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Abstract
The process of cell differentiation in multicellular organisms is characterized by hierarchy and irreversibility in many cases. However, the 
conditions and selection pressures that give rise to these characteristics remain poorly understood. By using a mathematical model, here 
we show that the network of differentiation potency (differentiation diagram) becomes necessarily hierarchical and irreversible by 
increasing the number of terminally differentiated states under certain conditions. The mechanisms generating these characteristics 
are clarified using geometry in the cell state space. The results demonstrate that the hierarchical organization and irreversibility can 
manifest independently of direct selection pressures associated with these characteristics, instead they appear to evolve as 
byproducts of selective forces favoring a diversity of differentiated cell types. The study also provides a new perspective on the 
structure of gene regulatory networks that produce hierarchical and irreversible differentiation diagrams. These results indicate some 
constraints on cell differentiation, which are expected to provide a starting point for theoretical discussion of the implicit limits and 
directions of evolution in multicellular organisms.
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Introduction
Multicellular organisms have various cell types that are generated 

during the process of cell differentiation. The process of cell differ

entiation can be characterized by the following important proper

ties, namely hierarchy and irreversibility (1). Typically, this 

process involves a series of hierarchical fate decisions before 

reaching a final nondifferentiable state (i.e. hierarchy). Once a 

cell reaches its downstream state, it cannot revert back to its 

stem cell state during normal development (i.e. irreversibility). 

While it is well established that the hematopoietic system in 

mammals possesses such characteristics (2), they are observed 

in the developmental processes of vertebrates as well (3–5). 

Similar processes are observed in invertebrates, such as in the em
bryonic development of nematodes (6) and the differentiation pro
cess of interstitial stem cells in Hydra (7). Additionally, analogous 
structures can be observed in the context of plant development 
(8). Waddington’s “epigenetic landscape” is a qualitative meta
phor that captures these characteristics of the cell differentiation 
process (9). Understanding the cell state transitions described 
above remains a key goal in developmental biology and has also 
recently become a significant challenge in the context of medical 
applications, such as reprogramming (10) and cancer therapy 
(11, 12).

To theoretically understand cell differentiation, mathematical 
models have been employed and developed. These models are 
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usually based on the fact that the gene expression state of a cell is 
regulated by a gene regulatory network (GRN) (13–15). For in
stance, Kauffman linked cell types to multiple attractors in a dy
namical system of a Boolean network model that abstracts a GRN 
(16, 17). In this model, the expression state of each gene is repre
sented as a binary value and the cell state is defined as a vector 
composed of these values. Despite its bold formulation, the model 
has been successful in explaining gene expression data in real or
ganisms (18, 19). Based on this pioneering work, further theoreti
cal models have been established that consider transitions 
between cell types. For example, Huang et al. demonstrated that 
bistable switches, composed of two self-activating and mutually 
repressing genes, can theoretically exhibit a differentiation pro
cess into two distinct differentiated types from an identical stem 
cell type (20, 21).

Moreover, several models have been proposed that can gener
ate hierarchical and irreversible networks of differentiation po
tency (differentiation diagrams) between multiple stable states. 
For instance, hierarchical differentiation diagrams can be con
structed when two or more bistable switches are connected in a 
hierarchical manner (21–25). Other mechanisms, such as Turing 
instability (26, 27), temporal change of an expression system as
suming epigenetic changes (28), and bifurcation of dynamical sys
tems (29), have also been proposed to design hierarchical and 
irreversible differentiation diagrams.

As demonstrated thus far, mechanisms capable of exhibiting 
hierarchy and irreversibility have been studied and proposed, but 
the reasons why these characteristics are commonly observed 
among various species remain poorly understood. Specifically, 
what conditions and selection pressures give rise to hierarchy and 
irreversibility? By what mechanisms are they acquired? As differen
tiation diagrams with hierarchy and irreversibility are the outcome 
of evolution from simpler structures, it is required to investigate 
how these diagrams change their topology during their evolution. 
In order to answer these questions, a theoretical study is necessary 
that is independent of specific species details.

In view of taking cell types as attractors of dynamical systems, the 
structure of the differentiation diagram can be reframed as a ques
tion of how the basin boundaries of attractors are arranged. If it is as
sumed that transitions between them can occur due to some kind of 
perturbation (e.g. fluctuations in gene expression, signal-induced 
changes in expression levels, or gene–gene interaction), understand
ing the arrangement of the basin boundaries can help to understand 
which basins the cell state can move between.

Here, we use an abstract cell model with a GRN to investigate 
how hierarchy and irreversibility emerge in cell differentiation 
during evolution. In this study, we assumed that the mechanism 
underlying cell differentiation is primarily attributed to expres
sion noise. This hypothesis is grounded in the fact that cell fate 
transitions induced by expression noise have been suggested in 
numerous experimental studies (21, 30–36). Here, the multicellu
lar systems, in which cellular state transitions are triggered by 
stochastic perturbations, are optimized to increase the number 
of terminally differentiated states, envisioning an abstract evolu
tionary process. We vary the magnitude of perturbations to gene 
expression driving differentiation and show that large perturb
ation conditions lead to inevitable hierarchical differentiation, 
whereas small perturbation conditions do not. Furthermore, 
under the conditions that lead to the emergence of a hierarchical 
differentiation diagram, the diagrams also become irreversible. 
These findings indicate that hierarchy and irreversibility are in
herent outcomes of the evolutionary process under certain 
conditions. We also clarify the mechanism for their inevitable 
emergence by analyzing the geometrical aspects of the cell state 
space. Finally, we explore the typical structures observed in 
GRNs resulting in differentiation diagrams with hierarchy and 
irreversibility.

Overall, our findings suggest the possibility that the nature of 
cell differentiation that emerged through evolution is due to sec
ondary effects resulting from the maximization of the number of 
terminally differentiated states, rather than adaptive significance. 
In addition, our results offer a new perspective on the structure of 
GRNs that exhibit hierarchy and irreversibility.

Model
To investigate the evolution of differentiation diagrams, we con
sider a cell model where cells have the capability to differentiate 
into another cell type (Fig. 1).

Cell state regulation
The model cell is described by a GRN in which each gene expres
sion is regulated by the other genes. The state of a cell, denoted 
by x = (x1, x2, . . . , xn) is characterized by the expression levels of 
n genes. The dynamics of a cell state x obeys the following ordin
ary differential equation:

dxi

dt
= H(Ji · x − θi) − xi, (1) 

where H(ξ) =
0 ξ < 0

1 ξ ≥ 0.

