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Abstract
Electrical stimulation (EStim) has been shown to promote bone healing and regeneration both in animal experiments and 
clinical treatments. Therefore, incorporating EStim into promising new bone tissue engineering (BTE) therapies is a logi-
cal next step. The goal of current BTE research is to develop combinations of cells, scaffolds, and chemical and physical 
stimuli that optimize treatment outcomes. Recent studies demonstrating EStim’s positive osteogenic effects at the cellular 
and molecular level provide intriguing clues to the underlying mechanisms by which it promotes bone healing. In this review, 
we discuss results of recent in vitro and in vivo research focused on using EStim to promote bone healing and regeneration 
and consider possible strategies for its application to improve outcomes in BTE treatments. Technical aspects of exposing 
cells and tissues to EStim in in vitro and in vivo model systems are also discussed.
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Introduction

Bone is one of the few tissues in mammals, that when frac-
tured “regenerates” on its own. However, in cases where 
large volumes of bone are missing, like in severe injury, 
surgical extirpation of large amounts of infected bone or 
tumors, and congenital skeletal abnormalities, these regen-
erative capabilities are overwhelmed and complex and costly 
treatments must be employed to close the defect. Among 
conventional treatment options, bone autografts are consid-
ered to be the gold standard. However, in spite of the suc-
cess they enjoy, autografts are associated with drawbacks, 
like donor site morbidity, limited availability in overly large 
defects, and the risk of infection (reviewed in [1]), which 
continue to fuel the search for better, alternative treatments. 
Bone tissue engineering (BTE) has recently been introduced 
as an alternative to conventional treatments, for large non-
healing bone defects, and holds great promise for promoting 
bone healing and regeneration without the associated draw-
backs [2]. BTE approaches, in many ways, simulate bone 
autografts, in that they fill the defect with bone-forming 

stem/progenitor cells, scaffolds that restore missing bone 
volume, and growth factors that control cell–cell and 
cell–scaffold interactions [3]. Success of BTE approaches, in 
clinical settings, depends largely on the choice of cells, scaf-
fold material, and signaling stimuli added to the cell–scaf-
fold mix, and/or present in the microenvironment of the 
healing defect. While pre-clinical and clinical BTE treat-
ments have demonstrated encouraging early outcomes [4, 
5], the logistics associated with harvesting, isolating and 
amplifying the cells, and the time required to do so, are not 
optimal and continue to stimulate the search for strategies to 
manipulate/fine-tune the type, quantity, and composition of 
stem cells, scaffolds, and stimuli (reviewed in [3]).

For decades, electrical stimulation (EStim) has been stud-
ied and used successfully in clinical practice to stimulate 
bone healing (reviewed in [6]). While the detailed mecha-
nisms by which EStim promotes healing are poorly under-
stood, several recently published in vitro studies suggest 
that EStim’s pro-healing effect is due to its influence on the 
behavior and/or function of bone-forming stem cells, such 
as migration [7, 8], proliferation [9], differentiation [10, 11], 
mineralization [12], extracellular matrix deposition [13], and 
attachment to scaffold materials [14]. Importantly, all these 
cell behaviors/functions that are central to healing could 
potentially be used to optimize outcomes in BTE treatments. 
In this review, we provide an overview of different methods 
and results using EStim to treat cells, scaffolds, and tissues 
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in in vitro and in vivo model systems, with an eye toward 
its potential use in BTE treatments. We discuss mechanisms 
by which EStim acts at cellular and molecular levels and 
discuss limitations and technical aspects of delivering EStim 
both in experimental and clinical settings. This knowledge 
could assist in the development of future clinical strategies 
for combining EStim and BTE treatments.

Applying EStim in bone tissue engineering 
treatments

EStim could potentially be added in clinical BTE treatments 
either ex vivo, when the cell–scaffold construct is prepared, 
or in vivo, after the cell–scaffold construct is delivered into 
the bone defect.

EStim’s effects on cell function

Previous in vitro experiments that exposed cells and/or 
scaffolds to EStim, demonstrated its ability to influence cell 
functions associated with enhanced bone healing [7–14]. 
These experiments were conducted on a variety of differ-
ent cell types; bone marrow-derived mesenchymal stem 

cells (BM-MSC), from human and animal origin [10, 11, 
15–25]; adipose-derived mesenchymal stem cells (AT-MSC) 
[11, 20, 26–30], mouse osteoblast-like cells [31–33] and 
more recently, human dental pulp stem cells (DPSC) [34]. 
The above cell types are commonly studied for use in BTE 
applications. Based on these findings, one can speculate that 
treating cell–scaffold constructs with EStim ex vivo, prior 
to placing the mix in a bone defect, would greatly improve 
outcomes in BTE in treatments. How DC EStim affects these 
cells is summarized in the following paragraphs and Fig. 1.

