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Abstract

Eradicating HIV-1 infection is difficult because of the reservoir of latently infected cells that

gets established soon after infection, remains hidden from antiretroviral drugs and host

immune responses, and retains the capacity to reignite infection following the cessation of

treatment. Drugs called latency-reversing agents (LRAs) are being developed to reactivate

latently infected cells and render them susceptible to viral cytopathicity or immune killing.

Whereas individual LRAs have failed to induce adequate reactivation, pairs of LRAs have

been identified recently that act synergistically and hugely increase reactivation levels com-

pared to individual LRAs. The maximum synergy achievable with LRA pairs is of clinical

importance, as it would allow latency-reversal with minimal drug exposure. Here, we

employed stochastic simulations of HIV-1 transcription and translation in latently infected

cells to estimate this maximum synergy. We incorporated the predominant mechanisms of

action of the two most promising classes of LRAs, namely, protein kinase C agonists and

histone deacetylase inhibitors, and quantified the activity of individual LRAs in the two clas-

ses by mapping our simulations to corresponding in vitro experiments. Without any adjust-

able parameters, our simulations then quantitatively captured experimental observations of

latency-reversal when the LRAs were used in pairs. Performing simulations representing a

wide range of drug concentrations, we estimated the maximum synergy achievable with

these LRA pairs. Importantly, we found with all the LRA pairs we considered that concentra-

tions yielding the maximum synergy did not yield the maximum latency-reversal. Increasing

concentrations to increase latency-reversal compromised synergy, unravelling a trade-off

between synergy and efficacy in LRA combinations. The maximum synergy realizable with

LRA pairs would thus be restricted by the desired level of latency-reversal, a constrained

optimum we elucidated with our simulations. We expect this trade-off to be important in

defining optimal LRA combinations that would maximize synergy while ensuring adequate

latency-reversal.
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Author summary

HIV-1 infection typically requires lifelong treatment because a class of infected cells called

latently infected cells remains hidden from drugs and host immune responses and can

reignite infection when treatment is stopped. Massive efforts are ongoing to devise ways

to eliminate latently infected cells. The most advanced of the strategies developed for this

purpose involves using drugs called latency-reversing agents (LRAs), which reactivate

latently infected cells, effectively bringing them out of their hiding. Multiple mechanisms

are involved in the establishment of latency. Pairs of LRAs targeting distinct mechanisms

have been found to synergize and induce significantly higher latency-reversal than indi-

vidual LRAs. If this synergy can be maximized, latency-reversal can be achieved with min-

imal drug exposure. Using stochastic simulations of HIV-1 latency, we unraveled a trade-

off between synergy and efficacy in LRA pairs. Drug concentrations that maximized syn-

ergy did not also maximize latency-reversal. Drug concentrations that yielded higher

latency-reversal compromised synergy and vice versa. This trade-off would constrain the

synergy realizable between LRAs and guide the identification of optimal LRA combina-

tions that would maximize synergy while ensuring adequate latency-reversal.

Introduction

Combination antiretroviral therapy (cART) for HIV-1 infection can suppress the viral load in

infected individuals to below the detection limit but is unable to eradicate the virus [1]. The

key obstacle to achieving sterilizing cure is the presence of a reservoir of long-lived latently

infected cells that cannot be eliminated by cART [2] and can reignite infection upon the cessa-

tion of therapy [3]. Latently infected cells harbor replication-competent integrated HIV-1

genomes that remain transcriptionally silent, escaping the action of antiretroviral drugs and

immune recognition [4]. The reservoir is thought to be established soon after infection [5] and

is estimated to have a half-life of many years [2, 6]. Cells in the reservoir are thought to be acti-

vated stochastically [7] and can reignite infection often within weeks [8] but sometimes years

after the cessation of therapy [9], necessitating lifelong therapy. Significant efforts are ongoing,

therefore, to quantify the size of the reservoir, define the type and location of cells constituting

it, and devise ways of eliminating it [10, 11].

The most advanced of the strategies to eliminate the latent reservoir, called the “shock and

kill” strategy, advocates the use of drugs called latency-reversing agents (LRAs) which stimu-

late HIV-1 transcription in latently infected cells, rendering them susceptible to viral cyto-

pathicity or immune recognition and killing [11–13]. Several classes of LRAs have been

developed, each targeting one or more of the mechanisms underlying viral latency [14]. Multi-

ple cellular and viral mechanisms have been implicated in the establishment of latency, includ-

ing cytoplasmic localization of the transcription factor NF-κB, sequestration of the protein

complex P-TEFb involved in transcription, and epigenetic silencing due to acetylation and

methylation [10]. Additional mechanisms involving possible hardwiring of latency in the

HIV-1 genome [15] as well as the prevention of latency-reversal by the mTOR complex [16]

have recently been identified. LRAs called PKC agonists stimulate the PKC pathway leading

among other things to the upregulation and enhanced nuclear translocation of NF-κB [17].

Another class of LRAs called histone deacetylase inhibitors (HDACi’s) induces chromatin

remodeling, accelerating HIV-1 transcriptional elongation [18]. Other classes of LRAs include

histone methyltransferase inhibitors (HMTi’s), DNA methyltransferase inhibitors (DNMTi’s),
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and bromodomain and extraterminal (BET) domain inhibitors, which induce HIV-1 tran-

scription via other proposed mechanisms [14].

Several LRAs have been tested extensively in vitro and ex vivo and some have reached clini-

cal trials [19–24]. LRAs have induced transient viral production in infected individuals but

have failed to lower the size of the latent reservoir [12]. Individual LRAs have been shown ex
vivo to be grossly inadequate at reversing latency when compared to the maximal reversal

achieved with agents inducing global T cell activation [25, 26]. Furthermore, a single pulse of

even the highest activating dose of the latter agents seems to reactivate only a subset of the

latently infected cells in vitro [4]. Serial stimulation does seem to increase the fraction of cells

reactivated [27], indicating that multiple doses of an LRA may be necessary to achieve the

desired latency-reversal in vivo. Recent studies have therefore examined latency-reversal with

combinations of LRAs acting via distinct mechanisms and identified, promisingly, combina-

tions that can reactivate cells ex vivo to extents comparable to that achieved with global T cell

activation [28, 29]. With the use of multiple drugs, however, toxicities may become limiting.

LRAs that act synergistically, reactivating more cells together than expected based on their

individual potencies, are therefore of particular interest as they may achieve the desired

latency-reversal with the least drug exposure. Indeed, several in vitro and ex vivo studies have

identified LRA combinations that act synergistically [28–39]. An important goal that follows is

to determine the concentrations of the LRAs in these promising combinations that would lead

to the maximum synergy.

