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Abstract
Somatic maintenance and cell survival rely on proper protein homeostasis to ensure reliable functions across the cell and 
to prevent proteome collapse. Maintaining protein folding and solubility is central to proteostasis and is coordinated by 
protein synthesis, chaperoning, and degradation capacities. An emerging aspect that influences proteostasis is the dynamic 
protein partitioning across different subcellular structures and compartments. Here, we review recent literature related to 
nucleocytoplasmic partitioning of proteins, nuclear and cytoplasmic quality control mechanisms, and their impact on the 
development of age-related diseases. We also highlight new points of entry to modulate spatially-regulated proteostatic 
mechanisms to delay aging.
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Introduction

One of the key hallmarks of aging is the loss of protein 
homeostasis (Lopez-Otin et al. 2013; Moreno and Aldea 
2020), which has global impact on cellular function, flex-
ibility, resilience, and survival. Our current understanding 
of conserved molecular mechanisms of proteostasis and 
aging has greatly benefited from studies in model organ-
isms including yeast (Saccharomyces cerevisiae), nema-
todes (Caenorhabditis elegans), and flies (Drosophila 
melanogaster) (He et al. 2018; Kenyon 2010; Yu and Hyun 
2021). Several key lifespan-modulating pathways have 
been identified, including nutrient and germline signal-
ing, mitochondrial respiration, and translation attenuation 
(Denzel et al. 2019). Different genetic and environmental 
longevity interventions have displayed proteostatic enhance-
ments, but our understanding of the impact of these cellular 
improvements on proteome dynamics during aging remains 
incomplete. One of the major progressive changes associ-
ated with aging is the loss in solubility for numerous pro-
teins, which jeopardizes the stability of the whole proteome 

(David et al. 2010; Reis-Rodrigues et al. 2012; Walther et al. 
2015) and may form the basis of many age-related diseases. 
Protein chaperones can delay the collapse of the proteome 
by mitigating the impact of protein aggregation (Ben-Zvi 
et al. 2009) and by attempting to refold misfolded proteins. 
Cells have two major protein degradation processes, the 
26S proteasome and the autophagy/lysosome pathway, that 
can preventively degrade misfolded, damaged, and aggre-
gating proteins (Dikic 2017). Long-lived nematodes show 
enhanced proteasome function (Vilchez et al. 2012) and 
increased autophagic flux (Lapierre et al. 2015). Notably, 
26S proteasomes may degrade up to 90% of intracellular 
proteins (Lee and Goldberg 1998). Organellar proteases can 
also contribute to proteostatic quality control (Quiros et al. 
2015; Sun and Brodsky 2019). Altogether, the efficiency 
of these degradation pathways governs the ability of cells 
to prevent the accumulation of damaged and aggregating 
proteins, thereby maintaining protein solubility and function 
necessary for cell survival.

During the process of aging, protein solubility progres-
sively wanes (Hipp et al. 2019; Vecchi et al. 2020) and sev-
eral proteins aggregate (David et al. 2010; Reis-Rodrigues 
et al. 2012; Walther et al. 2015) as protein degradation effi-
ciency fades and chaperoning systems are overwhelmed. 
Age-associated protein aggregation arises even in longev-
ity models (Walther et al. 2015), but the types and prop-
erties of proteins aggregating as well as the quantity of 
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aggregate-associated chaperones differ between wild-type 
and long-lived animals (Walther et al. 2015). This intriguing 
observation is in line with other studies showing that aggre-
gation can serve a protective role (Cohen et al. 2009; Saad 
et al. 2017) and is part of the arsenal of tools cells employ 
to minimize cellular dysfunction associated with unsta-
ble proteomes. Subcellular protein repartitioning appears 
to underlie the ability of cells to withstand the proteome 
destabilization associated with heat stress (Domnauer et al. 
2021). Subcellular localization of unstable proteins in the 
cell dictates their propensity to aggregate. Indeed, cytoplas-
mically accumulating proteins have a higher likelihood to 
aggregate than those accumulating in the nucleus (Samant 
et al. 2018), suggesting that supersaturation barriers and 
aggregation dynamics, as well as chaperoning capacity, are 
compartment-specific. Another example is the expression 
of unstable proteins in the ER reduces their propensity to 
aggregate (Vincenz-Donnelly et al. 2018). This location-
specific nature of protein aggregation and toxicity provides 
a mechanism by which cells can regulate overall proteome 
stability by modulating subcellular protein partitioning.