Cell proliferation and apoptosis

The number of stem/progenitor cells that can be obtained 
for use in BTE construct preparation is often limited by 
the amount of donor material that can be harvested, usu-
ally from bone marrow or adipose tissue. While possible, 
in vitro expansion of donor cells, to reach adequate numbers 
for therapeutic doses, is not an optimal solution, as it is time 
consuming and can negatively impact stem cell “quality” 
[35]. Although EStim has mainly been shown to increase the 
rate of cell proliferation, contrary findings exist, that show 
EStim can also decrease, or have no effect on cell prolifera-
tion (for general review refer to [36]). Our own experience 
showed that daily application of 50–150 mV/mm DC EStim 

Fig. 1   Cellular mechanisms and functions activated by EStim
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has no effect on rat BM-MSC and AT-MSC proliferation, 
when cultured in 2D or 3D (with scaffolds) [11, 29, 37]. That 
said, others have shown that longer application of DC EStim 
enhanced rat BM-MSC [22] and human BM-MSC prolifera-
tion. In addition, using EStim, in the form of a degenerating 
sine wave, which deteriorates over time (degenerate wave—
DW), Griffin et al. were able to show an even greater effect 
on cell proliferation [16]. When treating osteoblasts in static 
medium conditions, Kumar et al. describes DC EStim as 
having no or negative effects on cell proliferation [38]. Oth-
ers have shown positive effects of DC EStim on prolifera-
tion in 3D in vitro studies with fetal human or neonatal rat 
osteoblasts [39–41].

The effect of EStim on cell apoptosis, which may accom-
pany enhanced cell proliferation [42] is unclear, as some 
studies have reported enhanced effect, while others describe 
a decrease or no effect at all (for more details see [36]). In 
summary, EStim’s effect on cell proliferation and apoptosis 
appears to be heavily dependent on the type and origin of 
the cells, the stimulation regimen and culture conditions [16, 
43].

Cell differentiation

EStim has been shown to enhance MSC osteogenic dif-
ferentiation in a number of studies. We and others have 
demonstrated that DC EStim stimulates osteogenic differ-
entiation in rat BM-MSC and AT-MSC, cultured in osteo-
genic medium in both 2D and 3D (with scaffold) culture 
conditions [10, 11, 16, 29, 37, 44, 45]. Interestingly, recent 
studies showed that applying EStim, in the early stages of 
MSC osteogenic differentiation (first 7 days), is sufficient to 
induce a strong, sustained, and long-lasting pro-osteogenic 
effect [10, 45]. As it relates to BTE treatments, this approach 
would benefit the logistics of treatment, making it possi-
ble to pretreat cells + scaffold with EStim, ex vivo, prior to 
placing them in a bone defect. In theory, by triggering this 
sustained pro-osteogenic effect, EStim-pretreatment, would 
promote healing in the defect long after discontinuing its 
delivery. We are currently testing this hypothesis in ongoing 
in vitro and in vivo experiments in our laboratories.

Cell alignment

Cell alignment plays a critical role in embryonic develop-
ment, growth, and regeneration [46], as it provides specific 
hierarchy of cells’ physical and mechanical properties and 
biological functions at the tissue level (reviewed in details 
in [46]. As it relates to BTE treatments, cell alignment is 
critical in cell–cell and cell–scaffold interactions during 
osteogenic differentiation and mineralization. DC EStim 
has been shown to significantly affect cell alignment. Sev-
eral in vitro 2D-culture studies report DC EStim causing 

MSC and osteoblasts to undergo retraction and elongation, 
ultimately resulting in the realignment of the long cellular 
axis perpendicular to the electric field [30, 44, 47, 48]. In 
in vitro 3D‐culture studies, Yang et al. describes EStim as 
“promoting synergy” between cells and scaffold material 
[48]. Finally, it was shown that not only cell alignment, but 
also cell division plane, could be controlled by externally 
applied EStim [49, 50], theoretically making it possible to 
control the direction of cellular expansion.