􏼚

(2) 

The matrix J represents the GRN, where its element Jij represents 

how strongly gene j interacts with gene i. Ji is the ith row of J. θi is 
the expression threshold for each gene i. When the sum of the in
teractions from all genes (Ji · x) exceeds the threshold θi, the first 
term H(·) takes 1, indicating that the mode of expression of gene 
i is “on.” The second term represents the decay of gene expression. 
Because of this term, the range of x is limited to [0,1]. Each element 
of J and θ are updated during evolutionary simulation as described 
later.

Differentiation by perturbation on expression
Fixed point attractors in the dynamical system according to Eq. 1
are considered to represent distinct cell types. To determine the 
directions in which differentiation is possible between these cell 
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Fig. 1. Schematic of the model. (Left) An abstract representation of a 
GRN. The blue arrows represent positive interaction, while the red arrows 
represent negative interactions. (Right) An abstract representation of the 
differentiation diagram. Each node represents an attractor of the 
dynamical system determined by the GRN on the left. The arrows 
represent possible differentiation paths by perturbation. The pink nodes 
represent precursor states, while the purple nodes represent terminally 
differentiated states.
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types, we need to consider the mechanisms driving differenti
ation. While there are several possible driving forces that actually 
cause differentiation, we assume that differentiation is caused by 
stochastic fluctuations in gene expression, following the experi
mental observations (30–36). We then derive a differentiation dia
gram using the following method.

The attractor to which an initial point xinit = 0 converges is re
ferred to as “the root attractor (aroot).” Throughout this research, 
we assume that aroot represents the most upstream stem cell 
type (e.g. hematopoietic stem cell). Since the expression states 
of 0 and 1 are symmetric in this model and since we later evolve 
the differentiation diagram with xinit fixed, choosing 0 for xinit 

has no essential meaning.
Now, to define differentiation by perturbation, we consider 

adding a perturbation pk to an attractor a to create a new state a + 
pk for all k( = 1, 2, . . . , N), where N is the number of perturbations. 
Here, we assume that the norm of every perturbation vector, ‖pk‖

is identical, which is represented as a parameter δ. Thus, each pk is 
uniformly distributed on a hypersphere with radius δ. To facilitate 
simplification, this study assumes that the expression noise trig
gering differentiation is isotropic within the gene expression space 
and densely covers the hypersphere. This isotropy is achieved by 
utilizing a sufficiently large parameter value for N. Throughout 
this paper, we employed N = 1,000, and it has been verified that 
the results remain qualitatively consistent even when N is in
creased to 3,000 (Fig. S1).a

After the perturbations, if this new state subsequently con
verges to another attractor a′( ≠ a), we consider it possible to dif
ferentiate from a to a′. Starting from aroot, we repeat the same 
procedure for all newly emerged attractors until no new attractor 
is found any further. Note that a differentiation diagram can be 
derived by determining J and θ. If no further transition occurs 
from a certain attractor under given perturbations, the attractor 
is referred to as the “terminally differentiated state” hereafter. 
This means that after any perturbation is added, the new initial 
state converges back to the attractor before the perturbation. 
Attractors that are not the terminally differentiated state are re
ferred to as “precursor states.”

Optimization of regulatory interactions J and 
threshold vector θ
In this study, we aim to increase the number of terminally differ
entiated states by optimizing both the GRN matrix, denoted by J, 
and the threshold vector, denoted by θ, using a genetic algorithm 
(GA). In other words, the fitness of the GA is set as the number of 
terminally differentiated states obtained. The reason for this is 
based on our assumption that the diversity of terminally differ
entiated states is linked to the number of specialized functions 
of cells. This is supported by the fact that many specialized 
cell types, such as neurons, osteoblasts, and muscle cells, do 
not undergo further differentiation (37). Taking this into ac
count, the abovementioned fitness is set, guided by the idea 
that species with a higher number of terminally differentiated 
states, reflecting diverse functionalities, possess evolutionary 
advantages.

Furthermore, we also randomly sample high-fitness (J, θ), us
ing multicanonical sampling (38), a type of Markov chain Monte 
Carlo method. The reason we use this method is to collect a 
number of rare high-fitness samples efficiently. Using this meth
od for a sufficiently long time, we can sample diagrams as a ran
dom walk along the fitness axis, without getting trapped in local 
optima (38).

Results
Acquisition of hierarchy
To investigate the influence of δ on the differentiation diagram, 
particularly on its hierarchical structure, we implement GA under 
various conditions of δ. Figure 2a shows typical differentiation di
agrams which evolved under two different δ values. Under 
δ = 0.05, almost all terminally differentiated states directly 
emerge from the root attractor, i.e. little hierarchy is observed in 
the differentiation diagram. In contrast, in the cases under 
δ = 0.4, the differentiation diagram generally becomes more com
plex and hierarchical. Notably, the final mean fitness does not ex
hibit a significant change when δ varies between 0.05 and 0.4 
(Fig. 2b). However, it becomes much more difficult to increase 
the fitness when δ ≥ 0.5 since the perturbations are too large (typi
cal examples of the differentiation diagrams in this region are 
shown in Fig. S3). In the region where evolution is reasonably pos
sible (here, with a final average fitness of around 15 or more, which 
is 0.05 ⪅ δ ⪅ 0.4), a larger δ leads to a greater value of depth 
(Fig. 2b). We will focus mainly on the results obtained under the 
conditions of δ = 0.05 and 0.4 hereafter.

Having discovered the clear trend of acquired depth along with 
the GA, the focus shifts to the reason why it appeared. In this mod
el, cell differentiation occurs when perturbations cause the state 
to move out of the original attractor’s basin and into the adjacent 
attractor’s basin. While computing attractor basins is generally 
challenging, this model allows for a partial examination of basin 
structure with the following two properties: 

(1) Since Eq. 1 can be rewritten as follows, dx/dt of any point x 
takes the direction toward the lattice point a below:

dx
dt

= a − x, (3) 

where ai =
0 if Ji · x − θi < 0

1 if Ji · x − θi ≥ 0.

􏼚

(4) 

Property (1) is simply a substitution of a for the first term H(Ji · x − θi) 
on the right-hand side in Eq. 1. Here, in the two regions of the state 
space divided by the ith hyperplane Ji · x − θi = 0, the ith coordinate 
of the destination switches. Note that each of the n genes has the 
corresponding hyperplane. Figure 3 illustrates this property using 
a 2D example. When Ji · p − θi and Ji · q − θi have the same sign, p 
and q are referred to as being “on the same side” with respect to 
the hyperplane Ji · x − θi = 0.

The model then has the following property (2). 

(2) If the lattice point a is a fixed point and x is on the same side as 
a with respect to all n hyperplanes, then x converges to a after 
sufficient time.