Long-lived nematodes display a variety of nucleocyto-
plasmic proteostatic improvements that impact proteome 
stability and enable lifespan extension (Fig.  1). These 
include modulation of ribosomal function (Hansen et al. 
2007; Schosserer et al. 2015; Tiku et al. 2017) as well as 
reduced protein export into the cytoplasm (Silvestrini et al. 
2018). Transcriptional activation of proteasome (Li et al. 
2011; Vilchez et al. 2012) and autophagy genes (Lapierre 
et al. 2013) as well as chaperones (Murphy et al. 2003) via 
longevity-associated transcription factors (including, but not 
limited to DAF-16/FOXO, HLH-30/TFEB, SKN-1/NRF2, 
HSF-1/HSF1) (Denzel et al. 2019) improve cytoplasmic 
proteostasis (Fig. 1). Altogether, these proteostatic changes 
prevent protein supersaturation and decrease the burden on 
chaperones and protein degradation machineries, which in 

turn delay the progressive solubility decline associated with 
neurodegenerative diseases and aging (Ben-Gedalya and 
Cohen 2012; Ciryam et al. 2013).

From synthesis to degradation, proteins are constantly 
surveilled for proper folding and damage, but their dynamic 
subcellular partitioning, preponderance in different compart-
ments, and association with various organelles leads to a 
variety of proteostatic outcomes that have important ramifi-
cations on disease onset and progression, and ultimately on 
aging itself. Therefore, spatio-temporal regulation of pro-
teostasis is key in somatic maintenance and health (Sontag 
et al. 2017). This review highlights subcellular mechanisms 
of proteostasis and their impact on longevity and aging, 
with an emphasis on protein trafficking across the nuclear 
pore as well as specific nuclear and cytoplasmic proteostatic 
mechanisms.

Nucleocytoplasmic protein trafficking

Proteome partitioning between the cytoplasm and the 
nucleus is mediated by passive and facilitated transport 
of proteins across the nuclear pore (Knockenhauer and 
Schwartz 2016; Timney et al. 2016). The nuclear pore is 
a massive complex (120 MDa in humans) in the nuclear 
membrane consisting of about 30 different nuclear pore pro-
teins, or nucleoporins, in numerous copies (D’Angelo and 
Hetzer 2008). Altogether, the nuclear pore structure includes 
a ring-like pore, a nuclear basket, and cytoplasmic filaments 
(Solmaz et al. 2013), and integrates between 500 and 1000 
nucleoporin proteins (Beck and Hurt 2017; Knockenhauer 
and Schwartz 2016; Schwartz 2016). Some of the nuclear 
pore proteins have particularly long lifespan in the nuclear 
pore and are exchanged at a low rate (Toyama et al. 2013), 
suggesting that damage in these proteins may result in last-
ing destabilization of the nuclear pore. Indeed, with age, 
nuclear pore complex instability and permeability progres-
sively increases, leading to mislocalization of several pro-
teins, a phenomenon that is prevented in long-lived nema-
todes (Doucet et al. 2010). Altogether, these studies suggest 
that maintenance of the nuclear pore integrity is essential for 
longevity (Toyama and Hetzer 2013).

The accepted passive threshold across the nuclear pore 
is 40 kDa (Knockenhauer and Schwartz 2016; Schmidt and 
Gorlich 2016) and transporters called karyopherins can rec-
ognize and facilitate the traffic of larger proteins across the 
nuclear pore, a process involving Ran GTPases (Cavazza and 
Vernos 2015). The partitioning of large proteins (> 40 kDa) 
between the nucleus and the cytoplasm involves a specific 
recognition of sequences within cargo proteins by karyo-
pherins. The karyopherin family of proteins consists of 
trafficking receptors named importins (18 in humans) 
and exportins (6 in humans). Importins recognize nuclear Fig. 1  Key proteostatic mechanisms associated with longevity
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localization sequences of cytoplasmic proteins and mediate 
their transit from cytoplasm to nucleus. Exportins recognize 
nuclear export sequences of nuclear-localized proteins and 
facilitate their transport from the nucleus to the cytoplasm. 
To maintain transport capacities across the nuclear pore, 
karyopherins are returned to their relevant site of action after 
trafficking. This dynamic cycle of import and export gov-
erns the temporal specification of nuclear and cytoplasmic 
proteomes, and ultimately impacts an array of key cellular 
processes including pathways associated with aging (Fig. 2).