Cell migration

Cell migration is a behavior that is essential in embryonic 
development, and in tissue growth and repair, and in BTE 
applications can play an important role in cell infiltration 
into scaffolds and integration with host tissues. When 
exposed to externally applied EStim, similar in magnitude 
to endogenous electrical fields, many types of cells migrate 
in specific direction, and the speed and direction of cell 
migration are voltage dependent (reviewed in details [51, 
52]). The movement of cells along an electric field gradi-
ent, or electrotaxis, appears to be dependent on species and 
cell subtype differences. For example, cells of osteosarcoma 
cell line, SAOS, migrate in the opposite direction as rat cal-
varia osteoblasts [53, 54]. Interestingly, similar cells from 
different origin were shown to have different electro-kinetic 
properties. For example, AT-MSC display different traveling 
wave velocity and rotational speed compared to BM-MSC 
[55, 56].

Cell attachment/adhesion

Cell attachment/adhesion is known to affect cell behavior 
and function. For example, osteogenic stem cell differen-
tiation was shown to be positively influenced by strong 
adhesion to surfaces with rough microtopographies [57]. 
3D scaffold material, upon which cells are seeded in tissue 
engineering applications, provides anchorage for cells and 
are said to create a microenvironment which promote cell 
differentiation, metabolic activity, and cell–cell signaling 
[58]. The positive effect of EStim on cell–scaffold attach-
ment has been demonstrated and described by several groups 
in several different in vitro experimental protocols [39, 59, 
60]. In the rapidly growing field of smart biomaterials, scaf-
folds, made of electrically active biomaterials, are specifi-
cally designed to deliver EStim to cells, to promote tissue 
formation (reviewed in details in [61]).

In summary, at this point, the incorporation of EStim 
into BTE treatments, is mostly at the in vitro stage of devel-
opment, and can potentially make it possible to fine-tune 
cell alignment, cell division, differentiation, migration, and 
attachment to scaffolds. These in vitro studies are laying the 
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groundwork for subsequent in vivo studies that can be used 
to optimize outcomes in future BTE clinical studies.

EStim‑induced cell response—mechanisms

Exposing cells to exogenous EStim generates a response 
called electrocoupling, caused by high resistance of the 
plasma membrane, which prevents the penetration of elec-
tric stimuli, independent of the cytoplasm conductive capac-
ity [62]. One of the possible electrocoupling mechanisms 
involves asymmetric redistribution/diffusion of electrically 
charged cell membrane receptors in response to electric 
fields, which further activates numerous downstream sign-
aling cascades. Another possible mode of action is related 
to the cell membrane depolarization due to direct activation 
of voltage-gated Ca2+ channels, which leads to increase in 
intracellular calcium ion concentration, a cellular response 
consistently reported after electric stimuli. These and other 
mechanisms are discussed with more details below.

Signal transduction pathways Electrical signals are 
sensed and converted into biochemical cues by multi-
ple pathways within cells, resulting in various biological 
responses. The activation of the MAPK (mitogen-activated 
protein kinase) cascades represents a major signal transduc-
tion pathway, which regulates specific mRNAs transcription 
as consequence of external stimuli [63]. This leads to the 
activation of extracellular signal-regulated kinase ERK1/2 
and 5, JNK and p38MAPK, that consecutively intervenes 
in important cell activities, such as proliferation, differen-
tiation, apoptosis and others, depending on the type of cell 
and stimuli [64, 65]. Fast and sustained phosphorylation of 
extracellular signal-regulated kinase (ERK), p38 mitogen-
activated kinase (MAPK), Src and Akt, was demonstrated by 
Zhao et al. in cells migrating under the influence of electrical 
fields [66, 67]. EStim was shown to induce direction and 
movement of adult stromal cells through the activation of 
PI3K and ROCK signaling pathways [59].

Ca2+ transients Increase in intracellular Ca2+ is one of 
the prompt effects of EStim on cellular response. Calcium 
ions are important cellular mediators, which play a role in 
many important vital activities such as proliferation, differ-
entiation, and apoptosis [68]. Intracellular Ca2+ could be 
increased via two essential events; by the passage of extra-
cellular Ca2+ into intracellular space through plasma mem-
brane ion channels, or by activation of specialized receptor/
channels on the surface of the endoplasmic reticulum (ER), 
which release Ca2+ from internal stores in the ER [69]. Cal-
cium oscillations can increase the efficiency and specificity 
of gene expression, which guides the direction of cell dif-
ferentiation [70, 71]. EStim was shown to facilitate differ-
entiation of hMSC by changing Ca2+ oscillation patterns to 
patterns similar to those seen in osteoblasts [72]. Of note, 

EStim exposure can directly stimulate L-type voltage-gated 
Ca2+ channels (VGCCs) in the plasma membrane [73] that 
can elicit many regulatory responses through the enzymatic 
action of the Ca2+/calmodulin-dependent nitric oxide syn-
thases [74].

