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Review

Introduction

To date, 15 members of the Galectin family have been identi-
fied in vertebrates. Interestingly, Galectin-like genes were identi-
fied from early in evolution in invertebrate, protists and even in 
fish and pig viruses. Among the multiple animal lectin families 
identified so far, Galectins are distinctly characterized by a con-
served Carbohydrate Recognition Domain (CRD), a common 
affinity for β-galactosides, no divalent cation requirement for 
binding, a shared primary structure motif, and a unique struc-
tural fold.1

The 15 mammalian Galectins share a highly conserved CRD 
that appeared during evolution concommitantly with the emer-
gence of multi-cellular organisms.2 Structurally, the CRD is a 
globular region with a jellyroll topology containing 2 β sheets 
of 5 and 6 strands, with a ligand-binding groove possessing key 
features that define its specificity. On the basis of their molecu-
lar architecture, Galectins have been classified into three main 
types: (i) “prototype” monomeric Galectins, comprising a single 
polypeptide chain that is able to dimerize (Galectin-1, -2, -5, -7, 
-10, -11, -13 -14, and -15); (ii) “tandem repeat-type” Galectins, 
composed of a single polypeptide chain presenting two CRDs 
connected by a linker peptide (Galectin-4, -6, -8, -9, and -12); 
and (iii) the “chimera-type” Galectin-3, that consists of one 

C-terminal CRD linked to an N-terminal domain.3 Strikingly, 
the CRD domain has been reported to be involved in protein-
protein interactions. Galectin-3 is also involved in protein-pro-
tein interactions.4

Although Galectins share common affinity for galactose, 
important differences in glycan binding preferences have been 
reported between the different members of the family.5,6 Indeed, 
they recognize basic β-galactosides while having selective pref-
erences for complex glycan structures depending on the glycan 
structural architecture (either branched, repeated and substituted 
glycans).5 Thus, they are capable of recognizing various and com-
plex carbohydrates structures generated during the chain elonga-
tion process. As a consequence, each Galectin displays exquisite 
glycan binding properties.5

These proteins exhibit a dynamic distribution. They bind to 
different ligands located in cytoplasmic and nuclear compart-
ments, or even in extracellular spaces. Multiple functions have 
been proposed for these proteins such as modulation of signal-
ing pathways, regulation of RNA splicing, intracellular control of 
apoptotic signaling, control of the endocytic machinery, and traf-
ficking.4,7 Their secretion pathway remains poorly understood as 
these proteins lack signal sequences for transport into the endo-
plasmic reticulum (ER) and are not glycosylated, indicating that 
they do not pass through the ER-Golgi network.1,8

In contrast to transmembrane CLRs (C-type lectin recep-
tors) and siglecs (sialic acid-binding Ig superfamily lectins), 
Galectins are soluble proteins that function in the extracellular 
and intracellular compartments by interacting with a myriad 
of membrane-associated cell surface glycosylated ligands.9 This 
perimembranous localization has suggested important roles for 
Galectins as modulators of cell adhesion, migration and signal-
ing. Each member of the Galectin family has a unique distribu-
tion pattern. While some Galectins (e.g., Galectin-1 and -3) are 
widely expressed in different tissues and cells of various species, 
other family members have a more restricted tissue localization 
and compartmentalization: e.g., Galectin-2 is restricted to diges-
tive epithelia10 and Galectin-7 is preferentially found in stratified 
epithelia such as the epidermis.11

In the present review, we discuss the roles of Galectins in 
several biological processes of the epithelial barrier. We notably 
focus on cell polarization, adhesion, migration and proliferation 
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Galectins are a family of animal lectins comprising 15 mem-
bers in vertebrates. These proteins are involved in many bio-
logical processes including epithelial homeostasis and tumor 
progression by displaying intracellular and extracellular activi-
ties. Hence Galectins can be found either in the cytoplasm or 
the nucleus, associated with membranes or in the extracellu-
lar matrix. Current studies aim at understanding the roles of 
Galectins in cell-cell and cell-matrix adhesion, cellular polarity 
and motility. This review discusses recent progress in defining 
the specificities and mechanisms of action of Galectins as cell 
regulators in epithelial cells. Physiological, cellular and molecu-
lar aspects of Galectin specificities will be treated successively.
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Galectins and Epithelia