In the present study, we employed stochastic simulations of HIV-1 transcription and trans-

lation in infected cells, i.e., the so-called intracellular HIV-1 latency circuit, to quantify the

activities of individual LRAs and estimate the maximum synergy realizable between pairs of

LRAs. Stochastic simulations of the HIV-1 latency circuit have been employed extensively in

previous studies and have provided key insights into the mechanisms underlying the establish-

ment of latency and its reversal [7, 15, 40–43]. Importantly, they recapitulate the two distinct

fates, viz., productive infection (or activation) and latency, realized by cells following their

infection by HIV-1 [7, 15, 40–42]. Furthermore, they have elucidated the role of the viral pro-

tein Tat in inducing a stochastic switch from latency to activation [7, 43], identified a potential

cause of the slow viral load decline during cART [40], and suggested the intriguing possibility

of latency-reversal by enhancing noise in viral transcription [41]. Previous studies, however,

have not explicitly considered the role of LRAs. An alternative class of models that considers

populations of latently infected cells, often using sophisticated techniques from the theory of

branching processes, has been constructed to estimate quantities of clinical interest such as the

reduction in the latent reservoir that would allow a desired duration of cART interruption

without viral rebound [28, 44–48]. These latter models do not consider intracellular events

explicitly, precluding a description of drug synergy. Here, we built on the previous stochastic

simulations of the HIV-1 latency circuit by explicitly incorporating steps affected by LRAs. We

considered LRAs belonging to the two most promising classes, viz., HDACi’s, which have

entered clinical trials [19, 20, 23], and PKC agonists, which have shown synergy with almost

every other class of LRAs in vitro and ex vivo [22, 28, 31]. We quantified the activity of individ-

ual LRAs by altering the rates of the relevant steps in the HIV-1 latency circuit to match the

extent of latency-reversal observed in vitro. Our simulations then captured quantitatively,

without any adjustable parameters, the synergy observed when the LRAs were employed

together, giving us confidence in our formalism. We then applied our simulations to predict

the maximum synergy realizable with the combinations and the corresponding drug concen-

trations. We found, interestingly, that a trade-off exists between the synergy and the efficacy of

LRA combinations that could introduce new limits on their usage. The maximum synergy

realizable would have to be constrained by this trade-off in achieving the desired extent of
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latency-reversal, a consideration that may be important in defining the optimal usage of LRA

combinations.

Results

Model of the HIV-1 latency circuit

We considered the following set of events involved in HIV-1 transcription and translation in

an HIV-1-infected cell harboring an integrated, replication-competent HIV-1 genome (Fig 1).

The host transcription factor NF-κB is produced in the cytoplasm and is translocated to the

nucleus [49]. In the nucleus, it reversibly binds the long terminal repeat (LTR) region of the

integrated HIV-1 genome to form a complex [50], denoted LTRNF. This complex formation

triggers HIV-1 transcription at a low, basal rate [7]. The viral mRNA thus produced is translo-

cated to the cytoplasm, where it is translated. Translation yields the viral protein Tat as well as

other viral proteins, P. Tat is translocated back to the nucleus, where it upregulates HIV-1

transcription via multiple mechanisms [51]. We focused here on its role in enhancing HIV-1

Fig 1. Schematic of the HIV-1 latency circuit. The events associated with HIV-1 transcription and translation that

govern the latency of an HIV-1 infected cell are depicted as a set of reactions (see Eqs (1)–(18) in Methods). The

entities involved in the reactions are described in Results and the rate constants of the reactions are in Table 1.

https://doi.org/10.1371/journal.pcbi.1006004.g001

Synergy-efficacy trade-off in LRA combinations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006004 February 16, 2018 4 / 21

https://doi.org/10.1371/journal.pcbi.1006004.g001
https://doi.org/10.1371/journal.pcbi.1006004


transcription by binding to the HIV-1 LTR. The binding of both NF-κB and Tat to HIV-1

LTR has been argued to be essential for enhanced HIV-1 transcription [52]. We therefore let

Tat bind LTRNF to form a complex, denoted LTR-Tatd. Several other factors, including PTEF-

b, are essential for transcriptional elongation [53], which we did not consider explicitly for

simplicity (see Discussion) and based on previous studies where PTEF-b and the other factors

are argued to be in stoichiometric excess [7, 40]. (Previous models have denoted LTR-Tatd as

PTEF-bd [40].) Tat is typically in its deacetylated form, which in this complex can get revers-

ibly acetylated [7], and is then denoted LTR-Tata. The latter complex triggers HIV-1 transcrip-

tion at an enhanced rate [7], following which it dissociates into its constituents. The resulting

viral mRNA can produce more Tat, which in turn can further accelerate HIV-1 transcription.

This positive feedback, which is triggered following a stochastic build-up of Tat beyond a

threshold, drives a cell out of latency [7, 43].

LRAs facilitate this reactivation. We assumed that PKC agonists increase the production

rate of NF-κB, kNFκB, by a factor ϕPKCa in a dose-dependent manner. HDACi’s increase the

HIV-1 transcription rate in the absence and presence of Tat, denoted kBasal and kTransact,
respectively, by a factor ϕHDACi, again in a dose-dependent manner. Proteins and mRNA are

subject to degradation in the nucleus and the cytoplasm.

We performed stochastic simulations of the above events, constituting the HIV-1 latency

circuit, using the Gillespie algorithm [54] (Methods). The parameter values employed are in

Table 1.

Basal reactivation of latently infected cells

We first considered the spontaneous reactivation of latently infected cells in the absence of

drugs. A cell was assumed to be activated if the level of viral proteins in it rose above a thresh-

old. To define this threshold, we performed simulations in the absence of NF-κB and Tat,

Table 1. Model parameters and their typical values.

Rate constant Event Value Source

kNFκB Production of NF-κB 9×10−5 molecules s-1 Fit

kImpNFκB Import of NF-κB into the nucleus 9×10−2 s-1 [68]

kOn Association of NF-κB with HIV-1 LTR 2.1×10−5 molecules-1 s-1 [50]

kOff Dissociation of NF-κB–LTR complex 9.9×10−3 s-1 [50]

kBasal Basal transcription of HIV-1 6.1×10−3 s-1 Fit

kExpmRNA Export of HIV-1 mRNA to cytoplasm 7.2×10−4 s-1 [40]

kProtein Translation of HIV-1 proteins 10−2 s-1

kTat Translation of Tat 1.3×10−3 s-1

kImpTat Import of Tat into the nucleus 5.1×10−3 s-1

kBind Association of Tat with NF-κB bound LTR 1.5×10−4 molecules-1 s-1

kUnbind Dissociation of Tat–LTR complex 1.7×10−2 s-1

kAcetyl Acetylation of LTR associated Tat 10−3 s-1

kDeacetyl Deacetylation of LTR associated Tat 0.13 s-1

kTransact Tat-induced transcription of HIV-1 0.1 s-1

δmRNA Degradation of HIV-1 mRNA 4.8×10−5 s-1

δTat Degradation of Tat 4.3×10−5 s-1

δProtein Degradation of viral proteins 5×10−5 s-1

δNFκB Degradation of NF-κB 2.8×10−5 s-1 [69]

ϕPKCa Fold increase in kNFκB due to a PKC agonist �1

ϕHDACi Fold increase in kBasal and kTransact due to an HDACi �1

https://doi.org/10.1371/journal.pcbi.1006004.t001
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where no activation of cells is expected (Methods). The highest protein levels achieved in these

simulations were ~130 copies/cell (S1 Fig). We therefore set the threshold at 500 copies/cell,

which could only be achieved via NF-κB- and/or Tat-mediated increase in HIV-1 transcrip-

tion, indicating activation. We now performed simulations of the complete HIV-1 latency cir-

cuit (Fig 1; Eqs (1)–(18) in Methods). We set ϕPKCa = 1 and ϕHDACi = 1 to mark the absence of

drugs. The simulations captured the two distinct fates achieved by infected cells, latency and

activation (Fig 2A). Most of the cells remained latently infected, in consonance with experi-

ments [29, 33]. We performed simulations with different values of kNFκB and kBasal, which

remain poorly estimated, to identify conditions that mimicked experimental observations of

the fraction of cells activated, fon, in the absence of drugs. In the experimental data we consid-

ered (Methods), fon = 0.039 ± 0.008 in 24 h following the start of the experiment [33]. We

found that with kNFκB = 9 × 10−5 molecules s-1 and kBasal = 6.14 × 10−3 s-1, our simulations

yielded fon = 0.039 ± 0.003 (Fig 2A), in close agreement with the data. We employed these val-

ues for further simulations. Increasing kNFκB, kBasal or both increased fon (Fig 2B–2D). We