Mechanotransduction—cytoskeletal reorganization and 
actin distribution Mechanotransduction is the conversion 
of external mechanical stimuli into intracellular electri-
cal or chemical signals [75]. The inverse effect of mecha-
notransduction is the transformation of electrical stimuli into 
mechanical activity that causes tension in the cytoskeleton 
due to reorganization of the cytoskeletal filaments and actin 
redistribution. Changes in the actin structure could occur 
as consequence of interactions between plasma membrane 
and electrical stimuli [44]. Hereof, EStim has been shown to 
cause either direct effects on the cytoskeleton, or intervene 
on cellular processes regulated by the cytoskeleton [76].

Surface receptor redistribution Most likely, DC EStim is 
restrained by cellular plasma membrane, which holds high 
electrical resistance, and events take place at the cell surface 
rather than penetrating inside the cell. As a result, most of 
the biochemical signal transduction cascades in response to 
EStim, arise due to the redistribution of charged cell surface 
receptors (CSRs) at the external space of cell membrane 
[77]. It is reported that the exposure to 100–3000 mV/mm of 
external EStim results in redistribution membrane proteins 
and lipids on external site of the cell due to induction of rela-
tive electrophoretic movement these components on the cell 
exterior [78]. Specifically, epidermal growth factor receptor 
(EGFR) was shown to be up-regulated by the application of 
low levels of EStim, which also induces EGFR redistribu-
tion and accumulation at the cathode side of the cell [79]. In 
addition to promoting an asymmetric distribution of EGFR, 
colocalization of membrane lipids and second-messenger 
signaling molecule ERK ½ could also occur due to influence 
of small amounts of EStim, resulting on the triggering of 
MAPK signaling cascade [49, 79].

ATP synthesis Direct current EStim, ranging from 10 
to 1000 µA, is known to stimulate membrane-bound ATP 
synthesis [80]. This is thought to be due to EStim guiding 
migrating protons to reach the mitochondrial membrane-
bound H1-ATPases, to generate ATP. This is supported by 
the observation of high levels of released ATP measured in 
electrically stimulated cells [81]. The relationship between 
ATP synthesis and actin cytoskeleton is one of the intrigu-
ing mechanisms to explain how cells sense electrical fields. 
It has been well documented that intracellular ATP is con-
sumed for the conversion of monomeric G-actin to poly-
meric F-actin [82] and that EStim-induced ATP depletion 
is implicated in the reorganization of actin cytoskeleton in 
electrically stimulated hMSC [76].

Heat shock proteins It has been generally hypothesized 
that cells’ response to EStim (especially at levels higher 
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that those occurring naturally) could follow physiological 
stress response and function through activation of stress 
heat shock proteins [83]. The involvement of heat shock 
proteins (hsp 27 and hsp 70) in the upregulation of some 
of the transcription factors was previously reported in 
hMSC osteogenic differentiation [84].

Reactive oxygen species Participating in crucial signal-
ing pathways, reactive oxygen species (ROS) is consid-
ered another important mechanism involved in stem cell 
response to EStim [85]. Controlled induction of ROS at 
physiologic levels can benefit interactions of other sign-
aling molecules influencing differentiation. Numerous 
studies have demonstrated that MAPK pathways and the 
subsequent signaling cascades of ERK1,2, JHK, and p38 
are activated by moderate levels of ROS [86]. Prolifera-
tion and differentiation of MSC were shown to be medi-
ated by a mild rise in hypoxia-induced ROS [87–89].

Lipid rafts Recent research has shown that in addition 
to proteins, lipids in the cellular membrane also partici-
pate in the response to externally applied EStim. It was 
shown that due to externally applied EStim, plasma mem-
brane glycolipids could redistribute and congregate into 
nanodomain structures, known as lipid rafts [90]. Acting 
as the initial sensor of electric fields, these nanodomain 
structures polarize, coalesce, and segregate membrane 
proteins, which in consequence trigger intracellular sign-
aling events to guide cell migration [91].

All these cellular mechanisms are involved in a com-
plex and finely orchestrated network of signaling and 
responses. Biological processes are programmed as a 
chain reaction starting from a cellular activity, which nor-
mally leads to implications in the tissues they compose. 
Therefore, it follows that external interferences in the cell 
response, promoted by the application of EStim, influence 
not only cells but also tissues as well.