Epithelia are robust tissues that support the structure of 
embryos and organs and serve as effective barriers against envi-
ronmental insults and pathogens. An important property of epi-
thelia is therefore their capacity to assemble into a physical barrier 
separating tissues from their environment. Hence, epithelia form 
sheets of cells organized either in a monolayer as in the gut or 
in multilayers as in the epidermis. These vital functions require 
tight association between cells through the assembly of junctions 
such as desmosomes, adherens and tight junctions that mechani-
cally stabilize the tissue. Beyond this crucial function, many cell 
junctions are also involved in the regulation of cell polarity, dif-
ferentiation, proliferation and motility.

The epidermis is a highly specialized epithelium that has 
evolved to protect the organism from dehydration and to provide 
a barrier against harmful environmental influences, such as UV, 
temperature and microbes. Indeed, the function of the epidermal 
barrier is ensured by controlled cell-cell and cell-basal lamina 
adhesion sites. The epidermis is an excellent model system in cell 
biology to study the dynamics of cell junctions and (re-) polariza-
tion during tissue regeneration. Cell-cell and cell-matrix contacts 
are normally involved in the modulation of cellular polarity and 
motility during tissue formation. Furthermore loss of adhesive 
function is implicated in several disease states including tumor 
progression, inflammation and cystic development in branching 
epithelia such as kidney tubules.12 Participation of Galectins in 
cell migration during wound healing has been reported. Indeed, 
this model has been used to study the role of Galectin-7 in 
migration during skin repair as discussed later.13 Extracellular 
Galectin-1 and Galectin-3 bind molecules involved in cell-adhe-
sion such as integrins, laminin and fibronectin.14

Interestingly, interactions between Galectin-3 and N-cadherin 
has recently been described in a mouse mammary tumor cell 
line.15 Indeed, Galectin-3 has been shown to accumulate at cell-
cell junctions with N-cadherin and the raft marker ganglioside 
GM1, suggesting that Galectin-3 might regulate the dynamics of 
N-cadherin and raft components at cell-cell junctions and play a 
complementary role to p120-catenin in the regulation of junction 
stability.15

Galectins and Epithelial Homeostasis

Several Galectins have been proposed to be involved in the 
regulation of cell proliferation or cell death in response to stress, 
such as for instance tissue injury.

The role of Galectin-3 in tissue homeostasis has been doc-
umented in diverse cell types. How Galectin-3 regulates cell 
proliferation is not clearly demonstrated. However, it has been 
shown that it indirectly modulates cell cycle progression, by 
repressing cyclin-E and -A and inducing cyclin-D1 in BT549 
breast cancer cells.16 For the induction of cycline-D1, Galectin-3 
has been shown to enhance cyclin-D1 promoter activity in the 
same human breast epithelial cell line.17 Moreover, Galectin-3 
has an anti-apoptotic activity that has been well documented in 
various cell types,7 possibly through its interaction with the anti-
apoptotic protein Bcl-2, as observed in vitro.18 Finally, Galectin-3 
binds to the oncogene protein Kras and increases its activation.19

In the brain, it has been demonstrated that Galectin-3 
and IGF-1 (Insulin Growth factor-1) are upregulated and co-
expressed in a subset of activated/proliferating microglial cells 
after a stroke.20 In Galectin-3 null mutant mice, disruption of 
the Galectin-3 gene significantly alters microglia activation, it 

Figure 1. Physiological functions of galectins in epithelial cells.
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induces a 4-fold decrease in microglia proliferation and a 2-fold 
increase in the number of apoptotic neurons.20 These results sug-
gest that Galectin-3 is required for resident microglia activation 
and proliferation in response to ischemic injury. In folic acid-
induced acute kidney injury, utilization of a Galectin-3 inhibi-
tor such as modified citrus pectin (MCP) reduced renal cell 
proliferation but did not affect apoptosis,21 again suggesting that 
Galectin-3 induces cell proliferation in response to tissue injury.