Fig 2. Basal reactivation of latently infected cells. Time-evolution of protein copy numbers in latently infected cells

obtained by stochastic simulations of the HIV-1 latency circuit (Methods) in the absence of intervention. Trajectories

(lines) of each of the 2000 cells in one realization are shown. Those crossing the activation threshold of 500 copies

(dashed line) are in purple and the rest in grey. The parameters employed for the simulations except kNFκB and kBasal
are in Table 1. The values of the latter parameters and the resulting percentage activation, fon, are: (A) kNFκB = 9 × 10−5

molecules s-1 and kBasal = 6.14 × 10−3 s-1 yielding fon = 0.0395; (B) kNFκB = 10−4 molecules s-1 and kBasal = 6.14 × 10−3 s-1

yielding fon = 0.0475; (C) kNFκB = 9 × 10−5 molecules s-1 and kBasal = 7 × 10−3 s-1 yielding fon = 0.053; and (D) kNFκB =

10−4 molecules s-1 and kBasal = 7 × 10−3 s-1 yielding fon = 0.0656.

https://doi.org/10.1371/journal.pcbi.1006004.g002
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recognized that the combination of parameter values we employed was not unique. Alternative

combinations, however, did not alter our key findings (S2 Fig).

Dose-response curves of individual drugs

We next considered the influence of individual drugs by increasing either ϕPKCa or ϕHDACi
while keeping all the other parameters fixed. To mimic the influence of PKC agonists, we per-

formed simulations with different values of ϕPKCa > 1 while keeping ϕHDACi = 1. We found

that fon increased monotonically with ϕPKCa (Fig 3A). For instance, fon = 0.1 with ϕPKCa = 1.76

and fon = 0.38 with ϕPKCa = 3.87 (Fig 3B and 3C). To map our simulations to experiments, we

considered data of fon as a function of the concentration, [D], of the PKC agonist bryostatin-1

[33]. Corresponding to each value of [D] employed, we obtained a value of ϕPKCa from our

simulations that yielded fon in agreement with the experiments, thus linking our simulations to

the experiments (Fig 3D). We fit a Hill equation (Eq (22)) to this data linking [D] to ϕPKCa and

obtained a dose-response curve for bryostatin-1, which allowed estimation of fon also at values

Fig 3. Influence of PKC agonists on latent cell reactivation. (A) The fraction of cells reactivated, fon, as a function of

the fold-increase, ϕPKCa, in the rate of NF-κB synthesis, predicted using our stochastic simulations (Methods).

Representative realizations showing the time-evolution of protein copy numbers in activated (purple) and latent (grey)

cells with (B) ϕPKCa = 1.76 yielding fon = 0.1 and (C) ϕPKCa = 3.87 yielding fon = 0.38. The remaining parameters are in

Table 1. (D) Dose-response curve for bryostatin-1 obtained by mapping ϕPKCa to the dosage [D] (symbols) that yield

the measured fon [33] (Inset). The best-fit of the Hill equation (Eq (22)) (solid line) and the 95% confidence interval

(dashed lines) are also shown. The best-fit parameter estimates are ϕ0 = 5.3 ± 0.3 and ϕM = 6 ± 2 nM (R2 = 0.98).

https://doi.org/10.1371/journal.pcbi.1006004.g003
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of [D] not employed in the experiments. The equation fit the data well (Fig 3D). We found that

ϕPKCa rose from 1 when [D] = 0 to ~4.5 when [D] = 10 nM. A further increase in [D] yielded

only a marginal increase in ϕPKCa; ϕPKCa appeared to saturate at ~6 (Fig 3D).

To mimic HDACi’s, we performed simulations with ϕHDACi > 1 while keeping ϕPKCa = 1.

Again, fon increased monotonically with ϕHDACi (Fig 4A). For instance, with ϕHDACi = 1.24, we

found that fon = 0.066 and with ϕHDACi = 1.36, fon = 0.082 (Fig 4B and 4C). We now considered

experimental data for the HDACi’s VPA, TSA, and NaBut [33]. Following the procedure

above, we obtained dose-response curves for each of these drugs linking their concentrations

[D] to ϕHDACi (Fig 4D–4F). The Hill equation again provided good fits to data of all the three

drugs. We found interestingly that ϕHDACi saturated to different values for the three drugs. It

saturated at ~1.5 for VPA, ~2.2 for NaBut, and ~3 for TSA. (Note that for TSA, ϕHDACi did not

saturate in the concentration range studied, but the trend towards saturation was evident. The

best-fit parameters of the Hill equation provided an estimate of the saturating value of ϕHDACi)
Ignoring toxicities, these fits thus allowed rank-ordering of the HDACi’s in terms of the maxi-

mum activation levels they can achieve individually. Accordingly, TSA>NaBut>VPA.

Fig 4. Influence of HDACi’s on latent cell reactivation. (A) The fraction of cells reactivated, fon, as a function of the fold-increase, ϕHDACi, in the rate of HIV-1

transcription, predicted using our stochastic simulations (Methods). Representative realizations showing the time-evolution of protein copy numbers in activated

(purple) and latent (grey) cells with (B) ϕHDACi = 1.24 yielding fon = 0.066 and (C) ϕHDACi = 1.36 yielding fon = 0.0825. The remaining parameters are in Table 1. Dose-

response curves for (D) VPA, (E) NaBut, and (F) TSA, obtained by mapping ϕHDACi to the dosage [D] (symbols) that yield the measured fon [33] (Insets). The best-fits

of the Hill equation (Eq (22)) (solid line) and the 95% confidence interval (dashed lines) are also shown. The best-fit parameter estimates are (D) ϕ0 = 0.57 ± 0.08, ϕM =

1.4 ± 0.5 mM (R2 = 0.98); (E) ϕ0 = 1.35 ± 0.08, ϕM = 1.1 ± 0.2 mM (R2 = 0.99); and (F) ϕ0 = 2.3 ± 0.4, ϕM = 300 ± 100 nM (R2 = 0.99).

https://doi.org/10.1371/journal.pcbi.1006004.g004
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Combinations of PKC agonists and HDACi’s

We next predicted the influence of using bryostatin-1 together with each of the HDACi’s

above and compared our predictions with experiments. Two concentrations of bryostatin-1,

viz., 1 and 10 nM, and three concentrations of the HDACi’s viz., 1, 2.5, and 5 mM for VPA

and NaBut and 100, 200, and 400 nM for TSA, were employed in combination in the experi-

ments [33]. Our dose-response curves above identified the values of ϕPKCa and ϕHDACi corre-

sponding to each of these concentrations. We employed these latter values in our simulations

and predicted fon. We found that our predictions were in good agreement with experiments

(Fig 5). With 10 nM bryostatin-1 and 2.5 mM VPA, we predicted fon = 0.64, whereas the corre-

sponding experimental observation was fon = 0.67 (Fig 5A). With 10 nM bryostatin-1, our sim-

ulations were similarly in excellent agreement with data at other concentrations of VPA (Fig

5A) and all concentrations of NaBut and TSA (Fig 5B and 5C). With 1 nM bryostatin-1, our

simulations were again in good agreement with data in combination with VPA and TSA, but

tended to under-predict data with NaBut, where the data lay at the edge of the 95% confidence

interval of our predictions. Overall, this agreement, without any adjustable parameters, was

remarkable and gave us confidence in our model and our predictions. We applied it next to

estimate the maximum synergy achievable between bryostatin-1 and each of these HDACi’s.