Effects of EStim on bone healing

Bone healing is a complex and well-orchestrated process, 
both in time and space, requiring coordinated function 
of different cell types and systems [92]. EStim’s ability 
to promote bone healing has been demonstrated both in 
animal experiments and clinical settings (reviewed in [6]). 
When EStim is applied to a bone defect, alone or in com-
bination with BTE constructs, its effect on all the resident 
cells needs to be considered. In the following lines we 
discuss how EStim, when added to BTE treatment might 
influence key bone healing parameters, like osteogenesis, 
vascularization, and inflammation.

Osteogenesis

The positive effect of EStim on osteogenesis is well doc-
umented in numerous in vitro and in vivo studies, and in 
clinical applications (reviewed in [6]). In our own in vivo 
studies, we recently showed that DC EStim, when applied in 
combination with BTE treatment [29] resulted in significant 
new bone formation, by stimulating MSC proliferation and 
differentiation. The underlying mechanism suggested for this 
effect is that EStim enhances bone healing by stimulating 
the calcium–calmodulin pathway secondary to the upregula-
tion of bone morphogenetic proteins, transforming growth 
factor-β and other cytokines (reviewed in [93]; [29, 94]).

Chondrogenesis

Endochondral ossification plays a pivotal role in bone heal-
ing. During this process, progenitor cells differentiate into 
chondrocytes which later undergo maturation and miner-
alization, finally resulting in new bone tissue (reviewed 
in [95]). Whereas the positive effects of EStim on endo-
chondral ossification have been shown in previous studies 
[29, 96, 97], there few studies focused on analyzing the 
effects EStim has on endochondral ossification and MSC 
chondrogenic differentiation (reviewed in [98]). In our own 
in vitro studies, we were not able to detect a positive effect 
of direct current EStim on rat MSC chondrogenic differen-
tiation (unpublished data). However, others have reported 
in vitro studies using pulsed EStim that showed the oppo-
site (reviewed in [99]. One study showed that EStim alone 
stimulated MSC chondrogenic differentiation [23], and oth-
ers showed that only applying an electrical field together 
with a chemical inducer (transforming growth factor-β3) 
induced MSC chondrogenic differentiation [100, 101]. A 
new interesting approach that applies nanosecond pulse 
EStim treatment to potentiate MSC chondrogenic activity 
was recently reported and showed encouraging preliminary 
results both in vitro and in vivo [99, 102]. Although these 
recent examples suggest that EStim has a positive effect on 
chondrogenesis, additional studies are needed to confirm this 
effect and to sort out the underlying mechanisms.

Vascularization

New vessel formation plays a pivotal role in all forms of 
healing and regeneration and BTE is no exception [103]. In 
the case of defects that require large volumes of cells and 
scaffold material, once the construct is placed in the defect, 
its innermost part does not receive adequate vascularization 
causing ischemia and cell death in the graft. A number of 
studies have been performed that test different methods of 
stimulating new vessel formation into the tissue engineered 
constructs (reviewed in [104]). Several studies, in dermal 
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wounds, have demonstrated EStim’s ability to stimulate new 
vessel ingrowth from pre-existing blood vessels in adjacent 
tissues into ischemic wounds [105–109]. DC EStim was 
shown to promote important angiogenic responses of vas-
cular endothelial cells and selectively regulate production 
of growth factors and cytokines important in angiogenesis 
through a feedback loop mediated by VEGF receptors [110, 
111]. In our own studies, in a rat femur large defect model, 
adding EStim to BTE-treated bone defects caused a signifi-
cant increase in new vessel formation into the defect [29].

Inflammation

It is well known that bidirectional cross talk between 
immune cells and bone cells is crucial for bone remodeling 
and repair [112]. The close interaction between the immune 
system and bone healing is well documented. In the emerg-
ing research field of osteoimmunology, the early inflam-
matory phase of healing is a promising target for immu-
nomodulatory approaches to enhance bone healing [113]. 
Even though the role of immune cells and cytokines in bone 
healing has been recognized for 20 years now, and EStim 
has been used to treat bone fractures even longer, little is 
known about the effects of EStim on immune cells during 
bone healing.