Several diseases have a fundamental basis in nucleocy-
toplasmic transport dysfunction, including cancer (Gandhi 
et al. 2018), neurodegeneration (Zhang et al. 2015), and age-
related diseases (Kim and Taylor 2017). Many neurodegen-
erative diseases are characterized by impairments in nucleo-
cytoplasmic protein partitioning (Kim and Taylor 2017) 
and nucleolar dynamics (White et al. 2019), in addition to 
autophagic defects due to lysosomal dysfunction (Wong and 
Cuervo 2010). Since intracellular mislocalization of proteins 
can lead to deleterious compartmental loss-of-function(s) 
or predispose mislocalized cargo proteins to aggregate and 
impair proteostatic mechanisms, nuclear transport dysfunc-
tion may be a factor underling the onset of neurodegenera-
tion (Kim and Taylor 2017). Defective nucleocytoplasmic 
partitioning has been linked to the development of ALS as 
RNA processing protein, TDP43, aberrantly distributes in 
the cytoplasm (Solomon et al. 2018). In nuclei of cells from 
Hutchinson-Gilford progeria syndrome patients, mutated 
lamins that normally would provide structural support aber-
rantly accumulate, resulting in genomic instability, a fea-
ture exacerbated by dysfunctional nuclear protein transport 

(Kelley et al. 2011). Phosphorylated form of the protein Tau 
(Bejanin et al. 2017), a pathologically relevant agent in AD, 
was recently found to interact with nuclear pore components 
and disrupt nuclear protein transport leading to cytosolic pro-
tein mislocalization, which in turn facilitated cytosolic Tau 
aggregate formation (Eftekharzadeh et al. 2018). Studies of 
different proteinopathies have identified key importins and 
exportins as modifiers of the onset of these diseases (Fig. 3).

Karyopherin β2, an importin involved in the import of 
several nuclear localization sequence-containing RNA-bind-
ing proteins (Chook and Suel 2011), was recently shown to 
display chaperoning and disaggregase functions for unstable 
proteins (FUS, dipeptide repeats, etc.) that agglomerate in the 
cytoplasm and are relevant in ALS and FTD (Guo et al. 2018; 
Hutten et al. 2020; Robinson et al. 2020). This pre-import 
disaggregation function demonstrates that repartitioning of 
certain RNA-binding proteins from the cytosol to the nucleus 
may improve the solubility and function of proteins that are 
bound to aggregate and mediate proteotoxicity in the cyto-
plasm. In turn, this chaperone-like function likely reduces the 
proteostatic burden in the cytoplasm, in addition to refold-
ing and compartmentalization of unstable proteins in order 
to restore their native structure and function. Alternatively, 
unstable protein import in the nucleus may facilitate their 
degradation via nuclear 26S proteasomes (Albert et al. 2017).

Exportin 1 (XPO1/CRM1), an exportin involved in the 
recognition and transport of potentially hundreds of nuclear 
export sequence-containing proteins (Kirli et al. 2015), has 
been linked to the control of the longevity-associated path-
way of autophagy in C. elegans (Kumar et al. 2018; Silves-
trini et al. 2018). XPO1 is a highly conserved nuclear export 

