosphorylation

Global brain ischemia Dog [73]

Microglia tau protein passes independent of
phosphorylation modification

Ischemic stroke Human [65]

Four site-specific hyperphosphorylation at
serine 202/214/422 and threonine 231

Focal brain ischemia Rat [74]

Hyperphosphorylation at serine 202 and
threonine 205

Global brain ischemia Rat [79]

Hyperphosphorylation integrated with
apoptosis

Focal brain ischemia Rat [76]

Hyperphosphorylation at serine 199/202 Forebrain ischemia Gerbil [75]
Dephosphorylation, rapid
re-phosphorylation and
hyperphosphorylation

Forebrain ischemia Gerbil [102]

Neurofibrillary tangle-like tauopathy
involving Cdk5

Focal brain ischemia Rat [77]

Dephosphorylation associated with
adenosine monophosphate kinase (AMPK)
dephosphorylation

Global brain ischemia Rat [78]

Dephosphorylation and
hyperphosphorylation at serine 396

Global brain ischemia Rat [67]

Hyperphosphorylation and cleavage
isoforms of 4- and 3-repeat

Focal brain ischemia Rat [68]

Reduction tau protein-dependent
excitotoxicity in tau–/– mice

Focal brain ischemia Mouse [82]

Functional damage of tau protein contributes
to iron-mediated neurotoxicity

Focal brain ischemia Mouse/Rat [80]

Hyperphosphorylation involving asparagine
endopeptidase

Focal brain ischemia Mouse [84]

Paired helical filament tau protein increase Forebrain ischemia Mouse [85]

pathological basis for the progress of dementia after
brain ischemia-reperfusion with AD phenotype [74,
76, 77].

DYSFUNCTION OF THE BLOOD-BRAIN
BARRIER AND TAU PROTEIN AFTER
BRAIN ISCHEMIA

Tau protein hyperphosphorylation following brain
ischemia-reperfusion episode [67, 68, 74, 76–80,
82–85] induces neurofibrillary tangle-like tauopa-
thy and neurofibrillary tangles [77, 83], which are
known to occur in the brains of patients with AD.
Brain ischemia causes blood-brain barrier (BBB)
permeability [86–90], which may induce hyperphos-
phorylation of the tau protein [67, 68, 74, 76–80,
82–85, 91], and tau protein dysfunction may cause
changes in the BBB, leading to detrimental feedback
[92]. Amyloid pathology associated with ischemic
BBB dysfunction [93, 94] may indirectly facili-
tate the onset of tau protein pathology, representing

the automatic link between amyloid and tau pro-
tein accumulation during BBB failure [92]. Also,
both neuroinflammation [95] and oxidative stress [96]
induced by BBB insufficiency can trigger tau pro-
tein hyperphosphorylation and neurofibrillary tangles
formation after brain ischemia [77, 83, 91, 97]. Addi-
tionally, blood-borne tau protein after ischemic brain
episode [70, 71] can cross the ischemic BBB bi-
directionally, and, derived from blood, tau protein
may strengthen in brain tissue tau protein pathol-
ogy [98]. In summary, the BBB insufficiency may
potentiate the pathology of the brain tau protein in
ischemic brain, and also suggest that brain ischemic
neuropathology may contribute to blood tau protein
level [70, 71, 98, 99].

DISCUSSION AND CONCLUSIONS

Brain ischemia and AD pathologies often co-
exist in brain [22, 23, 53, 100]. In recent years,
epidemiological, clinical, and experimental studies
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have revealed that cerebrovascular diseases includ-
ing brain ischemia and their history can be proposed
as one of the causal factor for AD development.
How one condition predisposes to, interacts with,
or perhaps causes the others remains unclear. The
mechanism of how ischemic stroke could lead to
the progression of AD remains obscure. Remark-
ably, similar etiopathological features can be found
in brain ischemic diseases and AD like amyloid
and tau protein changes (Table 1). Brain ischemia
induces ischemic generation of amyloid plaques that
can interact with vascular changes in the brain and
progress to AD. Brain ischemia and post-ischemic
amyloid accumulation may induce neurodegenera-
tion of the AD phenotype. Generation and deposition
of A� peptide and tau protein pathology are recog-
nized in post-ischemic forms of neurodegeneration
and are important key players in the etiology of the
onset and progression of AD. To better understand
the link between brain ischemia and AD, we focus
in this review on tau protein gene expression and its
product post-ischemia.