The immune system plays a crucial role as the host’s first 
responder following injury, in which case macrophages are 
rapidly recruited to the site of injury initiating the inflam-
matory response [114]. Whereas early studies showed that 
DC EStim does not alter macrophage phenotype [115], 
more recent studies describe EStim causing macrophages 
and monocytes to migrate away from the stimuli. Moreo-
ver, EStim was shown to significantly enhance macrophage 
phagocytic uptake and to selectively modulate cytokine 
production [116]. EStim’s effect of upregulating osteogenic 
gene (Spp2 and Bmp2) transcription in macrophages could 
help explain its role in stimulating osteogenesis [89]. In vivo, 
low-voltage EStim was shown to modify macrophage 
response by changing the M1 to M2 macrophage ratio [97]. 
Overall, these findings suggest that EStim can exert a signifi-
cant effect on these macrophage sub-populations. The goal 
of ongoing studies is to use EStim to fine-tune the response 
of macrophages, and other immune cells from pro-inflam-
mation to pro-regenerative in BTE treatments.

EStim in bone tissue engineering 
treatments—current status and limitations

There are a growing number of studies in the literature that 
focus on combining EStim and BTE treatments [117]. In 
addition to studying how best to use EStim to manipulate 
cell behavior, it is also important to consider technical 

aspects of delivering EStim to cell + scaffold constructs and/
or tissues in clinical treatments. EStim devices for use in 
treating ex vivo cells prior to transplantation will have to be 
developed, while commercially available DC bone growth 
stimulators (OsteoGen® from Biomet EBI and Zimmer 
direct current bone growth stimulator, reviewed in [118, 
119]) could be adapted for treating transplanted BTE con-
structs in clinical settings.

Applying EStim in vitro

In most in vitro applications, cells grown in 2-D or 3-D 
culture can be treated with specific regimens of EStim in 
purpose-built chambers. As these chambers are not commer-
cially available, different laboratories have developed their 
own to satisfy their specific needs. Below, we describe a few 
of the most commonly used setups (Fig. 2).

Metallic electrode EStim chamber

Perhaps the simplest in design and to use, are chambers 
in which EStim is delivered directly to cells in culture by 
means of metallic electrodes. Different types of metals are 
used for the electrodes, including stainless steel [120], cop-
per [121], platinum [122, 123], silver/silver chloride [124], 
iridium oxide, and titanium nitride [125]. Although platinum 
is inferior in stiffness to other metals and is the most expen-
sive, it is nevertheless preferred over other metals since it 
is less prone to corrosion [126]. Generally, one end of the 
electrodes is bent to fit into a cell culture well where they are 
submerged into culture medium containing the cells, and the 
other end of the electrodes is connected to a power supply.

Standard 6-, 12- or 24-well cell culture plates are used, 
and the electrodes are attached to removable lid(s) or 
inserted directly into the well(s) [37]. This type of setup has 
the advantage that multiple samples (wells) can be stimu-
lated simultaneous, thus increasing reproducibility. The volt-
age range deliverable with this setup is generally from tens 
to hundreds of mV/mm. For example, in one of our studies 
using this setup, we exposed rat MSC to 100 mV/mm of 
DC EStim for 1 h/day, for 7–21 days, and demonstrated that 
this EStim regimen improved mineralization and expression 
of osteogenic marker genes [10, 11, 37]. In another study, 
Wang et al. showed that 200 mV/mm of DC EStim for 4 h 
enhanced migration, proliferation, and differentiation of rat 
BM-MSC [22].

The main advantage of this type of EStim chamber 
is that it is a simple design that does not require special 
equipment/knowledge to build and use. A detailed video 
demonstration of how to build and use this type of EStim 
chamber is available at [122]. A drawback associated with 
this type of setup is the possible generation of cytotoxic 
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faradic products on the electrode surface, which limits the 
duration and intensity of EStim that can be applied to the 
cells [37, 122]. The addition of a peristaltic pump to the 
culture plate(s) that regularly exchanges culture medium 
would avoid these limitations [38].

Salt bridge EStim chamber

Another commonly used EStim chamber delivers EStim 
to cells through salt bridges submerged in the culture 
media. The salt bridges separate the culture medium, 
and cells from the metallic electrodes thus preventing 
them from being exposed to cytotoxic electrochemical 
byproducts and pH changes [127]. Salt bridges contain 
a saturated solution of inert salt, usually NaClO4, KCl, 
or KNO3. These act as electrochemical cells that work 
like batteries, transferring electric current to ionic cur-
rent through the salt bridges via redox reactions [128]. 
The voltage required using salt bridge EStim chambers is 
relatively large, around 70 V, to overcome the resistance 
of the bridges [124].