Fig. 2  Subcellular locations relevant for proteostasis
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receptor involved in trafficking several proteins including 
translation factors, vesicle coat proteins, centrosomal and 
autophagy proteins, ubiquitin pathway proteins, and ribo-
somal subunits out of the nucleus (Kirli et al. 2015). Nota-
bly, XPO1 levels are elevated in various cancers leading 
to nuclear depletion of tumor-suppressing proteins (Gan-
dhi et al. 2018). XPO1 is also involved in snoRNA (Bou-
lon et al. 2004) and snRNP trafficking (Sleeman 2007) 
and can localize to the nucleolus where it plays a role in 
rRNA processing (Bai et al. 2013). Recently developed 
XPO1 inhibitors showed success in slowing tumorigen-
esis in a variety of cancers and the selective inhibitor of 
nuclear export (SINE), Selinexor (KPT-330, Karyopharm 
Therapeutics), was approved for relapsed multiple myelo-
mas in 2020 (Chen et al. 2018). Inhibition of XPO1 using 
SINE leads to nucleocytoplasmic repartitioning of several 
proteins and a corresponding reduction in translation rate 
(Wahba et al. 2018). This is associated with improvement in 
the process of autophagy and lysosomal biogenesis via the 
nuclear enrichment of the autophagy transcriptional regula-
tor TFEB (Silvestrini et al. 2018), improving proteostasis 
and increasing lifespan in nematodes and ALS-afflicted flies 
(Silvestrini et al. 2018; Zhang et al. 2015). XPO1 inhibition 
was also recently shown to mitigate the nuclear defects of 
progeria (Garcia-Aguirre et al. 2019), suggesting that reduc-
ing protein export can foster healthy nuclear structure and 
proteome.

Overall, the dynamics of nucleocytoplasmic protein 
partitioning is an emerging field with promising potential 
to markedly enhance our understanding of the process of 
aging and the onset of age-related diseases. Moreover, the 
development of new selective inhibitors of karyopherins is 
bound to improve our ability to pharmacologically modify 

the partitioning of proteins in cells in order to modulate pro-
teostasis by leveraging different proteostatic mechanisms in 
the nucleus and the cytoplasm.

Nuclear proteostasis: nexus of ribosomal 
subunit and protein quality control

The nuclear proteome is diverse and requires proper pro-
tein surveillance in order to maintain nuclear structure and 
dynamic processes that characterize this essential organelle 
(Enam et al. 2018; Shibata and Morimoto 2014). As cel-
lular proteome is specified by ribosomes, proper assembly 
of pre-ribosome subunits in the nucleus ultimately governs 
the rate of mRNA translation. Ribosome assembly originates 
inside the nucleus in the membraneless nucleolus (Boisvert 
et al., 2007; Iarovaia et al. 2019), where different ribosomal 
RNAs (rRNA) are transcribed by RNA polymerases (Paule 
and White 2000) and processed into the 40S (18S rRNA + 33 
ribosomal proteins) and 60S (5S, 5.8S, and 28S rRNA + 46 
ribosomal proteins) ribosomal subunits (Pena et al. 2017). 
Processing of pre-rRNA is required for proper ribosomal 
subunit assembly and is promoted by the highly conserved 
rRNA 2’O-methyltransferase fibrillarin (FIB-1/FBL) 
(Pereira-Santana et al. 2020). The nucleolus can expand or 
retract to address cellular needs for ribosomal biogenesis, 
and fibrillarin levels have been correlated with nucleolar 
expansion (Weber and Brangwynne 2015), which stimulates 
the rate of ribosome assembly (Tollervey et al. 1993). Inter-
estingly, proteins that become unstable in the nucleus can 
accumulate inside nucleoli (Frottin et al. 2019). Ribosomal 
subunits that are translated in the cytoplasm require nuclear 
import to assemble with processed rRNAs. Subsequently, 

Fig. 3  Coordination of nucleo-
cytoplasmic protein partitioning 
and proteostatic mechanisms
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newly assembled rRNA-containing ribosomal subunits are 
exported out of the nucleus and combine to form large 80S 
ribosomes for mRNA translation. Notably, when exported in 
the cytoplasm, supernumerous ribosomal subunits (An and 
Harper 2020; Sung et al. 2016a, b), mislocalized (Yanagitani 
et al. 2017) and stalled ribosomes (Matsuo et al. 2017) can 
be sent for proteasomal and lysosomal degradation. Several 
long-lived nematodes display smaller nucleoli, in part via 
lower FIB-1, rRNA, and ribosomal protein levels, and spe-
cifically silencing fib-1 extends lifespan in C. elegans (Tiku 
et al. 2017). High levels of FBL expression are found in 
several cancers (Koh et al. 2011; Marcel et al. 2013; Su et al. 
2014) and nucleolar hypertrophy is a hallmark of poor tumor 
prognosis (Derenzini et al. 2009). An E3 ubiquitin ligase, 
NCL-1/TRIM2, negatively regulates FIB-1 levels (Tiku 
and Antebi 2018; Tiku et al. 2017; Yi et al. 2015). TRIM2 
mutations in humans are linked to axonal neurodegenera-
tion (Ylikallio et al. 2013), and mutating ncl-1 in long-lived 
nematodes restores their nucleoli to wild-type size and sig-
nificantly impairs their longevity (Tiku et al. 2017).