In response to intestinal epithelial wound healing in vitro, 
binding of Galectin-2 and Galectin-4 to epithelial cells has 
been shown to promote cell proliferation by increasing cyclin B1 
expression.22 On the other hand, in the same study, the authors 
showed that exogenously added Galectin-1 inhibited cell cycling 
and significantly induced apoptosis of epithelial cells.22

The response to UVB (Ultra Violet B) irradiation has been 
studied in the skin of Galectin-7 null mutant mice.13 Indeed, the 
authors showed that after sunburn, the apoptotic response is pre-
maturely triggered and lasts for a longer period of time in the 
absence of Galectin-7. A burst of proliferation is also observed in 
Galectin-7 null mutant mice whereas the number of dividing cells 
increased moderately and regularly in wild type mice. Moreover, 
hyperproliferation has also been described after epidermal tail 
injury in Galectin-7 null mutant mice.13 Thus, Galectin-7 plays a 
critical role in the epidermal response to environmental injury by 
modulating keratinocyte apoptosis and proliferation.

Galectins and Cell Migration  
During Tissue Repair

Collective cell migration is the most widely accepted model 
of cell migration during wound healing, and by analogy dur-
ing tumor invasion or metastasis (note that conversely, isolated 
cell movement after epithelial to mesenchymal transition is also 
debated).23 This concerted displacement is tightly regulated by 
dynamic cell-cell contacts and tissue cohesion allowing the dis-
turbed tissue to move as a whole. Indeed, either physical and bio-
chemical - i.e., intracellular signaling - constraints are reported 
to be crucial for such cell movement in different biological condi-
tions including development, tissue remodeling and repair but 
also during cancer progression.24,25 Cells of endothelial or epi-
thelial origin have been mostly studied to dissect collective cell 
migration both in vivo and in vitro. Galectins can contribute to 
cell migration after tissue injury, mainly by participating in cell 
adhesion or cell-cell contacts.

A recent study in rat corneal epithelial cells highlighted a role 
of Galectin-3 in adhesion and migration.26 Indeed, exogenous 
Galectin-3 promotes adhesion of corneal epithelial cells onto the 
collagen IV substrate by directly binding to collagen IV in vitro. 
It also enhances wound healing in corneal explants.26 In mam-
mary carcinoma cell lines, a lattice of Galectin-3 and GlcNAc-
transferase V modified proteins might stabilize focal adhesions 
and promote signaling, disassembly and translocation at these 
membrane structures.27 This action is mostly mediated by activa-
tion of α5β1 integrin. At cell–cell junctions of these epithelial 
tumor cells, Galectin-3 modulates the mobility of N-cadherin 

and raft localization of signaling proteins.15 Moreover, this lectin 
is localized in lipid raft domains of membrane ruffles, in lamel-
lipodia in epithelial cells28 and in stimulated dendritic cells where 
it regulates cell motility.28,29 Another study has also shown a role 
for Galectin-8 as a modulator of cell adhesion through the bind-
ing of integrins.30 Galectins can influence cell adhesion by direct 
contact to integrins or by modulating adhesion protein expres-
sion. In squamous cell carcinoma, Galectin-1 was shown to pro-
mote collective cell migration by enhancing the expression of 
α2β5 integrins.31

As mentioned above, Galectin-7 is expressed predominantly 
in stratified epithelia and particularly in the skin. Early stud-
ies suggested that Galectin-7 could intervene in the process of 
wound-healing: Galectin-7 is overexpressed in wounded cor-
nea,32 and the addition of recombinant protein accelerates the 
speed of healing in cell cultures.33