While the salt bridge setup/method has been widely 
used to study the effects of EStim on cultured cells, it has 
a number of limitations: (1) small working area limiting 
the number of cells that can be studied in a single set-
ting; (2) limited EStim exposure time due to the concen-
tration and heat differences between the bridge contents 
and the media; (3) technically complicated to set up and 
run experiments, making sterility and reproducibility a 
challenge; (4) setup differs significantly from metallic 
electrode stimulators used in vivo and in clinical settings; 
therefore, the correlation and consequently interpretation 
between in vitro and in vivo study results are problematic.

Microfluidic chip EStim chambers

In the EStim chamber designs described above, the cells are 
often exposed to toxic electrolysis products and the elec-
trical field generated is not homogenous. These limitations 
overcame in microfluidic chip EStim chambers [129–132]. 
Microfluidic EStim chambers consist of (1) an inlet for 
loading cells, (2) a main fluidic channel, (3) a constriction 
microchannel/microchip, (4) a pair of stimulation electrodes 
for applying electrical stimulation and reference electrodes 
for measuring extracellular field potential simultaneously, 
and (5) an outlet reservoir for collection of cells after EStim 
[133]. To use this chamber, cells are first loaded through the 
inlet, then, by controlling the driving pressure of the flow 
and using a constriction channel, cells are trapped on the 
surface of measurement electrodes, where they are exposed 
to EStim. After stimulation, cells are driven to an outlet 
where continuous measurements are performed. The small 
cross section of the chamber limits the amount of electrical 
current applied and reduces the cytotoxic products that can 
harm the cells. Some limitations of microfluidic chip EStim 
chambers are that their small size requires that they be spe-
cially manufactured, the setup procedure prior to running an 
experiment is complicated and their small size results in low 
cell yield and poor cell product recovery [132].

While the EStim chambers described above are relatively 
well suited to the needs of researchers for conducting in vitro 
experiments to study the effects of EStim on different cell/
scaffold combinations, their use for preparing large biomi-
metic BTE constructs for transplantation in vivo or ex vivo 
in a clinical setting is not adequate. For this, special EStim 
chambers will have to be developed/adapted to accommo-
date clinical requirements such as scaling up (size adapta-
tion), on line monitoring, standardization, sterilization, and 

Fig. 2   EStim setups commonly used to stimulate cells in  vitro. a 
Metallic electrode EStim chamber delivers EStim to cells via metal-
lic electrodes submerged directly in culture medium in standard cell 
culture plates. b Salt bridge EStim chamber delivers EStim to cells 

through salt bridges submerged in culture medium. c Microfluidic 
EStim chamber, uses micropumps to move cells in and out of con-
stricted channels where they are trapped and exposed to EStim
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cost considerations. To grow and cultivate engineered bone 
constructs long term, biomimetic perfusion bioreactors are 
under development that take into consideration flow of cul-
ture medium and fluid-shear stress, position specific oxygen 
gradients, mechanical, and physical stimulations [134–136]. 
These adaptations could allow direct comparisons between 
in vitro studies, move the above mentioned exciting new lab-
oratory findings closer to in vivo applications and closer to 
the ultimate goal of clinical application in BTE treatments.

Clinical EStim bone treatment devices

There are a number of commercially available clinical 
EStim devices that could be used/adapted to treat BTE 
constructs with EStim, before they are loaded into bone 
defects. Devices used for EStim bone treatment in clinical 
settings, can be categorized into external and internal stimu-
lators, that deliver EStim via an external field or percutane-
ously, and via internal surgically implanted electrodes. The 
external stimulators deliver capacitive coupling (CC) and 
inductive coupling (Pulsed ElectroMagnetic Field—PEMF) 
EStim, and the internal stimulators deliver direct current 
(DC) EStim [137, 138] (Fig. 3).

Capacitive coupling stimulators are small, lightweight 
devices, which use an external power source. Despite the 
obvious advantages of not having to be surgically implanted, 
and ease of use, disadvantages include, patients must change 
batteries daily, skin irritation, and patient non-compliance 
are common problems [138]. There are only a few clinical 
studies available that support the effectiveness of CC devices 
(reviewed in [6]).

Inductive coupling or pulsed electromagnetic field 
(PEMF): The electrodes of these devices can be placed 
under casting material or used through a cast. These devices 
create low-level electromagnetic signals, which after reach-
ing the fracture site, are converted into electric currents and 
are said to mimic the body’s normal physiologic processes. 

The primary advantage of PEMF bone stimulators is their 
noninvasive application; however, drawbacks include, the 
heavy weight of these devices, difficulty assessing treatment 
dosage, and patient non-compliance [139].