Different environmental stresses, including nucleotide 
depletion, heat shock, hypoxia, or UV, generate a nucleolar 
stress response (Rubbi and Milner 2003; Yang et al. 2018). 
This response elicits a signaling cascade mediated in part by 
p53 (Nicolas et al. 2016), which results in nucleolar frag-
mentation and disruption, and is associated with issues in 
ribosome biogenesis. Another environmental stress, star-
vation, results in chaperones (heat shock proteins) reparti-
tioning into the nucleus (Chughtai et al. 2001; Nollen et al. 
2001). Aggregated nucleoplasmic proteins can accumulate 
in the nucleolus (Latonen 2019), in particular when pro-
teasome function is compromised (Latonen et al. 2011). 
In yeast, acute heat stress leads to the reversible formation 
of nucleolar protein aggregates (Gallardo et al. 2020). The 
nucleolus is also a temporary store for epigenetic regula-
tors during heat shock, which are subsequently function-
ally restored after recovery from heat stress (Azkanaz et al. 
2019). Aggregates in the nucleus have also been found in 
depots called intranuclear quality control compartment 
(INQ) (Miller et al. 2015). Notably, nuclear aggregate accu-
mulation has been linked to polyglutamine-induced disease 
such as Huntington’s disease (Klement et al. 1998; Schilling 
et al. 2004). Mutated ⍺-synuclein was also shown to trigger 
nucleolar stress in a murine model of Parkinson’s disease 
(Evsyukov et al. 2017). Interestingly, there are mechanistic 
links between nucleolar stress and autophagy (Pfister 2019), 
and nucleolar proteins can be degraded via nucleophagy 
(Mostofa et al. 2018).

Heat shock proteins serve as chaperones and are found 
in both the nucleus and the cytoplasm (Echtenkamp and 
Freeman 2014; Vabulas et al. 2010). They modulate protein 
aggregation by converting unstable proteins into their native 
fold or into manageable proteasome targets (den Brave et al. 

2020). Cryo-electron microscopy imaging of the nuclear 
pore in the green alga Chlamydomonas reinhardtii dem-
onstrated tethering and enrichment of 26S proteasomes at 
the nuclear basket side (Albert et al. 2017), suggesting that 
a quality control checkpoint for proteins exists for nuclear 
proteins that are trafficked across the nuclear pore (Fig. 3). 
Studies in the yeast S. cerevisiae showed that quality con-
trol of cytoplasmic and nuclear proteins is mediated by spa-
tially specific E3 ubiquitin ligases (Gardner et al. 2005) with 
different preferences for ubiquitin linkages (Samant et al. 
2018). Recently, a study demonstrated that the accumula-
tion of selective autophagy receptor SQSTM1 in nuclear 
condensates, brought about by reducing nuclear protein 
export, improves proteasomal function and degradation of 
c-myc, a key regulator of ribosome biogenesis and nucleo-
lar dynamics (Fu et al. 2021). Thus, nuclear localization of 
autophagy-related factors can modulate different proteo-
static mechanisms and impact proteostasis globally. Alto-
gether, these studies highlight the ability of cells to sequester 
nuclear proteins into condensates or around the nuclear pore 
in order to determine their fate.