Thanks to the characterization of Galectin-7-deficient mice, 
it was later shown that Galectin-7 is required for the mainte-
nance of epidermal homeostasis and during wound healing. 
These results are in accordance with several lines of evidence 
suggesting that Galectin-7 might play a role in epithelial tissue 
response to environmental stimuli. Altered polarization of cor-
tactin in Galectin-7-defective leader keratinocytes was associ-
ated with delayed wound closure.13 Furthermore, careful electron 
microscopy examination revealed weakened adherens junctions 
correlated with E-cadherin mis-association. Interestingly, simi-
lar observations were made after epidermal overexpression of 
Galectin-7 in transgenic mice. A correlation was also reported 
between abnormal expression levels of Galectin-7 in basal kera-
tinocytes and delayed wound healing (Gendronneau, et al., sub-
mitted). These observations suggest that an optimal amount of 
Galectin-7 is required for proper wound healing.

Cellular Dynamics of Galectins

Cellular distribution of Galectins
As mentioned above, Galectins are found in different cell 

compartments, either intracellularly in the cytoplasm or the 
nucleus or both, associated with mitochondrial membranes and 
even in vesicles, or extracellularly, either at the membrane or asso-
ciated with the matrix. These localizations vary widely from one 
cell/tissue type to the other and from one state of cell activation/
differentiation to the other.

The intracellular pool of Galectins is mostly detected in the 
cytoplasm, but a substantial fraction is also observed in the 
nucleus. Localization of Galectin-3 in the plasma membrane, in 
the cytoplasm but also within the nucleus has been documented 
by immunofluorescent staining and biochemical approaches.34 
Indeed targeting signals that are recognized by importins for 
nuclear localization and exportin-1 for nuclear export may regu-
late the distribution of Galectins between these compartments. 
Intriguingly, in these compartments the intracellular binding 
partners of Galectins are mostly unglycosylated with the excep-
tion of cytokeratins.4 During cell differentiation of human 
colonic epithelia, cancer progression in the colon, in the prostate 
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or in thyroid cancer, the cytosolic vs. nuclear distribution varies 
dramatically,35 suggesting that shuttle mechanisms are involved 
in carrying lectin into and out of the nucleus. Several Galectins 
are found in the nucleus but the mechanism of nuclear shuttling 
has been evidenced only for Galectin-3. Since interacting partners 
and underlying pathways for nuclear trafficking of Galectin-3 
have been discussed elsewhere in more detail,36 we will focus here 
on Galectins in the secretory pathway.

Galectins are secreted by an unconventional secretory 
pathway

The various members of the Galectin family lack signal 
sequences and are collectively classified among the proteins 
secreted by the so-called non classical pathway of secretion which 
has remained poorly documented.37-39 Galectins are synthesized 
on free ribosomes and exhibit no signal sequence. Thus, they 
bypass the classical biosynthetic ER-Golgi pathway. However, 
they are detected in carrier vesicles and endosomal compart-
ments, and can be secreted into the extracellular medium. Yet, 
how are Galectins secreted across the plasma membrane and do 
they join the classical secretion pathway? Are these two events 
interdependent? Indeed in intestinal and renal epithelial cells, 
Galectin-3 release could be blocked at an incubation temperature 
of 20°C and by microtubule disruption with nocodazole.40 This 
indicates that intracellular trafficking events might be linked to 
the apical secretion of Galectin-3.

It has been described that Galectins could translocate directly 
across the membrane bilayer. According to data published by 
Lukyanov et al., Galectin-3 can spontaneously penetrate the lipid 
bilayer of liposomes by direct interaction with membrane lipids.41 
Translocation of Galectin-1 on the other hand requires a molecu-
lar machinery composed of integral and peripheral membrane 
proteins.42 The hypothesis of the involvement of ABC trans-
porters is unlikely, since Lindstedt and coworkers have shown 
that treatment of MDCK cells with ABC transporter inhibitors, 
methylamine or verapamil, does not affect Galectin-3 secretion.43 
Galectin-1 was secreted by non-classical secretion.43 This mecha-
nism does not depend on the multidrug resistance homolog ABC 
transporter Ste6p.