Tau protein is a phospho-protein and its biological
activity is regulated by the degree of its phosphory-
lation. As tau protein is phosphorylated by kinases
involved in different transduction signal pathways,
its phosphorylation state is proposed to regulate its
binding to microtubules, influencing the dynamics of
microtubule assembly necessary for axonal growth
and neurite plasticity [101]. Hyperphosphorylated
tau protein does not bind or stabilize microtubules,
whereas the fully dephosphorylated tau protein binds
to microtubules with high affinity. Ischemic brain
episode damages the neuronal cytoskeleton both by
promoting the proteolysis of its components as well as
by affecting the activity of kinases and phosphatases
[72, 77]. The state of changes in the phosphorylation
of tau protein in various models of brain ischemia
and various periods after ischemia are presented in
Table 1. Changes in phosphorylation of tau protein
may alter its distribution between the axon and the
cell body, and affect the susceptibility to proteol-
ysis, affect the stability of microtubules, and may
contribute to disruption of axonal transport, but also
facilitate the plasticity of neurites in the regenerative
response [101]. Hyperphosphorylation of tau protein
may contribute to brain damage caused by transient
ischemia and recirculation and may be involved in
neurodegeneration after brain ischemia [67, 68, 74,
76–80, 82–85]. Thus, changes in phosphorylation of
tau protein may play a key role in the process of
post-ischemic brain damage.

The relationship between AD-associated tau pro-
tein and brain ischemia and ischemic stroke appears
quite clear. The worldwide problem and enormous
costs involved make it clear that there is an urgent
need for advances in the prevention and/or treat-
ment of brain ischemia-reperfusion injury and its
irreversible consequences like post-ischemic demen-
tia of AD phenotype. Tau protein plays a key role
in neuronal damage and clinical pathophysiology of
ischemic stroke. Although the role of ischemia in
phosphorylation of tau protein is generally complex
and requires further explanation, and the tau protein
represents a relatively under-investigated factor in
ischemic stroke, we have reason to believe that deter-
mining the role of tau protein in ischemic stroke may
contribute to understanding the basis for developing
a new target for the treatment of ischemic stroke.
Finally, regulation of phosphorylation of tau protein
can be considered as a potential new therapeutic target
after ischemic stroke.
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Niewiadomska G, Jabłoński M, Kaczmarek L (2011)
Transient brain ischemia due to cardiac arrest causes irre-
versible long-lasting cognitive injury. Behav Brain Res
219, 1-7.

[49] Li J, Wang YJ, Zhang M, Fang CQ, Zhou HD (2011)
Cerebral ischemia aggravates cognitive impairment in a
rat model of Alzheimer’s disease. Life Sci 89, 86-92.

[50] Pluta R, Jolkkonen J, Cuzzocrea S, Pedata F, Cechetto D,
Popa-Wagner A (2011) Cognitive impairment with vascu-
lar impairment and degeneration. Curr Neurovasc Res 8,
342-350.

[51] Cohan CH, Neumann JT, Dave KR, Alekseyenko A,
Binkert M, Stransky K, Lin HW, Barnes CA, Wright
CB, Perez-Pinzon MA (2015) Effect of cardiac arrest
on cognitive impairment and hippocampal plasticity in
middle-aged rats. PLoS One 10, e0124918.

[52] Zhang T, Liu X, Li Q, Wang J, Jia W, Sun X (2010) Exac-
erbation of ischemia-induced amyloid-beta generation by
diabetes is associated with autophagy activation in mice
brain. Neurosci Lett 479, 215-220.