Synergy between PKC agonists and HDACi’s

We performed simulations with a range of values of ϕPKCa and ϕHDACi and estimated fon and

the extent of synergy, β (see Eq (21)), for each pair of values of ϕPKCa and ϕHDACi. To encom-

pass the range in the dose-response curves above, we let ϕPKCa and ϕHDACi both go from 1 to

10. We found that fon rose from its basal value as either ϕPKCa or ϕHDACi increased and eventu-

ally reached a value of 1 at sufficiently high values of these parameters (Fig 6A). For instance,

when both ϕPKCa and ϕHDACi were >5, fon was nearly 1, indicating 100% activation. (Note that

such high values of ϕHDACi are not realizable using the drugs we considered even at the highest

doses, precluding such high activation rates.) Further, because increasing either ϕPKCa or

ϕHDACi can increase fon, a locus of points on a ϕPKCa versus ϕHDACi plot could be identified

that corresponded to a desired fon. For instance, the combination ϕPKCa � 8 and ϕHDACi = 1

yielded fon = 0.9 as did the combination ϕPKCa � 2 and ϕHDACi = 10 and a number of other

Fig 5. Co-stimulation with PKC agonists and HDACi’s. The fraction of cells reactivated, fon, following simultaneous exposure to 1 nM (blue) or 10 nM (red)

bryostatin-1 and (A) VPA, (B) NaBut, and (C) TSA, observed experimentally [33] (symbols) and predicted by our simulations (lines). The values of ϕPKCa and ϕHDACi
corresponding to the individual drug concentrations employed were obtained from the dose-response curves in Figs 3 and 4, respectively. Simulations based on

confidence limits on these parameter values yielded 95% confidence limits on our predictions (shaded regions). All the other parameters are in Table 1.

https://doi.org/10.1371/journal.pcbi.1006004.g005
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combinations in between, yielding the locus for fon = 0.9 (Fig 6A). We thus identified loci for

several values of fon starting from 0.2 to 0.96 (Fig 6A).

Using the simulations above, we calculated β for each pair of values of ϕPKCa and ϕHDACi fol-

lowing Eqs (19)–(21). To calculate β, the increase in fon over the basal level relative to the

increase possible with maximal stimulation (defined by fax in Eq (19)) must be determined. In

experiments, maximal stimulation was achieved by exposing cells to agents such as PMA/I,

which yielded fon = 0.853 [33]. The mechanisms that prevent 100% activation remain unclear.

In our simulations, increasing ϕPKCa or ϕHDACi sufficiently yielded fon = 1. Indeed, under such

circumstances, our simulations agreed with a deterministic model of the HIV-1 latency circuit,

which predicts 100% activation (S1 Text, S3 Fig). Effects, including stochastic ones, that limit

activation following PMA/I exposure may thus exist upstream of the HIV-1 latency circuit we

considered (for instance, in the PKC pathway leading to NF-κB synthesis). Here, based on our

simulations, we let fon corresponding to the maximal stimulation, termed fon (positive control)
in Eq (19), be 1.

We found that β ranged from 1 to ~1.9 as we spanned the range of values of ϕPKCa and

ϕHDACi from 1–10 (Fig 6B). Note that β>1 implies synergy, β<1 antagonism and β = 1 Bliss

independence. We found that β� 1 when either ϕPKCa or ϕHDACi was very low (~1) or very

high (~10). We understood these results as follows. When both ϕPKCa and ϕHDACi were low,

the effect of either drug was negligible. The chance that the drugs acted on the same cell,

given the strong stochastic effects, was small, precluding any synergy. When at least one of

ϕPKCa and ϕHDACi was high, the corresponding drug(s) achieved nearly maximal activation,

leaving little room for the other drug to exert any influence. Synergy therefore was again not

possible.

The drugs interacted synergistically when ϕPKCa and ϕHDACi were both increased moder-

ately above 1. Here, the PKC agonist increased NF-κB synthesis and its LTR binding, leaving

the integrated HIV-1 genome poised for transcription. The HDACi could then accelerate tran-

scription, triggering the Tat-mediated positive feedback and inducing activation. Indeed, we

found that β was maximum, at ~1.9, when ϕPKCa and ϕHDACi were both ~2.2 (Fig 6B). β
decreased as ϕPKCa and ϕHDACi either increased or decreased from these optimal values, which

we visualized using a heat map (Fig 6B).

Fig 6. Synergy between PKC agonists and HDACi’s. (A) The fraction of cells reactivated, fon predicted by our

simulations for different values of ϕPKCa and ϕHDACi, the fold-increase in the rate of NF-κB synthesis and HIV-1

transcription due to a PKC agonist and an HDACi, respectively. The lines are contours of constant fon. (B) The

corresponding synergy between the drugs, β, predicted using Eqs (19)–(21). The maximum synergy is indicated.

https://doi.org/10.1371/journal.pcbi.1006004.g006
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Drug concentrations yielding maximum synergy

We next considered the specific combinations of bryostatin-1 with VPA, TSA, and NaBut.

Using the dose-response curves above, we identified concentrations of bryostatin-1 corre-

sponding to the ϕPKCa values in Fig 6B. Similarly, we identified concentrations of each of the

HDACi’s corresponding to the ϕHDACi values therein. We thus obtained the extent of synergy

achieved at any given concentration of bryostatin-1 used in conjunction with any given con-

centration of any of the HDACi’s. We visualized this dependence of synergy on the concentra-

tions again using heat maps (Fig 7). We could now identify the concentrations that yielded the

maximum synergy. We found that 1.83 nM of bryostatin-1 together with 12.5 mM of NaBut

yielded the maximum synergy of β~1.9 (Fig 7B). Similarly, the same concentration of bryosta-

tin-1 along with 353 nM of TSA yielded β~1.9 (Fig 7C). With VPA, however, the saturation in

the dose-response curve occurred at ϕHDACi ~1.5, which was much lower than the value of

~2.2 corresponding to the maximum synergy. Thus, VPA could only achieve sub-maximal

synergy compared to the other HDACi’s. We found that the maximum synergy achieved

between VPA and bryostatin-1 saturated at β~1.7, which occurred at concentrations of>5

mM and ~1.8 nM, respectively, of the two drugs (Fig 7A).

Synergy-efficacy trade-off

Maximum synergy implies that the "increase" in fon due to the interaction between drugs over

that in the absence of any interaction is the maximum. However, the resulting fon despite the

maximal increase may not be adequately high. Indeed, we found that the values of ϕPKCa and

ϕHDACi that yielded the maximum synergy, β~1.9, corresponded to fon~0.5 (Fig 6B). Higher

drug concentrations would thus be necessary to achieve higher fon. The extent of synergy, how-

ever, would then be compromised. We visualized this trade-off between β and fon by superim-

posing the loci of constant fon on the heat map of β (Fig 8A). As fon increased beyond ~0.5, β
kept decreasing below 1.9.