From property (1), the time derivative of x is oriented toward a, 
hence x moves toward a in a straight line. Since x and a are on 
the same side with respect to all of the hyperplanes, the line 
does not cross any of these hyperplanes on its way from x to a.b

As long as perturbations to an attractor do not cross any hyper
planes, the attractor will not transition to another attractor. In oth
er words, if the hypersphere with a radius of δ centered on an 
attractor does not intersect any hyperplanes, it becomes a termin
ally differentiated state. Thus, increasing the number of terminally 
differentiated states requires that as many hyperspheres as 
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possible do not intersect the hyperplane. In addition, points in the 
state space often converge to lattice points with coordinates of 0 
or 1, since H in Eq. 1 is a step function.c

Using these properties, we can explain the difference in hier
archical structure between small and relatively large δ as follows. 
First, in order not to intersect as many hyperspheres as possible 

for the sake of increasing fitness under δ( ≈ 0.4), each hyperplane 
must be placed orthogonally to the corresponding axis, dividing 
the hypercube in two (Fig. 4a). When the planes are orthogonal
ized, the off-diagonal terms Jij(j ≠ i) are small relative to the diag
onal term Jii. This can be understood from the fact that in the limit 
where Jij/Jii ≪ 1, the equation of the ith hyperplane becomes 
xi − θi/Jii = 0. Indeed, under the condition of δ = 0.4, the magnitude 
of the off-diagonal terms of J becomes much smaller than the di
agonal terms (i.e. more orthogonal) as optimization proceeds 
(Fig. 4d). When the corresponding hyperplanes are orthogonalized 
with respect to each axis and separating adjacent hyperspheres, 
the intersection of these n hyperplanes will be located near the 
center of the hypercube (the white dot in Fig. 4a). This idea is sup
ported by the fact that, under the condition of δ = 0.4, the distribu
tion of the distance between the intersection and aroot tends to 
peak around 1.1 ( ≈

����������
5 × 0.52
√

) as optimization progresses 
(Fig. 4e). Since this is greater than δ ( = 0.4), it becomes impossible 
to cross at least n ( = 5) hyperplanes simultaneously. Moreover, 
the number of hyperplanes that can be crossed at once by a single 
perturbation becomes limited. As a result, in order to reach a ter
minally differentiated state that is distant from the root attractor, 
a minimum of two consecutive differentiation steps must be trav
ersed. This phenomenon contributes partially to the reason be
hind the hierarchical nature of the multistep differentiation 
diagram.

On the other hand, if δ is small, the hyperplanes can be placed 
more easily not intersecting the hyperspheres. This means that 
each hyperplane need not be orthogonalized during optimization 
(Fig. 4b, c, e). The intersection of the n hyperplanes can be placed 
close to the root attractor (Fig. 4b–d) since there is no such restric
tion for the hyperplanes to be orthogonalized as the case in δ = 0.4. 
In this case, it is unnecessary to create any precursor state to gain 
fitness. In addition, the hyperplanes are less likely to intersect a 
hypersphere of a relatively small radius. Thus, the nonhierarchi
cal pattern of differentiation diagrams holds the majority.

a b

Fig. 2. a) Typical examples of time series of differentiation diagrams in GA under different δ values. b) (Left) The mean fitness and depth during GA. (Right) 
The mean (white circle) and SD (black bar) of fitness and depth reached at the final generation ( = 106). Each δ has 50 independent series. Depending on the 
value of δ, the depth and the fitness that emerge with optimization varies. Specifically, as δ changes, different types of diagrams emerged, including low 
fitness and low depth (δ ≈ 0.01), high fitness and low depth (0.05 ⪅ δ ⪅ 0.2), high fitness and high depth (0.3 ⪅ δ ⪅ 0.4), low fitness and low depth (0.5 ⪅ δ). 
Note that all subsequent results in this paper are for n = 5 genes and N = 1,000 perturbations.
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Fig. 3. An example of state space in a two-gene system. dx/dt of the state 
space is visualized as a vector field. Two “hyperplanes,” Ji · x − θi = 0 
(i = 1, 2) are drawn as blue and orange lines, respectively. The four 
points at each corner are fixed point attractors. The color, pink and 
purple, corresponds to precursor states and terminally differentiated 
states, respectively. The sets of possible states that can be reached by 
perturbations are represented by red dashed lines that form an arc of 
radius δ in the 2D state space (in n dimensions, it is the surface of a 
hypersphere). The blue and orange tick arcs, positioned on the side 
opposite hyperplanes with corresponding colors relative to the original 
attractor, denote the states from which a transition to a different 
attractor is initiated after the perturbation. When a state crosses the ith 
hyperplane by being added some perturbation, the attractor to which it 
heads changes, and the ith gene of the destination flips its value. Note that 
this is not a result of optimization but rather an example for visualizing 
the state space.
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When δ becomes >0.5, it is observed that both fitness and depth 
are low, as illustrated in Fig. 2b. To elucidate the low fitness in re
gions where δ is large, consider a scenario with two attractors lo
cated at adjacent lattice points, with a difference in the expression 
level of the ith gene. Between these attractors, there is a hyper
plane Ji · x − θi = 0. If δ ≥ 0.5, at least one of the hyperspheres of 

these attractors will intersect with the hyperplane, making it un
feasible for both attractors to be as terminally differentiated 
states. This spatial constraint on the location of terminally differ
entiated states leads to a reduction in fitness when δ is large. 
Concerning the observed low depth within the larger δ region, 
our numerical analysis indicates a contraction in the parameter 
space volume where substantial depth is attainable, correlating 
with an increase in δ (Fig. S4). It is important to note that depth 
is not directly linked to fitness; hence, the selection of parameter 
values remains unbiased on the iso-fitness manifold. We contend 
that the observed reduction in depth is predominantly due to a de
crease in the diversity of parameters that lead to higher depth.

It may be posited how the values of θ impacts the evolution of 
the differentiation diagram. In our evolutionary simulations, the 
value of θ evolves as a consequence of the selection process, there
by complicating direct assessment of its impact on differentiation 
diagram characteristics such as depth and fitness. To circumvent 
this issue, we executed additional evolutionary simulations in 
which the initial θ values were held constant throughout the pro
cess, with mutations impacting solely the regulatory matrix J. 
These initial θ values were randomly sampled from three distinct 
uniform distributions within intervals of [ −0.1, 0.1], [ −0.5, 0.5], 
and [ −1, 1]. Analysis of these simulations indicated no substantial 
differences in depth and fitness across the different θ value 
ranges, as illustrated in Fig. S5. This outcome implies that the 
range of θ values does not exert a significant influence on depth 
and fitness within these simulations.

Acquisition of irreversibility
The second purpose of this work is to elucidate the condition and 
the mechanism by which irreversibility appears in differentiation 
diagrams.