Another possible mechanism for Galectin export from the 
cytosol to the extracellular matrix is ectocytosis by membrane 
blebbing. In mouse muscle cells, Galectin-1 is packed into vesi-
cles, that “bud off” at the plasma membrane.44,45 This phenom-
enon has also been reported for fusion proteins of Galectin-3 
in COS cells. Furthermore, this study demonstrated that the 
N-terminal domain of Galectin-3 is sufficient to direct mem-
brane translocation.46

In addition, several studies reported the presence of Galectins 
in exosomes, i.e., internal vesicles of multivesicular bodies that 
are released upon exocytic fusion with the plasma membrane.47 
In dendritic cells, a proteomic approach showed that Galectin-3 
is a component of purified exosomes.48 Analyses performed in 
nasopharyngeal carcinoma cells also linked Galectin-9 exocyto-
sis to exosomes.49 These data suggest that the exosomal pathway 
could provide an alternative route for Galectin secretion into the 
extracellular milieu. However a precise trafficking mechanism 

of lectins through this particular pathway still remains to be 
determined.

However, the secretion of Galectins must probably be a 
highly regulated process, since the same Galectin can initiate 
different cellular responses at distinct locations. For example, 
cytosolic Galectin-3 of T cells blocks cell death, while extracel-
lular Galectin-3 induces the death of T cells and thymocytes.50 
The translocation of Galectin-3 to the mitochondrial mem-
branes depends on the presence of synexin, and knockdown of 
this phospholipid-binding protein blocks the translocation pro-
cess and abolishes Galectin-3-mediated anti-apoptotic activi-
ties.51 Second, only a relatively small proportion of Galectins 
is secreted into the extracellular milieu.8 This regulation may 
change during cell differentiation. Galectin-3 is secreted pre-
dominantly from the apical cell surface of polarized epithelial 
MDCK cells, with relatively low efficiency.40,52 However, when 
MDCK cell cysts are grown within 3D-collagen gels, larger 
amounts of Galectin-3 are secreted from the basolateral side.53 
The varying quantities of Galectin-3 secreted from the apical 
or the basolateral domain under these defined exogenous con-
ditions suggest that distinct trafficking mechanisms might be 
involved for Galectin secretion.

Interestingly, a recent study showed that arrest of caspase-1 
activation led to inhibition of unconventional secretion of various 
cytoplasmic proteins including Galectins-1 and -3 in keratino-
cytes. The authors proposed the constitution of a hetero-oligo-
meric complex of caspase-1, an unidentified caspase-1 substrate 
and other unconventional secretory proteins.54 Remarkably, 
among the proteins secreted in a caspase-1-dependent pathway, 
several are involved in inflammation, cytoprotection and tissue 
repair. The authors underscored the striking observation that 
the activation of caspase-1 by various environmental stresses 
appeared to be coupled to the release of several proteins including 
Galectins that are involved in cell and tissue repair. This observa-
tion is consistent with the predominant expression of caspase-1 in 
inflammatory and epithelial cells,55 that are principally involved 
in cellular defense mechanisms. The interplay between extracel-
lular and intracellular pools of Galectins may well add some com-
plexity to the functions of Galectins.

Furthermore, several caspase-1 substrates have been identi-
fied, of which some are involved in the regulation of the cytoskel-
eton and its dynamics.56 Possible candidates are implicated in the 
dynamics of microtubules or of the actin cytoskeleton. Others 
may participate in exocytosis and membrane protein mobility 
or in the regulation of membrane composition. All these pro-
teins may be involved in vesicular trafficking and may thus be 
components of a complex machinery that mediates unconven-
tional secretion. Indeed further studies are needed to uncover the 
molecular and cellular mechanisms of this secretion pathway.