Given this trade-off, it is of interest to determine the maximum synergy achievable while

ensuring a desired fon. On any locus of fixed fon, we found that β was low when ϕPKCa was high

and ϕHDACi was low and vice versa, whereas β was high at intermediate values of ϕPKCa and

ϕHDACi. We denoted the maximum β on a locus as βopt, to signify the optimum achieved con-

strained by fon. With fon = 0.9, for instance, we found that βopt was 1.69, which occurred at

ϕPKCa~3.7 and ϕHDACi ~3.2. We thus computed βopt as a function of fon (Fig 8B) and also

Fig 7. Drug concentrations yielding maximum synergy. Synergy as a function of the concentrations of bryostatin-1 and (A) VPA, (B) NaBut, and (C) TSA, obtained

by mapping ϕPKCa and ϕHDACi in Fig 6B to drug concentrations using the dose-response curves in Figs 3 and 4. The maximum synergy attainable is indicated.

https://doi.org/10.1371/journal.pcbi.1006004.g007

Synergy-efficacy trade-off in LRA combinations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006004 February 16, 2018 11 / 21

https://doi.org/10.1371/journal.pcbi.1006004.g007
https://doi.org/10.1371/journal.pcbi.1006004


obtained the corresponding values of ϕPKCa and ϕHDACi (Fig 8C). When fon was low, βopt
increased with fon. It reached a maximum at intermediate values of fon and subsequently

declined for higher values of fon (Fig 8B). With fon = 0.96, for instance, βopt was ~1.54. As

expected, ϕPKCa and ϕHDACi corresponding to βopt rose with fon (Fig 8C). Using the dose-

response curves for the individual drugs (Figs 3 and 4), we could now estimate the drug con-

centrations corresponding to βopt as a function of fon (Fig 8D). Note that drug concentrations

could be estimated for values of ϕPKCa and ϕHDACi below the saturation limits in the dose-

response curves; where drug effects saturate, the synergy realizable would be lower than βopt.
We thus found that to achieve fon = 0.8, for instance, we could use bryostatin-1 at 4.6 nM and

TSA at 688 nM, yielding βopt~1.8. Any other combination of concentrations of these drugs

that would yield the same fon would have a lower synergy, resulting in greater drug exposure

than necessary.

Discussion

Eliminating latency in HIV-1 infection has not been possible so far except possibly with the

Berlin patient, who continues to be in remission many years after a successful bone marrow

transplantation [55]. Yet, that the influence of the latent reservoir can be limited to a point

where adaptive immune responses can prevent full-blown infection has been demonstrated by

Fig 8. The synergy-efficacy trade-off. (A) The contours of constant fon (Fig 6A) superimposed on the synergy

heatmap (Fig 6B). (B) The maximum synergy as a function of fon demonstrating the synergy-efficacy trade-off

(symbols). The line is a quadratic fit to guide the eye. (C) The values of ϕPKCa and ϕHDACi that maximize β as functions

of fon and (D) the associated drug concentrations estimated using the dose-response curves (Figs 3 and 4).

https://doi.org/10.1371/journal.pcbi.1006004.g008
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the post-treatment control achieved by a subset of patients in the VISCONTI trial, who follow-

ing early cART initiation have maintained undetectable viral load long after cessation of ther-

apy [56, 57]. Lowering the size of the latent cell reservoir thus presents promise of durable

control of infection and disease progression if not sterilizing cure. Achieving this lowering of

the size of the latent reservoir too has proven a challenge in vivo [11, 12]. Combinations of

LRAs targeting distinct mechanisms underlying HIV-1 latency have shown synergy in vitro
and ex vivo in reactivating latently infected cells [28–39], presenting a potential avenue for

achieving the desired reduction in the latent reservoir in vivo. In the present study, using sto-

chastic simulations that quantitatively captured published in vitro experiments, we unraveled a

trade-off between the synergy and the efficacy of LRA combinations that may constrain their

in vivo potency and may have to be accounted for in defining optimal LRA combinations.

Our simulations build on the framework for recapitulating HIV-1 latency in silico employed

extensively in previous studies [7, 15, 40–42]. The advance our study makes is in incorporating

into the framework the specific steps in the HIV-1 latency circuit affected by two prominent

classes of LRAs and describing experimental observations of latency-reversal with the LRAs

and the associated synergy quantitatively. Specifically, we incorporated NF-κB synthesis, its

nuclear translocation, and its binding to the HIV-1 LTR for initiating HIV-1 transcription, so

that the effects of PKC agonists like bryostatin-1, which upregulate the PKC pathway and

increase NF-κB synthesis [17], could be described. HDACi’s, the other class of drugs we con-

sidered, were assumed to affect the rate of HIV-1 transcription [18]. We estimated the influ-

ence of individual LRAs on these processes by matching our simulations with corresponding

in vitro experiments. Remarkably, without any adjustable parameters, our simulations then

predicted quantitatively experimental observations of the extent of latent cell reactivation

when the LRAs were used in pairs, giving us confidence in our simulations. We used these

simulations to predict the level of synergy expected at a host of concentrations of the drugs not

employed in the experiments and identified the maximum synergy achievable.

The trade-off between synergy and efficacy we unraveled implies that at the drug concen-

trations that yield the maximum synergy, the extent of latent cell reactivation may not be maxi-

mal. Increasing drug concentrations could improve reactivation levels, but would compromise

synergy. Maximizing synergy would minimize drug levels and hence side effects and costs.

The absolute extent of reactivation, however, is likely to be more important clinically, say, for

achieving post-treatment control [57]. The synergy realizable would thus have to be con-

strained by the extent of reactivation desired. We showed that this constrained optimum can

be realized for a specified extent of reactivation by the appropriate choice of drug concentra-

tions. Future experiments, employing a range of concentrations of LRAs used in pairs, as has

been done recently to elucidate the synergy between the noise enhancer V11 and the PKC ago-

nist prostratin [41], could serve to validate our prediction of this synergy-efficacy trade-off.

Based on our simulations, the drugs synergized because the PKC agonists upregulated NF-

κB synthesis, increasing NF-κB bound to LTR, which rendered the HIV-1 genome amenable

to transcription, and the HDACi’s increased the rate of this transcription. The drugs together

thus led to a much higher level of HIV-1 transcription and latent cell reactivation than

achieved by the drugs independently. We recognize that additional mechanisms of synergy

between PKC agonists and HDACi’s have been proposed. For instance, PKC agonists may

increase the production of P-TEFb and HDACi’s may facilitate the release of P-TEFb from the

repressive 7SK snRNP complex [58]. Synergy has also been proposed to arise when HDACi’s

increase the stochastic noise in HIV-1 gene expression and PKC agonists increase the mean

HIV-1 gene expression level [41]. Tat may also contribute to the observed synergy by helping

recruit the PTEF-b complex and other transcriptional elongational factors to the LTR [53, 59]

or by increasing the nuclear uptake of NF-κB by freeing it from the inhibitory molecule IκB
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[60]. We did not consider these latter phenomena explicitly in our simulations. Our goal was

to construct a minimal model of the HIV-1 latency circuit that could describe the influence of

LRA combinations. That our simulations captured experimental observations quantitatively,

without any adjustable parameters, indicated that our formalism was robust; the influence of

the phenomena we ignored was either small in the experiments we considered or was suitably

subsumed in our simulations.

We recognize that toxicity can be a key limitation in defining optimal LRA combinations.

Previous studies have suggested strategies to optimize treatments based on the trade-off

between efficacy and toxicity (e.g., [61]). Our study presents an additional factor, the synergy-

efficacy trade-off, that is expected to be important in optimizing LRA treatments. Where toxic-

ity is not limiting, the synergy-efficacy trade-off may be the defining factor in optimizing treat-

ments. For instance, in vitro studies report that bryostatin-1 is not toxic up to concentrations

of 10 nM [33], well above the concentrations (~2 nM) at which our simulations predict the

maximum synergy. Where toxicity is significant, a more comprehensive formalism that inte-

grates the synergy-efficacy trade-off with the toxicity-efficacy trade-off would serve to identify

optimal LRA combinations. Constructing such a formalism presents a promising avenue for

future studies.