The differentiation diagram in Fig. 2a seems to differentiate ir
reversibly. Hence, we will examine whether the high-fitness dif
ferentiation diagrams under δ = 0.4 actually have an irreversible 

a

d e

b c

Fig. 4. a–c) Typical examples of 3D state spaces obtained from optimizing three-gene systems with δ = 0.4 (a) and 0.05(b, c), respectively. Here, we use 
three-gene systems for visualization. Each plane represents Ji · x − θi = 0 (i = 1[blue], 2[orange], 3[green]). The white dot denotes the intersection of the 
three planes. The sets of possible states that can be reached by perturbations are represented by red octants. Panel c is the enlarged view near the origin in 
b). In the case of δ = 0.4, the intersection is outside the sphere, whereas in the case of δ = 0.05, it is inside the sphere. d) The distribution of the ratio 
Jij/Jii(j ≠ i). The off-diagonal terms are low compared to the diagonal terms when it has high fitness under δ = 0.4, but not so much under δ = 0.05. e) The 
distribution of the distance to the intersection from aroot (regardless of whether the intersection is inside the hypercube or not). Under δ = 0.4, samples 
with higher fitness tends to keep the distance farther away, while under δ = 0.05, the distance is optimized to be closer. In d) and e), we used 
multicanonical Monte Carlo method to sample 10,000 systems for every fitness.

a

b

Fig. 5. a) Schematic of the comparison. We compared diagrams with 
fitness = 15 to randomly sampled ones with the equivalent number of 
precursor states (drawn in pink). The red edges are an example of a FAS 
for each diagram. b) The density of differentiation diagrams under δ = 0.4 
with various numbers of precursor states (top) and their size distributions 
of FAS (bottom). Regardless of the number of precursor states, 
high-fitness (fitness = 15) diagrams tend to have smaller FAS sizes 
compared to those of randomly sampled ones. Here, we used the 
multicanonical Monte Carlo method to collect 10,000 samples in total for 
each.
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tendency. By definition, the process of differentiation into a ter
minally differentiated state is irreversible. However, the question 
of irreversibility within the differentiation diagram between pre
cursor states is not immediately apparent. This uncertainty arises 
due to the absence of explicit selective pressure towards irreversi
bility in these intermediary states, as such configurations do not 
computationally influence fitness metrics. A pertinent inquiry, 
therefore, is whether irreversibility among diagrams connecting 
precursor states emerges concomitantly with an increase in fit
ness, as illustrated in Fig. 5a.

To quantify irreversibility of differentiation diagram, we use 
the size of the feedback arc set (FAS), which is the smallest set 
of edges that must be removed to make a graph acyclic. Using 
this measure, we show that high-fitness differentiation diagrams 
tend to have a smaller FAS when compared to randomly sampled 
graphs with the same number of precursor states (Fig. 5b). This 
trend is independent of the number of precursor states. In other 
words, even though there is no explicit selection pressure on irre
versibility between precursor states, it inevitably arises due to the 
demand to increase the number of terminally differentiated 
states. What is the reason for the acquisition of irreversibility 
under δ = 0.4? In other words, why cannot diagrams have multiple 
cycles? In the following section, we will illustrate that the diffi
culty in creating cycles on a differentiation diagram can be ac
counted for by the orthogonalization of each hyperplane. 
Specifically, we focus particularly on the observation that in order 
to complete a cycle, i.e. to return to the original attractor by differ
entiation, the expression state of at least one gene must change in 
both the positive (0→ 1) and negative (1→ 0) directions.

As mentioned in the previous section, when the hyperplanes 
are orthogonalized with respect to the corresponding axes, the 
off-diagonal terms Jij(j ≠ i) are small relative to the diagonal term 
Jii. Hence, if the ith plane is orthogonalized, the distance between 
an attractor a and the plane is approximated by the following 
equation:

d(i, a) =
|Ji · a − θi|

‖Ji‖
≈

|θi|

|Jii|
(ai = 0)

|Jiiai − θi|

|Jii|
(ai = 1).

⎧
⎪⎪⎨

⎪⎪⎩

(5) 

Here, this distance d(i, a) is a typical threshold for the norm of a 
perturbation needed to differentiate from a to another attractor 

a̅i whose ith component is opposite to a (Fig. 6c, inset):

a̅i
j =

1 (j = i ∧ ai = 0)
0 (j = i ∧ ai = 1)
aj (j ≠ i).

⎧
⎨

⎩
(6) 

If δ is larger than d(i, a), a can be differentiated into a̅ since a per
turbation can cross the ith hyperplane. Here, from approximation 
5, d(i, a) + d(i, a̅) ≈ 1 (Fig. 6c, inset). This means that when δ ⪅ 0.5, 
differentiations in both directions (0→ 1 and 1→ 0) can hardly 
be possible at the same time. In addition, on the right-hand side 
of Eq. 5, the formula is independent of aj(j ≠ i). Hence, approxima

tion 5 suggests that if the hyperplanes are orthogonalized, most of 
the differentiation paths which involve the ith gene, regardless of 
aj, tend to head in the same direction (either 0→ 1 or 1→ 0) 

(Fig. 6a). Since the expression state of each gene of the root attract

or (i.e. aroot
i ) is likely to be zero,d, e differentiation from aroot often 

occurs in the positive direction (0→ 1), but not often in the nega
tive direction (1→ 0). This local tendency also appears globally in 
the state space due to the fact that the approximation of d(i, a) is 
independent of aj(j ≠ i). In fact, in the optimized samples, more 

paths differentiate in the positive direction than in the negative 

direction (Fig. 6b). The distribution of the distances d0 from the at
tractor with ai = 0 to each hyperplane and d1 from the one with 
ai = 1 supports the hypothesis above (Fig. 6c). Thus, it is difficult 
to create a cycle because of such a bias in the direction of 
differentiation.

Structure of optimized GRNs
In the previous sections, we have seen that the key to the emer
gence of hierarchy and irreversibility is the diagonal terms’ (Jii) 
being much larger than the off-diagonal terms (Jij) in the inter
action matrix. Next, can we find any rules here for the relationship 
between the off-diagonal terms? In the following, we will analyze 
the structure between the off-diagonal terms in more detail.

After optimization under δ = 0.05, no clear structure is observed 
in GRNs, while under δ = 0.4, there spontaneously appears a struc
ture with a certain type of genes that receives interaction from 
other genes but gives little (less than a given threshold, 0.2) 
(Fig. 7a, b). We will refer to this type as “peripheral genes” (green 
in Fig. 7) and the others as “core genes” (gray in Fig. 7).