Galectins as regulators of protein and vesicular transport
To make the picture even more complex, intracellu-

lar Galectins can directly modulate protein transport per se. 
Epithelial cells carry out vectorial transport that requires polar-
ized distribution of transporters and receptors to apical or baso-
lateral membrane domains. Numerous studies have indicated 
that both O- and N-glycans attached to the extracellular domains 
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of membrane proteins are important for the apical location of 
these proteins.57 There is now some evidence of the importance 
of glycoprotein clustering in membrane microdomains and of 
putative roles of glycan-binding proteins in apical distribution 
of N-glycosylated proteins. Three Galectins, Galectin-3, -4 and 
-9, have been described as key molecular components of polar-
ized molecular transport to the apical compartment of epithelial 
cells.58-61 Delacour et al. demonstrated that Galectin-3 interacts 
with newly synthesized gp114 and p75NTR and thus sorts apical 
cargos within the biosynthetic pathway of these receptors. It thus 
seems that Galectins, even when added exogenously to the cell, 
can modulate forward transport and sorting of newly synthesized 
glycoproteins to the apical cell surface.62 Galectin-4 interacts 
with sulphatides in lipid raft microdomains and modulates the 
transport pathway to the apical cell surface of the HT29 entero-
cytic cell line.58 In kidney epithelial cells, Galectin-9 can interfere 
with apicobasal polarity by binding the Forssman glycosphingo-
lipid.60 Interestingly, in renal epithelial cells Galectin-9 seems to 
be involved in the transport of the non-raft sialomucin endolyn.61 
Furthermore, Galectin-3,63 -464 and -960 have been identified in 
rab11-positive recycling endosomes.65 Thus, recycling endosomes 
are candidate compartments for the assembly of internalized 
Galectins with newly synthesized cargo molecules.

The extracellular pool of Galectins is observed on some but 
not all cell types, and even could be observed on very specific 
domains. For instance, Galectin-3 is associated with lipid raft 
microdomains at the plasma membranes, and particularly on 
focal adhesions in migrating cells. Galectins are proposed to form 
a lattice with various membrane glycoconjugates among which 
integrins are the most studied. For example, Galectin-1 binds 
to α7β1,66 Galectin-3 to α1β1,67 and Galectin-8 to α3β1 and 
α6β168 as well as to αM74. Galectin-3 promotes the raft-depen-
dent endocytosis of integrins and also localizes to clathrin-inde-
pendent carriers (CLICs) possibly playing a role in raft-dependent 
endocytosis.69,70 Galectin-3 has also been reported to be endocy-
tosed in recycling endosomes, and associated binding to caveo-
lin-1 and flotillin-1 has been documented.71 In non-polarized 
breast cancer cells, Galectin-3 is endocytosed via a caveolae-like, 
raft-dependent pathway.69 Here, endocytosis of Galectin-3 is cou-
pled to integrin-uptake and plays a role in cell-matrix interaction. 
In migrating epithelial cells, Galectin-3 is even secreted either at 
cell-cell contacts or at the lamellipodial front of the leader cell 
during re-epithelialization of corneal wounds.28,33

Once outside the cell, Galectins also bind glycoproteins in 
the extracellular matrix, such as laminin, fibronectin, hensin and 
elastin.14,72 Altogether Galectins (Galectin-1, -3, -4, -8, -9) have 
been localized to lipid raft microdomains and shown to interact 
with GM1 ganglioside and other glycosphingolipids.29,58,64,73-77

To date, however, and in spite of several studies, there is no 
clear information about the precise dynamics of Galectins in the 
intracellular compartment. This may depend on the cell type 
used, as well as the differentiation level of the cells. A detailed 
study of the dynamics in real-time of Galectins in a specific epi-
thelial cell type is required, as well as global view of the intra- and 
extra-cellular pathway followed by Galectins; these elements are 
still sadly lacking.

Galectins and Signal Transduction

By their binding to various cellular ligands, Galectins are also 
involved in several signal transduction pathways, thus modulat-
ing multiple biological functions.