Although in vitro studies, on which our simulations were based, have been widely used to

test drug effects and have led to the identification of LRAs and their synergistic combinations

(e.g., [29, 41, 61]; reviewed in [62]), they do not recapitulate all the complexities of the sce-

nario in vivo [25]. For instance, the extent of reactivation of latent cells appears much higher

in vitro than ex vivo, the latter more akin to the scenario in vivo [25, 26]. Our findings thus

remain to be established ex vivo. Using our simulations to mimic ex vivo data was precluded

by the large variations in the data introduced possibly by inter-patient differences; even with

exposure to global T cell activating stimuli, which should induce maximal latent cell reactiva-

tion, a variation of >2 logs in the fold-induction in intracellular HIV-1 RNA and >3 logs

in supernatant HIV-1 RNA levels has been observed ex vivo [28, 29]. The origins of these

large variations remain to be fully understood. Nonetheless, we applied our simulations to in
vitro data of 3 pairs of LRAs and found the trade-off between synergy and efficacy to be rele-

vant to all the pairs, suggesting that our findings are likely to be more widely applicable,

extending to ex vivo and in vivo settings and to other classes of LRAs. We therefore expect

the synergy-efficacy trade-off to become a potentially important factor in defining optimal

LRA combinations.

Methods

Stochastic simulations of the HIV-1 latency circuit

The events constituting the HIV-1 latency circuit (Fig 1) are listed schematically as reactions

along with their rate constants in the equations below (Eqs (1)–(18)). Events representing the

degradation of the entities involved are also included.

F
�PKCakNFkB
�������!NF � kBc ð1Þ

NF � kBc
kImpNFkB
�����!NF � kBn ð2Þ

LTR þ NF � kBn �����! �����
kOn

kOff

LTRNF ð3Þ
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LTRNF
�HDACikBasal
�������! LTRNF þmRNAn ð4Þ

mRNAn
kExpmRNA
������!mRNAc ð5Þ

mRNAc
kProtein
�����!mRNAc þ P ð6Þ

mRNAc
kTat
����!mRNAc þ Tatc ð7Þ

Tatc
kImpTat
�����! Tatn ð8Þ

LTRNF þ Tatn �����! �����
kBind

kUnbind

LTR � Tatd ð9Þ

LTR � Tatd �����! �����
kAcetyl

kDeacetyl

LTR � Tata ð10Þ

LTR � Tata
�HDACikTransact
���������! LTR þmRNAn þ NF � kBn þ Tatn ð11Þ

NF � kBc
dNFkB
�����!F ð12Þ

NF � kBn
dNFkB
�����!F ð13Þ

mRNAc
dmRNA
�����!F ð14Þ

mRNAn
dmRNA
�����!F ð15Þ

P
dProtein
�����!F ð16Þ

Tatc
dTat
����!F ð17Þ

Tatn
dTat
����!F ð18Þ

We performed stochastic simulations of the above system of events using the Gillespie algo-

rithm implemented in the tool StochKit [63]. The rate constants were obtained from the litera-

ture (Table 1). The production rate of NF-κB, kNFκB, and the basal transcription rate of HIV-1,

kBasal, remained uncertain. We fixed them to mimic experiments (see Results). We set the ini-

tial copy numbers of all species to zero, except LTR, which we set to 1, recognizing that a vast

majority of infected cells harbors single proviruses [64]. Mimicking experiments [33], we ran

the simulations for 24 h. If the protein level, P, in a cell crossed a threshold (see below), we con-

sidered the cell to have been activated. We performed simulations with 2000 cells and com-

puted the fraction of cells that thus got activated. We repeated the simulations 10 times and
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obtained the average fraction of cells activated, which we denoted fon. Increasing the number

of cells or realizations did not affect our results (S4 Fig).

To define the activation threshold, we performed the above simulations in the absence of

NF-κB and Tat. The positive feedback leading to enhanced HIV-1 transcription then does not

occur and cells are bound to remain latent. We therefore set the activation threshold to be suf-

ficiently higher than the maximum protein level achieved in these simulations. We ensured

that variation in this threshold did not affect our results (S2 Fig).

The influence of LRAs and synergy

We performed simulations with ϕPKCa = 1 and ϕHDACi = 1 to mimic experiments without

drugs and with ϕPKCa > 1 and ϕHDACi >1 to mimic the scenario in the presence of PKC ago-

nists and HDACi’s, respectively. To quantify the influence of drugs, we followed previous for-

malisms [28, 33, 61] and defined fon(no drug) and fon (positive control) as the activation level

without drugs and with maximal stimulation. The normalized fraction of cells activated by

drug ‘x’ was then given by

fax ¼
fonðdrug xÞ � fonðno drugÞ

fonðpositive controlÞ � fonðno drugÞ
ð19Þ

The expected activation level if the two drugs were to act independently was “predicted” by

the Bliss independence model:

faxy;P ¼ fax þ fay � faxfay ð20Þ

Here, fax was obtained by setting ϕPKCa > 1 and fay by setting ϕHDACi > 1, respectively. To

mimic the use of the drugs simultaneously, we set both ϕPKCa > 1 and ϕHDACi> 1 and obtained

the “observed” activation level, faxy,O. To quantify the interactions between the drugs, we com-

puted

b ¼
faxy;O
faxy;P

ð21Þ

If β> 1, the drugs act synergistically, whereas if β< 1, they act antagonistically. β = 1 would

imply Bliss independence, i.e., the absence of any interaction between the drugs.

Comparisons with data

We considered the previously reported in vitro data on the activation of latently infected cells

exposed to the PKC agonist bryostatin-1 and the HDACi’s VPA, NaBut, and TSA [33]. To

compare our simulations with the data, we first considered data with single drugs. For each

drug concentration employed, we identified a value of ϕ (either ϕPKCa or ϕHDACi) that yielded

fon in agreement with the corresponding experimental observation. For bryostatin-1, we thus

obtained values of ϕPKCa for the various drug levels employed. Similarly, for each of the HDA-

Ci’s we obtained values of ϕHDACi corresponding to the various drug levels employed. We then

used each pair of these ϕPKCa and ϕHDACi values in our simulations to predict fon when the

drugs were used together.

Optimum synergy

We performed simulations with different combinations of ϕPKCa and ϕHDACi, each spanning

the range from 1 to 10, and estimated β (Eq (21)). The combination of values yielding the max-

imum β yielded the maximum synergy. Simultaneously, the values of fon allowed elucidation of
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the synergy-efficacy trade-off. To estimate drug concentrations corresponding to any specified

β and fon, we constructed dose-response curves for each drug as follows. We employed the esti-

mates of ϕ we obtained above corresponding to the concentrations used in the experiments

and fit the modified Hill equation,

� ¼ 1þ
�0½D�

�M þ ½D�
ð22Þ

to the data, where [D] was the drug concentration, using ϕ0 and ϕM as adjustable parameters.

Note that the modified Hill equation above is identical in form to the standard E-max model

of the influence of drugs [65]. The resulting dose-response curves then allowed us to identify

drug concentrations that would yield the desired β and fon, including the maximum synergy.

We identified these concentrations for bryostatin-1 and each of the three HDACi’s.

We performed data analysis using Python 2.7 [66] and plotted using Matplotlib 1.5.1 [67].

Supporting information

S1 Text. Deterministic model of the HIV-1 latency circuit.