The fact that peripheral genes receive little interaction means 
that the hyperplanes corresponding to the core genes are almost 
parallel to the axes of peripheral genes (Fig. 7c). Assuming the 
slopes of the core gene hyperplanes relative to peripheral gene 
axis to be negligible, the boundaries that determine the expres
sion of core genes are independent of the expression of peripheral 
genes. Hence, the transition rule among the states with different 
expression levels of the core genes remains the same regardless 
of the peripheral genes. In short, peripheral genes play a role to 
duplicate the subspace spanned by core genes. To maximize fit
ness under such conditions, the hyperplane of a peripheral gene 
is arranged in a way that its expression state switch between pre
cursors (Figs. 7c, d and S6). In this way, the differentiation diagram 
of the core gene subspace (Fig. 7d) can be copied and connected in 
the direction of the peripheral gene (Fig. 7c). This strategic ap
proach holds the potential to ideally double the count of terminal
ly differentiated states associated with the original differentiation 
diagram, without considering the peripheral gene (Fig. S6). 
Importantly, this gene configuration can serve as a sufficient con
dition for constructing a hierarchical differentiation diagram cap
able of generating numerous terminally differentiated states.

Next, we investigate whether the described mechanism is uti
lized in the GA simulation. If this scenario is indeed employed, 
we would expect the peripheral genes to play a predominant 
role in differentiating between precursor states, while the core 
genes would primarily contribute to differentiation towards the 
terminally differentiated state. The reason behind this lies in the 
fact that peripheral genes play a key role in transitioning to the 
cloned subspace, but once core genes’ expression levels change, 
the traversal between subspaces along the axis of peripheral 
genes becomes difficult. This scenario finds support in the con
trasting preferences observed regarding the types of genes more 
likely to be utilized in differentiation between precursor states 
and differentiation towards the final state (Fig. 7e).

In addition, the number of peripheral genes and the depth of 
the diagram has a positive correlation (Fig. 7f). This is because 
the more peripheral genes there are, the more differentiation 
there is using those peripheral genes before using core genes to 
differentiate into the terminally differentiated state. To increase 
the number of terminally differentiated states, peripheral genes 
have such an effect that the system of the core network is used 
repeatedly.

The “core and peripheral” strategy is used in the majority of 
cases under δ = 0.4.f This fact suggests that the parameter sets 
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in such a strategy exists much more than those which use all the 
genes as core.

Evolutionary simulation under small number of 
perturbations
In this research, the underlying assumption is that the perturba
tions exhibit isotropic characteristics and densely cover the hy
persphere. However, in actual multicellular organisms, 
differentiation frequently emanates from regulated perturba
tions, exemplified by complex signaling mechanisms. A question 
here is how such regulated perturbations emerged during evolu
tion and how the geometrical properties in state space support 
this. To address this question, we conducted an evolutionary 
simulation using a small number of fixed random perturbations, 
i.e. N = 5. We hypothesized that these random perturbations 
would be utilized as regulated kicks for differentiation through 
the evolution of the GRN. Fig. S8 presents the results for the 
case of N = 5, showing that a hierarchical differentiation diagram 
with greater depth emerges around an intermediate range of δ, 
similar to the case of N = 1,000. We also observed that the ortho
gonalization of the hyperplanes occurs when the depth is large, 
as shown in the distribution of the distance between the intersec
tion and aroot tends to peak around 1.1, akin to the N = 1,000 scen
ario in Fig. 4e. These results indicate that the GRN evolved to 
utilize a small number of random perturbations as regulated 
kicks, and the geometric properties discussed in this study play 
a role in the emergence of such regulated perturbations.

Discussion
In this paper, we employed an abstract cell model to study the 
characteristics which arise as the differentiation diagrams evolve. 
Here, the cell state is regulated by GRNs, and differentiation is 

induced by perturbation of the gene expression, whose strength 
is represented as δ. We revealed that the emergence of hierarchy 
and irreversibility in differentiation diagrams depends on δ. Our 
findings are novel in that they demonstrate the inevitability of 
these properties through maximization of the number of termin
ally differentiated states. Specifically, under conditions of high 
gene expression noise, these properties will inevitably emerge. 
In fact, several researches reported that the magnitude of sto
chastic fluctuations in gene expression in living cells can reach 
levels comparable to the average expression level (39, 40). Thus, 
actual organisms might have evolved in an condition with such 
large fluctuations in expression. The outcomes of evolution under 
these highly fluctuating conditions may be effectively captured by 
our theoretical model.

Next, we further elucidated the mechanism behind the acqui
sition of hierarchy and irreversibility in differentiation diagrams. 
To investigate the mechanism, we presented a geometric ap
proach in high-dimensional state space. Specifically, we consid
ered the intersection of the hyperspheres centered on each 
attractor and the hyperplanes determined by the GRN. This 
helped us to determine whether perturbations could cross typical 
basin boundaries and cause a differentiation. The results showed 
that when fluctuations were high, the hyperplanes were orthog
onal to the axis for attractors not to cross the basin boundary by 
perturbations. This orthogonalization means that each gene gen
erally had stronger positive self-regulation compared to the mu
tual regulation with other genes. Indeed, several studies on key 
genes that regulate cell differentiation have indicated that the es
timated strength of positive self-regulation exceeds the strength 
of mutual regulation from other genes (41, 42). However, there is 
still a limited number of quantitative assessments on gene inter
actions in the context of GRN inference, requiring further exten
sive examination.

Fig. 6. a) Illustration of the mechanism how irreversibility emerges. Differentiations in positive direction are drawn in yellow, while negative are in cyan. 
The direction of differentiation in state space is biased positively with respect to each axis as the hyperplane is orthogonalized. b). The bias of the 
differentiation direction in high-fitness samples (top) and randomly sampled ones (bottom). In high-fitness samples, the direction of differentiation is 
positively biased. On the other hand, in the random samples, there is no significant bias. c). Distribution of d0 and d1 in high-fitness samples (top) and 
random samples (bottom). It indicates that in high-fitness samples, d0 has a peak in low value, while d1 has a peak in high value. On the other hand, in 
random samples, there is no significant difference in the distribution of d0 and d1. The inset is a schematic visualization of d0 and d1. It shows that when 
the hyperplanes are orthogonalized, the distribution of d0 and d1 should be biased (if d0 is small, d1 should be relatively large). Here, in b, c), the 
high-fitness sample has fitness = 15. We compared high-fitness and random samples with 5 precursor states, using 10,000 samples for each.
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We also observed that a “core & peripheral” structure emerged 
in the GRN after optimization under δ = 0.4. Here, the genes were 
spontaneously divided into two groups, referred to as core genes 
and peripheral genes, breaking the initial symmetry between 
genes. The system was typically structured to change the expres
sion of peripheral genes while transitioning between precursors, 
while the state of core genes was changed mainly in transition 
into a terminally differentiated state. This system uses the same 
genes in various transition events, and distinguishes cell types 
through different combinations of gene expression states. In fact, 
recent data from vertebrate development partially supports this 
idea of generating various stable cell types through combinatorial 