Cytoplasmic proteostasis: organelle‑specific 
and bulk protein quality control

The cytoplasm encompasses several membrane-bound orga-
nelles that interact with each other and mediate and inte-
grate key cellular functions (Cohen et al. 2018). As organ-
isms age, organelles accumulate damage and need to be 
degraded. Bulk degradation of these organelles is mediated 
by the recycling process of autophagy and lysosomal deg-
radation (Galluzzi et al. 2017; Lapierre et al. 2015). Selec-
tive sequestration of organelles is mediated by selective 
autophagy receptors that recognize damaged organelles and 
facilitate their degradation (Zaffagnini and Martens 2016). 
For instance, efficient degradation of mitochondria via 
mitophagy is required in the lifespan extension of long-lived 
nematodes (Palikaras et al. 2015). Concomitantly, cytoplas-
mic 26S proteasomes degrade a vast array of damaged and 
ubiquitinated proteins. When proteostatic and protein deg-
radation machineries are overwhelmed, aggregating proteins 
can accumulate in specific sites in the cytoplasm called the 
insoluble protein depot (IPOD) and the juxtanuclear quality 
control (JUNQ) compartments (Samant et al. 2018), akin to 
the originally described aggresomes (Johnston et al. 1998). 
In specific proteostatic challenges, cells can activate orga-
nelle-specific unfolded protein responses  (UPRER or  UPRMT) 
(Shpilka and Haynes 2018; Walter and Ron 2011), which 
results in enhancement in protein folding in order to ensure 
solubility and function. Aging leads to dysfunction in UPR 
at the endoplasmic reticulum  (UPRER) (Frakes and Dillin, 
2017) and mitochondrial UPR  (UPRMT), which can affect 
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stem cells and tissue aging (Mohrin et al. 2015). The ER and 
mitochondria also possess lumenal proteases that directly 
degrade proteins (synthesized or imported) (Quiros et al. 
2015; Sun and Brodsky 2019). In yeast, mitochondria can 
degrade resident proteins (Hughes et al. 2016) and aggre-
gating proteins imported from the cytoplasm (Zhou et al. 
2014). The ER can also send proteins to the proteasome via 
ER-associated degradation (ERAD) where polypeptides are 
recognized and threaded back into the cytosol via a retro-
translocon (Brodsky 2012; Qi et al. 2017). Lipid droplets can 
serve as an intermediary organelle for ERAD where cargo 
bound for degradation transit on the lipid droplet surface 
before being degraded by the proteasome (Olzmann and 
Carvalho 2019).

The endosomal sorting complexes required for transport 
(ESCRT) is a multisubunit complex tasked with sorting 
ubiquitinated proteins and multi-vesicular bodies toward lys-
osomal degradation (Schmidt and Teis 2012). Compromised 
ESCRT leads to the autophagic dysfunction and accumula-
tion of aggregating proteins relevant to neurodegeneration 
(Oshima et al. 2016). Notably, proteins associated with the 
lysosomal membrane can be degraded by lysosomes via the 
ESCRT machinery (Zhu et al. 2017) or intraluminal frag-
ments (McNally and Brett 2018). Overall, the cytoplasm 
possesses several options to stabilize or degrade proteins, but 
aging systematically decreases the ability of this compart-
ment to properly manage proteostasis, resulting in molecular 
crowding and aggregated protein deposition.

Conclusion

Cells employ an arsenal of mechanisms to maintain 
protein homeostasis in order to ensure cell survival 
and to adapt to changing environments. In addition to 

compartment-specific proteostatic processes, the integra-
tion of different mechanisms (such as nucleolar dynamics 
and autophagy (Pfister 2019)) generates a global response 
against proteotoxic stress associated with aging. Signal-
ing between different organelles, such as mitochondria 
and nucleus (Fang et al. 2016), and also between tissues 
may serve to generate organismal response to stress and 
aging (Zhang et al. 2018). Signaling pathways that can 
coordinate a proteostatic response, such as nutrient signal-
ing mediated by mTOR complexes (Laplante and Sabatini 
2012) and the integrated stress response via the eIF2 
complex (Costa-Mattioli and Walter 2020), are important 
mechanisms to balance protein synthesis and degradation. 
These processes modify ribosome biogenesis and func-
tion, protein specification, and localization, and ultimately 
affect the stability of the proteome. An important mecha-
nism of proteostasis that potentially fails during aging is 
the proper partitioning of proteins across the nuclear pore 
(Fig. 4). Mislocalization of proteins fosters aggregation, 
but concomitant aberrant DNA release into the cytoplasm 
can also lead to inflammation and neurodegeneration (Paul 
et al. 2021). Therefore, pharmacologically modulating the 
nucleocytoplasmic partitioning of proteins is emerging as 
an attractive strategy to impact the stability of the whole 
proteome and delay aging.
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