(PDF)

S1 Fig. Threshold protein copy number for activation. Protein copy numbers in cells lacking

Tat and NF-κB obtained by simulating the reduced latency circuit, mRNAc
kProtein
�����! P þmRNAc,

mRNAc
dmRNA
�����!F and P dProtein

�����!F, which captures the protein production following a sin-

gle stochastic transcription event yielding a copy of HIV-1 mRNA. The simulations were thus

performed with the initial conditions mRNA(0) = 1 and P(0) = 0. The mean (line) and stan-

dard deviation (shaded region) of the resulting time-evolution of P from 104 realizations (or

cells) is shown, establishing a lower bound on the threshold P for reactivation of latently

infected cells.

(TIF)

S2 Fig. Simulations with an alternative parameter combination. To test the implications

of alternative parameter combinations, we set the threshold protein copy number for

activation to 300 copies. We found that to capture the basal activation level in experiments,

fon = 0.039 ± 0.003, we had to set kNFκB = 9 × 10−5 molecules s-1 and kBasal = 2.81 × 10−3 s-1.

With these parameter combinations, we calculated fon as a function of (A) ϕPKCa and (B)

ϕHDACi. Following the procedure in Figs 3 and 4, we recalculated the dose-response curves for

(C) bryostatin-1 and (D) VPA. (E) Without adjustable parameters, our simulations (lines—

mean, shaded regions—95% confidence intervals) again captured experimental observations

(symbols) of the influence of using these drugs together quantitatively. Bryostatin-1 concentra-

tions are color-coded: 1 nM (blue) or 10 nM (red).

(TIF)

S3 Fig. Comparison with deterministic model. With high activation levels, obtained using

kNFκB = 5 × 10−2 molecules s-1 and kBasal = 3 × 10−2 s-1, the time-evolution of the protein copy

number predicted by our simulations (blue line) was indistinguishable from that predicted by

a deterministic model (red line) of the HIV-1 latency circuit (S1 Text). The deviations (shaded

region) from the mean (line) in our stochastic simulations were small and all cells were acti-

vated, yielding fon = 1.

(TIF)

S4 Fig. Robustness of simulations. Dependence of fon on ϕHDACi for 3 different values of

ϕPKCa obtained using our simulations with 2000 cells and 10 realizations for each parameter
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combination (squares) compared with the same simulations using 4000 cells (inverted trian-

gles) or 20 realizations (triangles) for each parameter combination. The other parameter values

are in Table 1.

(TIF)

Author Contributions

Conceptualization: Vipul Gupta, Narendra M. Dixit.

Data curation: Vipul Gupta.

Formal analysis: Vipul Gupta, Narendra M. Dixit.

Funding acquisition: Narendra M. Dixit.

Software: Vipul Gupta.

Supervision: Narendra M. Dixit.

Visualization: Vipul Gupta.

Writing – original draft: Vipul Gupta.

Writing – review & editing: Narendra M. Dixit.

References
1. Archin NM, Sung JM, Garrido C, Soriano-Sarabia N, Margolis DM. Eradicating HIV-1 infection: seeking

to clear a persistent pathogen. Nat Rev Microbiol. 2014; 12:750–64. https://doi.org/10.1038/

nrmicro3352 PMID: 25402363

2. Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, et al. Latent infection of CD4+ T

cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination

therapy. Nat Med. 1999; 5:512–7. https://doi.org/10.1038/8394 PMID: 10229227

3. Joos B, Fischer M, Kuster H, Pillai SK, Wong JK, Boni J, et al. HIV rebounds from latently infected cells,

rather than from continuing low-level replication. Proc Natl Acad Sci U S A. 2008; 105:16725–30.

https://doi.org/10.1073/pnas.0804192105 PMID: 18936487

4. Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB, Rosenbloom DI, et al. Replication-competent nonin-

duced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell. 2013; 155:540–51. https://

doi.org/10.1016/j.cell.2013.09.020 PMID: 24243014

5. Whitney JB, Hill AL, Sanisetty S, Penaloza-MacMaster P, Liu J, Shetty M, et al. Rapid seeding of the

viral reservoir prior to SIV viraemia in rhesus monkeys. Nature. 2014; 512:74–7. https://doi.org/10.

1038/nature13594 PMID: 25042999

6. Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB, et al. Long-term follow-up studies

confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med. 2003; 9:727–8.

https://doi.org/10.1038/nm880 PMID: 12754504

7. Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV. Stochastic gene expression in a lenti-

viral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell. 2005; 122:169–82.

https://doi.org/10.1016/j.cell.2005.06.006 PMID: 16051143

8. Ruiz L, Martinez-Picado J, Romeu J, Paredes R, Zayat MK, Marfil S, et al. Structured treatment inter-

ruption in chronically HIV-1 infected patients after long-term viral suppression. AIDS. 2000; 14:397–

403. PMID: 10770542

9. Luzuriaga K, Gay H, Ziemniak C, Sanborn KB, Somasundaran M, Rainwater-Lovett K, et al. Viremic

relapse after HIV-1 remission in a perinatally infected child. N Engl J Med. 2015; 372:786–8. https://doi.

org/10.1056/NEJMc1413931 PMID: 25693029

10. Ruelas Debbie S, Greene Warner C. An integrated overview of HIV-1 latency. Cell. 2013; 155:519–29.

https://doi.org/10.1016/j.cell.2013.09.044 PMID: 24243012

11. Margolis DM, Garcia JV, Hazuda DJ, Haynes BF. Latency reversal and viral clearance to cure HIV-1.

Science. 2016; 353:aaf6517. https://doi.org/10.1126/science.aaf6517 PMID: 27463679

12. Rasmussen TA, Tolstrup M, Sogaard OS. Reversal of latency as part of a cure for HIV-1. Trends Micro-

biol. 2016; 24:90–7. https://doi.org/10.1016/j.tim.2015.11.003 PMID: 26690612

Synergy-efficacy trade-off in LRA combinations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006004 February 16, 2018 18 / 21

https://doi.org/10.1038/nrmicro3352
https://doi.org/10.1038/nrmicro3352
http://www.ncbi.nlm.nih.gov/pubmed/25402363
https://doi.org/10.1038/8394
http://www.ncbi.nlm.nih.gov/pubmed/10229227
https://doi.org/10.1073/pnas.0804192105
http://www.ncbi.nlm.nih.gov/pubmed/18936487
https://doi.org/10.1016/j.cell.2013.09.020
https://doi.org/10.1016/j.cell.2013.09.020
http://www.ncbi.nlm.nih.gov/pubmed/24243014
https://doi.org/10.1038/nature13594
https://doi.org/10.1038/nature13594
http://www.ncbi.nlm.nih.gov/pubmed/25042999
https://doi.org/10.1038/nm880
http://www.ncbi.nlm.nih.gov/pubmed/12754504
https://doi.org/10.1016/j.cell.2005.06.006
http://www.ncbi.nlm.nih.gov/pubmed/16051143
http://www.ncbi.nlm.nih.gov/pubmed/10770542
https://doi.org/10.1056/NEJMc1413931
https://doi.org/10.1056/NEJMc1413931
http://www.ncbi.nlm.nih.gov/pubmed/25693029
https://doi.org/10.1016/j.cell.2013.09.044
http://www.ncbi.nlm.nih.gov/pubmed/24243012
https://doi.org/10.1126/science.aaf6517
http://www.ncbi.nlm.nih.gov/pubmed/27463679
https://doi.org/10.1016/j.tim.2015.11.003
http://www.ncbi.nlm.nih.gov/pubmed/26690612
https://doi.org/10.1371/journal.pcbi.1006004