reuse of transcription factors (5). On the other hand, the process 
of cell fate determination has been majorly explained by the expres
sion of lineage-specific genes which are regulated by bistable 
switches (43–45). These switches control the expression of genes, 
and their hierarchical linkages are thought to lead the multistep 
process of cell fate determination (23, 46). However, recent re
searches suggested that the inferred structure of GRN controlling 
hematopoiesis is somehow densely interconnected rather than 
hierarchical (42, 47). Here, our model can provide a fresh perspec
tive and prediction on the GRN structure that generates hierarchical 
differentiation. Further research will be required to verify whether 
this novel mechanism can be found in actual organisms.

a

c

b

e f

d

Fig. 7. a) Typical examples of GRNs (top) and the corresponding differentiation diagram (bottom) evolved under δ = 0.05, 0.4. Under δ = 0.4, in this 
example, there are two genes (genes 1 and 5, drawn in green) which interact little with any other gene. Here, auto-regulations (Jii) are drawn in gray 
arrows. Mutual regulations (Jij) are drawn in blue if positive and in red if negative. The widths of the arrows for mutual regulations are proportional to 
J̃ij = Jij/Jii. J̃ij (i≠j) ≤ 0.1 are omitted for visual clarity. b) The distribution of the number of peripheral genes of networks with fitness =20. Here, peripheral 
genes are defined as those with an interaction value of 0.2 or less for any other gene (i.e. (J̃ij(j≠i) ≤ 0.2) for all j ≠ i). c) The difference between core and 
peripheral genes in a 3D example. The colors of the planes correspond to those of the nodes in the GRN. The differentiation diagram of this example is 
shown in the lower right corner. d) The state space, GRN, and differentiation diagram when the peripheral gene “3” in c) is excluded. By comparing it with 
c), it can be observed that the state space formed by core genes is being replicated by the peripheral gene. e) Distribution of the probability whether or not 
a single differentiation changes the expression state of each type of gene. In the case of differentiation to the precursor state, peripheral genes are slightly 
more likely to be involved. However, in the case to the terminally differentiated state, core genes are more likely to change, while peripheral genes change 
only rarely. f) The correlation between depth of the diagram and the number of peripheral genes. Note that all samples presented here has fitness =20. 
We used multicanonical Monte Carlo method to collect 10,000 samples for each δ.
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Considering the intrinsic stochastic nature of gene expression 
in actual organisms (48, 49), this study employed a model that 
considers fluctuations in gene expression as the primary driving 
force behind transitions between stable states. In fact, this con
cept does not contradict the evidence from various studies that 
have demonstrated the role of stochastic gene expression in hem
atopoietic differentiation (32, 50, 51) and the early developmental 
process of mice (52, 53). Since our model is not specific to any par
ticular genes, signals, or environmental conditions, its conclu
sions might be applied to a broad range of systems where 
stochastic state transitions can occur.

Materials and methods
Genetic algorithm
We executed a GA with a population size of 100. In each generation, 
the top 20 individuals were selected. From each of these 20 individ
uals, four mutated offspring were generated, resulting in a total of 
100 individuals for the next generation, including the original pa
rents. In the mutation process, random values are assigned to 
each element of J and θ with a probability of 0.05. The values J 
and θ, both post-mutation and initial, were assigned by sampling 
from a uniform distribution within the interval [−1, 1].

Multicanonical Markov chain Monte Carlo method
This approach facilitates the effective sampling of rare events, in
cluding low-energy states, while avoiding entrapment in local 
minima. For both advantages of an optimization algorithm (en
ergy minimization) and unbiased random sampling (energy distri
bution calculation), this method has been applied beyond the field 
of physics (38, 54, 55). Notably, this method has also found utility 
in the context of the evolution of GRN (56–58). In our study, we 
consider the Markov chain sampling process for (J, θ) states, repre
sented as (J, θ)→ (J′, θ′)→ · · ·. Here, the new candidate state (J′, θ′) 
is generated by mutating elements of the former state (J, θ), based 
on the same algorithm used in the GA. Specifically, we assigned a 
mutation probability of 0.05 for each element of J and θ. The val
ues for J and θ, both post-mutation and initial, were assigned by 
sampling from a uniform distribution within the interval [−1, 1]. 
The transition from (J, θ) to (J′, θ′) is determined by the transition 
probability function Πf (J,θ)→f (J′ ,θ′) = min (1, w(f (J′, θ′))/w(f (J, θ))), 
which decides whether to accept or reject the candidate state 
based on its fitness-dependent weight function w. If an sufficient 
amount of samples has been collected, the sampled fitness distri
bution Peq(f (J, θ)) follows the detailed balance condition 
Πf→f ′Peq(f (J, θ)) = Πf ′→f Peq(f ′(J′, θ′)). Apparently, this distribution 
Peq(f ) depends on the weight function w. In multicanonical sam
pling, the multicanonical weight w(f ) ∝ 1/Ω(f ) is used. This leads 
to a uniform marginal distribution h(f ) ∝ w(f )Ω(f ) = const., which 
indicates a sampled histogram of the fitness approaches asymp
totically to a uniform distribution. Hence, within the framework 
of multicanonical sampling, the Markov chain-generated se
quence of (J, θ) can be regarded as a random walk in the fitness 
space, enabling the efficient sampling of rare events (i.e. high- 
fitness states) without becoming trapped in local minima.

To calculate the multicanonical weight required for obtaining a 
flat histogram with respect to fitness, we employ the Wang– 
Landau algorithm (59) in advance. In this algorithm, it is necessary 
to predefine and discretize the range of the cost function f. In this 
study, we set the range to [1, 20] with a bin width of 
1. Furthermore, this algorithm includes an operation to assess 
the “flatness” of the obtained fitness histograms. Here, as the 

criterion for flatness, we considered the histogram to be “suffi
ciently flat” when the counts of all bins exceed 90% of the expected 
value for a perfectly flat histogram.