[53] Snowdon DA, Greiner LH, Mortimer JA, Riley KP,
Greiner PA, Markesbery WR (1997) Brain infarction and

the clinical expression of Alzheimer disease: The Nun
Study. JAMA 277, 813-817.

[54] Gao YL, Wang N, Sun FR, Cao XP, Zhang W, Yu JT (2018)
Tau in neurodegenerative disease. Ann Transl Med 6, 175.

[55] Goedert M (2018) Tau filaments in neurodegenerative dis-
eases. FEBS Lett 592, 2383-2391.

[56] Pluta R (2004) Alzheimer lesions after ischemia-
reperfusion brain injury. Folia Neuropathol 42, 181-186.

[57] Pluta R (2004) From brain ischemia-reperfusion injury to
possible sporadic Alzheimer’s disease. Curr Neurovasc
Res 1, 441-453.

[58] Dewar D, Graham DI, Teasdale GM, McCulloch J (1993)
Alz-50 and ubiquitin immunoreactivity is induced by
permanent focal cerebral ischaemia in the cat. Acta Neu-
ropathol 86, 623-629.

[59] Dewar D, Graham DI, Teasdale GM, McCulloch J (1994)
Cerebral ischemia induces alterations in tau and ubiquitin
proteins. Dementia 5, 168-173.

[60] Dewar D, Dawson D (1995) Tau protein is altered by focal
cerebral ischaemia in the rat: An immunohistochemical
and immunoblotting study. Brain Res 684, 70-78.

[61] Geddes JW, Schwab C, Craddock S, Wilson JL, Pettigrew
LC (1994) Alterations in tau immunostaining in the rat hip-
pocampus following transient cerebral ischemia. J Cereb
Blood Flow Metab 14, 554-564.

[62] Irving EA, Yatsushiro K, McCulloch J, Dewar D (1997)
Rapid alteration of tau in oligodendrocytes after focal
ischemic injury in the rat: Involvement of free radicals.
J Cereb Blood Flow Metab 17, 612-622.

[63] Sinigaglia-Coimbra R, Cavalheiro EA, Coimbra CG
(2002) Postischemic hypertermia induces Alzheimer-
like pathology in the rat brain. Acta Neuropathol 103,
444-452.

[64] Uchihara T, Tsuchiya K, Kondo H, Hayama T, Ikeda K
(1995) Widespread appearance of Alz-50 immunoreactive
neurons in the human brain with cerebral infarction. Stroke
26, 2145-2148.

[65] Uchihara T, Nakamura A, Arai T, Ikeda K, Tsuchiya
K (2004) Microglial tau undergoes phosphorylation-
independent modification after ischemia. Glia 45,
180-187.

[66] Irving EA, Nicoll J, Graham DI, Dewar D (1996)
Increased tau immunoreactivity in oligodendrocytes fol-
lowing human stroke and head injury. Neurosci Lett 213,
189-192.

[67] Majd S, Power JH, Koblar SA, Grantham HJM (2016)
Introducing a developed model of reversible cardiac
arrest to produce global brain ischemia and its impact
on microtubule-associated protein tau phosphorylation at
Ser396. Int J Neurol Neurother 3, 040.

[68] Fujii H, Takahashi T, Mukai T, Tanaka S, Hosomi N,
Maruyama H, Sakai N, Matsumoto M (2017) Modifica-
tions of tau protein after cerebral ischemia and reperfusion
in rats are similar to those occurring in Alzheimer’s disease
- Hyperphosphorylation and cleavage of 4- and 3-repeat
tau. J Cereb Blood Flow Metab 37, 2441-2457.

[69] Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow
EM (2002) Tau blocks traffic of organelles, neurofil-
aments, and APP vesicles in neurons and enhances
oxidative stress. J Cell Biol 156, 1051-1063.
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