DC electrical stimulators have the benefits of providing 
constant and uniform current delivery, the EStim is focused 
at the bone defect, and elimination of patient non-compli-
ance. Surgical implantation consists of placing a cathode 
at the fracture site and an anode in the nearby subcutane-
ous tissue, that deliver electric current flow between them. 
The electrodes are connected to a stimulator device, which 
is implanted subdermally [140, 141]. The power source of 
these devices typically last from 6 to 8 months, at which time 
the implanted device and electrodes must be removed in a 
second procedure. Over the last 3 decades, numerous studies 
support the clinical efficacy of these DC EStim stimulators 
[138, 142, 143]. Recent clinical studies using implantable 
DC EStim stimulators, alone [144], or in combination with 
bone grafts [145] have reported increased bone healing rates.

Other physical stimulation techniques, like magnetic and 
vibration stimulations, have been tried and found to pro-
mote bone healing [146], in general their administration in 
patients in clinical settings have come up against serious 
limitations. The wearable devices used for their administra-
tion are cumbersome, thus when used for prolonged periods 
tends to interfere with patients’ daily activities leading to 
decreased compliance [6]. In addition, these units have been 
reported to give inconsistent results, and one of the reasons 
for this has been attributed to the fact that the stimulation 
energy they generate is not focused at the fracture site. In 
contrast, when DC EStim is administered with surgically 
implanted device compliance is not an issue and the electri-
cal energy is focused at the fracture site, which has led to the 
reporting of more consistent treatment outcomes.

Despite EStim’s demonstrated effectiveness improving 
bone healing, both in pre-clinical animal studies and in clini-
cal settings, few studies have investigated the effectiveness 
of combining EStim with BTE treatments in vivo [27, 29, 

Fig. 3   Clinical EStim devices. External stimulators deliver capacitive coupling and inductive coupling (pulsed electromagnetic field) EStim, and 
internal stimulators deliver direct current (DC) EStim via surgically implanted device
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94, 147, 148]. In one of these studies, our group treated large 
defects in rat femurs with AT-MSC + Scaffold + EStim. We 
found that the rate and quality of bone healing at 8 weeks, 
in defects treated with AT-MSC + Scaffold + EStim, was 
significantly better than controls [29]. Our own experience 
from this study, together with reports in the literature [141, 
149], suggests that the problems of combining EStim with 
BTE in clinical settings would be similar to those experi-
enced in current clinical EStim bone treatments. Namely, 
complications associated with the surgical procedures used 
to implant and explant the EStim device, electrode breakage 
or dislodgement, and infection.

Current developments

Summarizing, in vitro experiments that expose cells and/or 
scaffolds to EStim, generally show positive results, although, 
a lack of standardization of cell types, models and protocols 
make it difficult to draw definitive conclusions. Additional 
studies are needed to develop strategies for transferring these 
encouraging in vitro findings into meaningful in vivo BTE 
applications. In addition, the logistics of combining EStim 
and BTE treatments in practical, cost effective ways in clini-
cal settings must be considered.

Some exciting new developments that could be incorpo-
rated into these strategies include the use of electroactive 
smart polymeric biomaterials that could potentially combine 
scaffold and EStim into one. Recent advancements in poly-
mer science, using “smart” biomaterials, that enable built-
in stimulus/response behavior capabilities, have tremendous 
potential [150]. Electroactive smart polymeric biomaterials 
could be used to build scaffolds that offer precise control 
over the amount, duration, and localization of the electrical 
stimulus, thus obviating the need for bone stimulators. These 
materials have already been tested in vitro, where they have 
demonstrated the ability to improve cell proliferation and 
differentiation [151–153]. If in addition to promoting these 
pro-osteogenic activities, these smart biomaterials can also 
be designed to biodegrade after a given useful time period, 
this would be yet another benefit [154].

Conclusions

EStim has the demonstrated ability to improve osteogenic 
potential in various types of MSC and osteoblast-like cells 
in vitro, and to stimulate new tissue formation like, bone, 
cartilage, and vessels in vivo. It is important to recognize 
that these encouraging early findings are strongly dependent 
of many factors like type and origin of cells, EStim regi-
men, and area of the defect to be treated. The variability of 
these results reported in the literature make it difficult to 

compare and develop a single optimal EStim + BTE proto-
col. Accordingly, it is important that future in vitro experi-
ments be planned and conducted with an eye toward apply-
ing the findings in in vivo models and regimens that can be 
transferred into to clinical protocols. Combining EStim and 
BTE treatments has the potential to create synergies that 
could result in outcomes that far exceed those achieved by 
either treatment on its own.
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