Notes
a The perturbations consisted of N fixed vectors, randomly selected 

from a hypersphere with a radius of δ. This particular set of random 
perturbations was uniformly applied to all attractors and remained 
unchanged throughout the simulations. We confirmed the results 
are qualitatively unchanged when we resampled N random pertur
bations individually for each attractor (Fig. S2).

b The differentiation diagram depicted in Fig. 2a cannot be directly 
captured through the geometry of hyperspheres and hyperplanes. 
This limitation arises because, while the geometry can determine 
whether perturbations can kick out the state from an attractor, it 
alone is insufficient to identify the specific attractor into which 
the state will settle after the perturbation. To identify the destin
ation attractor, it is essential to trace the trajectory of the state 
which is governed by the GRN.

c Despite H being a step function, it is possible to have exceptional 
cases where it does not converge to a lattice point. An example of 
such a case is when a vector field is formed in a direction facing 
across a hyperplane. However, these cases become less frequent 
with optimization in this study. For instance, when the fitness is 
15, such cases exist in <1% of cases for both δ = 0.05, 0.4.

d For instance, under δ = 0.4 and fitness being 15, the percentage of 
aroot

i that are not 0 is <0.01%.
e This is since we set xinit = 0. However, the results of the paper are 
not affected by this setup since the state space has reflection sym
metry about each axis.

f Refer to Fig. S7 for the cases of the presence of peripheral genes 
under δ = 0.05.

Acknowledgments
The authors thank Y. Uchida, S. Tsuru, and T. Kohsokabe for 
stimulating discussion.

Supplementary Material
Supplementary material is available at PNAS Nexus online.

Funding
This work was supported by RIKEN Junior Research Associate 
Program (to Y.T.N.), the Japan Society for Promotion of Science 
(JSPS) KAKENHI (17H06389, 22K21344 to C.F.; 22K15069, 22H05403 
to Y.H.), Japan Science and Technology Agency (JST) ERATO (JPMJ 
ER1902 to C.F.), and Cooperative Study Program of Exploratory 
Research Center on Life and Living Systems (ExCELLS; program 
nos. 20-102, 21-102 to N.S.).

Author Contributions
Y.T.N., Y.H., N.S., and C.F. designed the research. Y.T.N. per
formed the simulations. Y.T.N. analyzed the data. Y.T.N. wrote 
the paper. Y.T.N., Y.H., N.S., and C.F. revised the paper.

Preprints
A preprint of this article is published at [https://doi.org/10.1101/ 
2023.07.04.547517].

Nakamura et al. | 9

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad454#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad454#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad454#supplementary-data
https://doi.org/10.1101/2023.07.04.547517
https://doi.org/10.1101/2023.07.04.547517


Data Availability
The simulation codes used in this article are available in GitHub at 
[https://github.com/Nakayoshi98/cell_dfr_evo].

References
1 Wolpert L, Tickle C, Arias AM. 2019. Principles of development. 

Oxford: Oxford University Press.
2 Tusi BK, et al. 2018. Population snapshots predict early haemato

poietic and erythroid hierarchies. Nature. 555:54–60.
3 Wagner DE, et al. 2018. Single-cell mapping of gene expression 

landscapes and lineage in the zebrafish embryo. Science. 
360(6392):981–987.

4 Farrell JA, et al. 2018. Single-cell reconstruction of developmental 
trajectories during zebrafish embryogenesis. Science. 360(6392): 
eaar3131.

5 Briggs JA, et al. 2018. The dynamics of gene expression in verte
brate embryogenesis at single-cell resolution. Science. 360(6392): 
eaar5780.

6 Packer JS, et al. 2019. A lineage-resolved molecular atlas of C. ele
gans embryogenesis at single-cell resolution. Science. 365(6459): 
eaax1971.

7 Siebert S, et al. 2019. Stem cell differentiation trajectories in hy
dra resolved at single-cell resolution. Science. 365(6451): 
eaav9314.

8 Shahan R, et al. 2022. A single-cell Arabidopsis root atlas reveals 
developmental trajectories in wild-type and cell identity mu
tants. Dev Cell. 57:543–560.e9.

9 Waddington CH. 1957. The strategy of the genes. A discussion of some 
aspects of theoretical biology. With an appendix by H. Kacser. London: 
George Allen & Unwin.

10 Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem 
cells from mouse embryonic and adult fibroblast cultures by de

fined factors. Cell. 126:663–676.
11 Huang S, Ernberg I, Kauffman S. 2009. Cancer attractors: a sys

tems view of tumors from a gene network dynamics and devel
opmental perspective. Semin Cell Dev Biol. 20(7):869–876.

12 Li Q, et al. 2016. Dynamics inside the cancer cell attractor reveal 
cell heterogeneity, limits of stability, and escape. Proc Natl Acad 
Sci U S A. 113:2672–2677.

13 Davidson EH. 2006. Gene regulatory networks and the evolution 
of animal body plans. Science. 311(5762):796–800.

14 Swiers G, Patient R, Loose M. 2006. Genetic regulatory networks 
programming hematopoietic stem cells and erythroid lineage 
specification. Dev Biol. 294(2):525–540.

15 Kobayashi K, Maeda K, Tokuoka M, Mochizuki A, Satou Y. 2018. 
Controlling cell fate specification system by key genes deter
mined from network structure. iScience. 4:281–293.

16 Kauffman SA. 1969. Metabolic stability and epigenesis in ran
domly constructed genetic nets. J Theor Biol. 22(3):437–467.

17 Ribeiro AS, Kauffman SA. 2007. Noisy attractors and ergodic sets 
in models of gene regulatory networks. J Theor Biol. 247(4): 
743–755.

18 Shmulevich I, Kauffman SA, Aldana M. 2005. Eukaryotic cells are 
dynamically ordered or critical but not chaotic. Proc Natl Acad Sci 

U S A. 102(38):13439–13444.
19 Serra R, Villani M, Graudenzi A, Kauffman SA. 2007. Why a sim

ple model of genetic regulatory networks describes the distribu
tion of avalanches in gene expression data. J Theor Biol. 246(3): 
449–460.

20 Huang S, Guo Y-P, May G, Enver T. 2007. Bifurcation dynamics in 
lineage-commitment in bipotent progenitor cells. Dev Biol. 305(2): 
695–713.

21 Huang S. 2009. Reprogramming cell fates: reconciling rarity with 

robustness. BioEssays. 31(5):546–560.
22 Cinquin O, Demongeot J. 2002. Positive and negative feedback: 

striking a balance between necessary antagonists. J Theor Biol. 