Extracellular Galectins interact with glycosylated receptors 
or integrins. Integrins possess many N-glycosylation sites, and 
several Galectins have been shown to behave as binding partners 
of integrins through their CRDs, thus suggesting that Galectin–
integrin interactions can affect integrin-mediated signal trans-
duction under certain circumstances.78 Levy et al. showed that 
cross-linking of integrins to Galectin-8 can activate integrin-
mediated signaling cascades such as the extracellular signal-reg-
ulated kinase (ERK) 1/2, phosphatidylinositol 3-kinase (PI3K), 
Akt, p70 S6 kinase, and consequently trigger a distinct pattern of 
cytoskeletal organization compared with fibronectin.79 Moreover, 
a study has recently demonstrated a role for Galectin-1 in lung 
cancer metastasis through its interplay with integrin α6β4 
and the Notch1/Jagged2 signaling pathways.80 More generally, 
Galectins-1, -4, -8 and -9 interact with glycolipids and may be 
involved in the organization of the lipid raft signaling plateform.

Focal adhesions are complex signaling domains where inter-
actions of Galectins with various receptors regulate integrin-
dependent signaling to Rho GTPases, and other downstream 
effectors. Furthermore, Galectin-8 has recently been involved in 
cytoskeleton remodeling through Rho signaling.81 Interestingly 
Galectin-3 promotes fibronectin-dependent activation of α5β1 
integrin and focal adhesion signaling, microfilament remodel-
ing and fibronectin fibrillogenesis. In tumor cells, extracellular 
Galectin-3 and intracellular tyrosine-phosphorylated caveolin-1 
(pY14Cav) have been shown to be required, but not necessarily 
sufficient, for activation of Src kinases, resulting in the stabili-
zation of focal adhesion components and promotes focal adhe-
sion signaling and disassembly.27 Moreover, Galectins -1, -2, -3 
and -8 regulate cell adhesion. It is noteworthy that recruitment 
of integrins to the lattice by Galectin-3, but not Galectin-1 or 
Galectin-8, stimulates lamellipodia formation and promotes cell 
adhesion and migration in epithelial cells.77

In 2004, extracellular Galectin-3 was shown to be able to 
bind to the carbohydrate structures / motifs of EGF and TGF-β 
receptors, that are modified by the specific Golgi enzyme, β1,6-
N-acetylglucosaminyltransferase V (GnT-V or Mgat5).82 Soon 
after, it was demonstrated that Galectin-3 is a key regulator in 
the Wnt/β-catenin signaling pathway.83 Successive studies later 
highlighted the role of Galectin-3 in this pathway in several can-
cers of epithelial origin such as colorectal cancer,84,85 pancreatic 
and gastric cancer cells,86,87 breast cancer and tongue cancer.88-90

It should be noted that intracellular Galectins also participate 
in several signaling cascades and can consequently induce dif-
ferent biological processes such as cell proliferation, senescence, 
survival, or death, depending on the cellular context. Hence, 
Galectin-1 was the first Galectin reported to directly bind to 
H-Ras (G12V), which is the constitutively active GTP-bound 
H-Ras mutant and regulate Ras signaling as an escort pro-
tein.91 This observation has been reinforced by studies showing 
that Galectin-1 is mostly involved in Ras activation92 and AP-1 
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pathway.93 Galectin-3 was later shown to take part in the JAK/
STAT pathway94,95 and in the K-ras, Raf, EGFR and ERK path-
ways in breast carcinoma and pancreatic cancer cells.19,96,97

Moreover, Galectins have been involved in TNF-related sig-
naling98-100 and in signaling of the immune system notably in 
TCR and NF-κB signaling. These phenomena have been well 
reviewed and we shall not dwell on them.9,78

Concluding Remarks and Futures Directions: 
Galectin Therapeutic Potential

As Galectins are involved in many biological processes such 
as cellular communication, cellular adhesion, inflammation, 
regulation of immune homeostasis, differentiation and apoptosis, 
they represent a potential target to modulate pathological pro-
cesses.101 Nevertheless, since Galectins can bind multiple ligands 
with varying specificity, their use as therapeutic agent has to be 
critically evaluated in view of putative adverse effects.