216:229–241.
23 Graham TGW, Tabei SMA, Dinner AR, Rebay I. 2010. Modeling bi

stable cell-fate choices in the Drosophila eye: qualitative and 

quantitative perspectives. Development. 137:2265–2278.
24 Artyomov MN, Meissner A, Chakraborty AK. 2010. A model for 

genetic and epigenetic regulatory networks identifies rare path

ways for transcription factor induced pluripotency. PLoS Comput 

Biol. 6:e1000785.
25 Krumsiek J, Marr C, Schroeder T, Theis FJ. 2011. Hierarchical dif

ferentiation of myeloid progenitors is encoded in the transcrip

tion factor network. PLoS One. 6:e22649.
26 Furusawa C, Kaneko K. 2003. Robust development as a conse

quence of generated positional information. J Theor Biol. 224(4): 

413–435.
27 Suzuki N, Furusawa C, Kaneko K. 2011. Oscillatory protein ex

pression dynamics endows stem cells with robust differentiation 

potential. PLoS One. 6:e27232.
28 Matsushita Y, Kaneko K. 2020. Homeorhesis in Waddington’s 

landscape by epigenetic feedback regulation. Phys Rev Res. 2(2): 

023083.
29 Zhu R, del Rio-Salgado JM, Garcia-Ojalvo J, Elowitz MB. 2022. 

Synthetic multistability in mammalian cells. Science. 375: 

eabg9765.
30 Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV. 

2005. Stochastic gene expression in a lentiviral positive-feedback 

loop: HIV-1 tat fluctuations drive phenotypic diversity. Cell. 122: 

169–182.
31 Wernet MF, et al. 2006. Stochastic spineless expression creates 

the retinal mosaic for colour vision. Nature. 440(7081):174–180.
32 Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S. 2008. 

Transcriptome-wide noise controls lineage choice in mamma

lian progenitor cells. Nature. 453(7194):544–547.

33 Huang S. 2009. Non-genetic heterogeneity of cells in develop

ment: more than just noise. Development. 136:3853–3862.
34 Richard A, et al. 2016. Single-cell-based analysis highlights a 

surge in cell-to-cell molecular variability preceding irreversible 

commitment in a differentiation process. PLoS Biol. 14(12):1–35.
35 Mohammed H, et al. 2017. Single-cell landscape of transcription

al heterogeneity and cell fate decisions during mouse early gas

trulation. Cell Rep. 20(5):1215–1228.
36 Desai RV. 2021. A dna repair pathway can regulate transcription

al noise to promote cell fate transitions. Science. 373:eabc6506.
37 Buttitta LA, Edgar BA. 2007. Mechanisms controlling cell cycle 

exit upon terminal differentiation. Curr Opin Cell Biol. 19:697–704.
38 Iba Y, Saito N, Kitajima A. 2014. Multicanonical MCMC for sam

pling rare events: an illustrative review. Ann Inst Stat Math. 

66(3):611–645.
39 Elowitz MB, Levine AJ, Siggia ED, Swain PS. 2002. Stochastic gene 

expression in a single cell. Science. 297(5584):1183–1186.
40 Holmes WR, et al. 2017. Gene expression noise enhances robust 

organization of the early mammalian blastocyst. PLoS Comput 

Biol. 13(1):1–23.
41 Jang S, et al. 2017. Dynamics of embryonic stem cell differenti

ation inferred from single-cell transcriptomics show a series of 

transitions through discrete cell states. eLife. 6:e20487.
42 Handzlik JE, Manu. 2022. Data-driven modeling predicts gene 

regulatory network dynamics during the differentiation of multi

potential hematopoietic progenitors. PLoS Comput Biol. 18(1):1–31.

10 | PNAS Nexus, 2024, Vol. 3, No. 1

https://github.com/Nakayoshi98/cell_dfr_evo


43 Orkin SH. 2000. Diversification of haematopoietic stem cells to 

specific lineages. Nat Rev Genet. 1(1):57–64.

44 Laslo P, et al. 2006. Multilineage transcriptional priming and de

termination of alternate hematopoietic cell fates. Cell. 126(4): 

755–766.
45 Wang L, et al. 2009. Bistable switches control memory and plasti

city in cellular differentiation. Proc Natl Acad Sci U S A. 106(16): 

6638–6643.
46 Zhou JX, Brusch L, Huang S. 2011. Predicting pancreas cell fate 

decisions and reprogramming with a hierarchical multi- 

attractor model. PLoS One. 6(3):1–16.
47 Novershtern N, et al. 2011. Densely interconnected transcription

al circuits control cell states in human hematopoiesis. Cell. 

144(2):296–309.
48 Thattai M, van Oudenaarden A. 2001. Intrinsic noise in gene 

regulatory networks. Proc Natl Acad Sci U S A. 98(15):8614–8619.
49 Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van 

Oudenaarden A. 2002. Regulation of noise in the expression of 

a single gene. Nat Genet. 31(1):69–73.
50 Hume DA. 2000. Probability in transcriptional regulation and its 

implications for leukocyte differentiation and inducible gene ex

pression. Blood. 96:2323–2328.

51 Wheat JC, et al. 2020. Single-molecule imaging of transcription 
dynamics in somatic stem cells. Nature. 583(7816):431–436.

52 Dietrich J-E, Hiiragi T. 2007. Stochastic patterning in the mouse 
pre-implantation embryo. Development. 134:4219–4231.

53 Eldar A, Elowitz MB. 2010. Functional roles for noise in genetic 
circuits. Nature. 467(7312):167–173.

54 Saito N, Iba Y, Hukushima K. 2010. Multicanonical sampling of 
rare events in random matrices. Phys Rev E. 82:031142.

55 Kitajima A, Kikuchi M. 2015. Numerous but rare: an exploration 
of magic squares. PLoS One. 10(5):1–7.

56 Saito N, Kikuchi M. 2013. Robustness leads close to the edge of 
chaos in coupled map networks: toward the understanding of 
biological networks. New J Phys. 15:053037.

57 Nagata S, Kikuchi M. 2020. Emergence of cooperative bistability 
and robustness of gene regulatory networks. PLoS Comput Biol. 
16(6):1–24.

58 Kaneko T, Kikuchi M. 2022. Evolution enhances mutational ro
bustness and suppresses the emergence of a new phenotype: a 
new computational approach for studying evolution. PLoS 
Comput Biol. 18(1):1–20.

59 Wang F, Landau DP. 2001. Efficient, multiple-range random walk 
algorithm to calculate the density of states. Phys Rev Lett. 86: 
2050–2053.

Nakamura et al. | 11


	Evolution of hierarchy and irreversibility in theoretical cell differentiation model
	Introduction
	Model
	Cell state regulation
	Differentiation by perturbation on expression

	Results
	Acquisition of hierarchy
	Acquisition of irreversibility
	Structure of optimized GRNs
	Evolutionary simulation under small number of perturbations

	Discussion
	Materials and methods
	Genetic algorithm
	Multicanonical Markov chain Monte Carlo method

	Notes
	Acknowledgments
	Supplementary Material
	Funding
	Author Contributions
	Preprints
	Data Availability
	References

	Untitled