Increasing evidence suggests roles played by Galectins in mod-
ulating immune response and inflammation. Thus, Galectins 
appear to be a potential target in immune diseases. Recently, they 
were shown to possess significant immuno-regulatory activities, 
such as in cell differentiation, tissue organization, and regula-
tion of immune homeostasis. For instance, Galectin-3 is involved 
in many aspects of asthma,102 such as eosinophil recruitment, 
airway remodeling, development of a Th2 phenotype as well as 
increased expression of inflammatory mediators.103,104 This role 
in inflammation suggests Galectin-3 as a potential anti-inflam-
matory target.

Another member of the Galectin family, Galectin-9, has been 
shown to promote allograft tolerance in mice when combined 
with rapamycin.105 Indeed, this recent study shows that com-
bined treatment of Galectin-9 and rapamycin promotes allograft 
tolerance that is associated with reduced Th1 and Th2 responses. 
Addition of rapamycin is required for tolerance as rapamycin 
inhibits pro-inflammatory effects of Galectin-9 on dendritic 
cells.

Most examples of Galectins related to pathological situa-
tions have mainly come from cancers where Galectins seem to 
play an important role in different steps of tumor formation 
and progression such as metastasis, immune escape or angiogen-
esis.72 Therefore, several strategies had been developed to impair 
Galectin functions in cancer progression.106 Galectin-7 is differ-
entially expressed in different types of cancer but its functions in 
cancer initiation and progression still remains to be investigated. 
For example, patients with gastric cancer revealed significantly 
low expression levels of Galectin-7 in malignant tissues compared 
with matched normal tissues, suggesting a tumor suppressor 
function of Galectin-7.107 However, it has been shown that high 
levels of Galectin-7 correlate with aggressive subtypes of breast 

cancer,108 indicating that Galectin-7 had a bivalent function in 
cancer cells. Further studies are necessary to investigate whether 
Galectin-7 could be a valid target to stop tumor progression. 
Inhibitors of Galectins, and in particular inhibitors of Galectin-7, 
have been developed109,110 their use could help to elucidate the role 
of Galectin-7 in cancer.

The use of peptides inhibiting Galectin-3 has been shown to 
suppress rolling and stable adhesion of carcinoma cells to endo-
thelial cells in vitro suggesting a potent anti-metastatic treat-
ment.111 Moreover, nude mice fed with modified citrus pectin, a 
Galectin-3 inhibitor, show significantly reduced tumor growth of 
human breast carcinoma cell lines, angiogenesis, and spontane-
ous metastasis in vivo,112 however MCP specificity for Galectin-3 
needs to be confirmed.

Members of the Galectin family (Galectins-1, -3, -9) 
are expressed by endothelial cells and provide a target for 
tumor-type independent treatment strategies.113 For instance, 
Rabinovich and colleagues demonstrated that Galectin-1 is 
involved in a compensatory angiogenic pathway that limits the 
efficiency of anti-angiogenic treatments.114 In anti-VEGF-A 
(Vascular Endothelial Growth Factor-A) antibodies treatment, 
endothelial cells associated with refractory tumors exhibit a 
differential N-glycan expression profile compared with endo-
thelial cells associated with sensitive tumors. This particular 
glycophenotype increases the affinity of Galectin-1 for the 
VEGFR2 receptor on endothelial cells and activates the VEGF-
like signaling in a VEGF-independent manner, thus leading to 
resistance to anti-VEFG-A treatment. Thijssen and collegues 
showed that Galectin-1 in the endothelium can be targeted in 
vivo by the angiogenesis inhibitor anginex for therapeutic appli-
cations.115 A combination of the anti-VEGF-A treatment with 
anginex or anti-Galectin-1 treatment should be considered to 
improve anti-angiogenic treatment. Injection of the Galectin-1 
disaccharide inhibitor has also been shown to promote immune 
responses and thus increase survival of tumor-challenged mice 
when combined with vaccine immunotherapy.116 In conclusion, 
Galectin-1 is a good target in cancer therapy as it plays a role in 
angiogenesis and tumor immunity.

As Galectins exhibit a broad range of biological functions, 
various expression patterns and subcellular localizations, they 
represent a potential target in multiple pathologies.
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