13. Deeks SG, Lewin SR, Ross AL, Ananworanich J, Benkirane M, Cannon P, et al. International AIDS

Society global scientific strategy: towards an HIV cure 2016. Nat Med. 2016; 22:839–50. https://doi.org/

10.1038/nm.4108 PMID: 27400264

14. Margolis DM, Archin NM. Proviral latency, persistent human immunodeficiency virus infection, and the

development of latency reversing agents. J Infect Dis. 2017; 215:S111–S8. https://doi.org/10.1093/

infdis/jiw618 PMID: 28520964

15. Razooky BS, Pai A, Aull K, Rouzine IM, Weinberger LS. A hardwired HIV latency program. Cell. 2015;

160:990–1001. https://doi.org/10.1016/j.cell.2015.02.009 PMID: 25723172

16. Besnard E, Hakre S, Kampmann M, Lim HW, Hosmane NN, Martin A, et al. The mTOR complex con-

trols HIV latency. Cell Host Microbe. 2016; 20:785–97. https://doi.org/10.1016/j.chom.2016.11.001

PMID: 27978436

17. Jiang G, Dandekar S. Targeting NF-kappaB signaling with protein kinase C agonists as an emerging

strategy for combating HIV latency. AIDS Res Hum Retroviruses. 2015; 31:4–12. https://doi.org/10.

1089/AID.2014.0199 PMID: 25287643

18. Margolis DM. Histone deacetylase inhibitors and HIV latency. Curr Opin HIV AIDS. 2011; 6:25–9.

https://doi.org/10.1097/COH.0b013e328341242d PMID: 21242890

19. Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM, et al. Administration of vori-

nostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature. 2012; 487:482–5. https://doi.

org/10.1038/nature11286 PMID: 22837004

20. Sogaard OS, Graversen ME, Leth S, Olesen R, Brinkmann CR, Nissen SK, et al. The depsipeptide

romidepsin reverses HIV-1 latency in vivo. PLoS Pathog. 2015; 11:e1005142. https://doi.org/10.1371/

journal.ppat.1005142 PMID: 26379282

21. Elliott JH, McMahon JH, Chang CC, Lee SA, Hartogensis W, Bumpus N, et al. Short-term administra-

tion of disulfiram for reversal of latent HIV infection: a phase 2 dose-escalation study. Lancet HIV. 2015;

2:e520–9. https://doi.org/10.1016/S2352-3018(15)00226-X PMID: 26614966

22. Gutierrez C, Serrano-Villar S, Madrid-Elena N, Perez-Elias MJ, Martin ME, Barbas C, et al. Bryostatin-1

for latent virus reactivation in HIV-infected patients on antiretroviral therapy. AIDS. 2016; 30:1385–92.

https://doi.org/10.1097/QAD.0000000000001064 PMID: 26891037

23. Rasmussen TA, Tolstrup M, Brinkmann CR, Olesen R, Erikstrup C, Solomon A, et al. Panobinostat, a

histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antire-

troviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV. 2014; 1:e13–21. https://doi.org/10.

1016/S2352-3018(14)70014-1 PMID: 26423811

24. Delagreverie HM, Delaugerre C, Lewin SR, Deeks SG, Li JZ. Ongoing clinical trials of human immuno-

deficiency virus latency-reversing and immunomodulatory agents. Open Forum Infect Dis. 2016; 3:

ofw189. https://doi.org/10.1093/ofid/ofw189 PMID: 27757411

25. Bullen CK, Laird GM, Durand CM, Siliciano JD, Siliciano RF. New ex vivo approaches distinguish effec-

tive and ineffective single agents for reversing HIV-1 latency in vivo. Nat Med. 2014; 20:425–9. https://

doi.org/10.1038/nm.3489 PMID: 24658076

26. Cillo AR, Sobolewski MD, Bosch RJ, Fyne E, Piatak M Jr., Coffin JM, et al. Quantification of HIV-1

latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy. Proc Natl

Acad Sci U S A. 2014; 111:7078–83. https://doi.org/10.1073/pnas.1402873111 PMID: 24706775

27. Hosmane NN, Kwon KJ, Bruner KM, Capoferri AA, Beg S, Rosenbloom DIS, et al. Proliferation of

latently infected CD4(+) T cells carrying replication-competent HIV-1: Potential role in latent reservoir

dynamics. J Exp Med. 2017; 214:959–72. https://doi.org/10.1084/jem.20170193 PMID: 28341641

28. Laird GM, Bullen CK, Rosenbloom DI, Martin AR, Hill AL, Durand CM, et al. Ex vivo analysis identifies

effective HIV-1 latency-reversing drug combinations. J Clin Invest. 2015; 125:1901–12. https://doi.org/

10.1172/JCI80142 PMID: 25822022

29. Darcis G, Kula A, Bouchat S, Fujinaga K, Corazza F, Ait-Ammar A, et al. An in-depth comparison of

latency-reversing agent combinations in various in vitro and ex vivo HIV-1 latency models identified

bryostatin-1+JQ1 and ingenol-B+JQ1 to potently reactivate viral gene expression. PLoS Pathog. 2015;

11:e1005063. https://doi.org/10.1371/journal.ppat.1005063 PMID: 26225566

30. Quivy V, Adam E, Collette Y, Demonte D, Chariot A, Vanhulle C, et al. Synergistic activation of human

immunodeficiency virus type 1 promoter activity by NF-kappaB and inhibitors of deacetylases: potential

perspectives for the development of therapeutic strategies. J Virol. 2002; 76:11091–103. https://doi.org/

10.1128/JVI.76.21.11091-11103.2002 PMID: 12368351

31. Reuse S, Calao M, Kabeya K, Guiguen A, Gatot JS, Quivy V, et al. Synergistic activation of HIV-1

expression by deacetylase inhibitors and prostratin: implications for treatment of latent infection. PLoS

One. 2009; 4:e6093. https://doi.org/10.1371/journal.pone.0006093 PMID: 19564922

Synergy-efficacy trade-off in LRA combinations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006004 February 16, 2018 19 / 21

https://doi.org/10.1038/nm.4108
https://doi.org/10.1038/nm.4108
http://www.ncbi.nlm.nih.gov/pubmed/27400264
https://doi.org/10.1093/infdis/jiw618
https://doi.org/10.1093/infdis/jiw618
http://www.ncbi.nlm.nih.gov/pubmed/28520964
https://doi.org/10.1016/j.cell.2015.02.009
http://www.ncbi.nlm.nih.gov/pubmed/25723172
https://doi.org/10.1016/j.chom.2016.11.001
http://www.ncbi.nlm.nih.gov/pubmed/27978436
https://doi.org/10.1089/AID.2014.0199
https://doi.org/10.1089/AID.2014.0199
http://www.ncbi.nlm.nih.gov/pubmed/25287643
https://doi.org/10.1097/COH.0b013e328341242d
http://www.ncbi.nlm.nih.gov/pubmed/21242890
https://doi.org/10.1038/nature11286
https://doi.org/10.1038/nature11286
http://www.ncbi.nlm.nih.gov/pubmed/22837004
https://doi.org/10.1371/journal.ppat.1005142
https://doi.org/10.1371/journal.ppat.1005142
http://www.ncbi.nlm.nih.gov/pubmed/26379282
https://doi.org/10.1016/S2352-3018(15)00226-X
http://www.ncbi.nlm.nih.gov/pubmed/26614966
https://doi.org/10.1097/QAD.0000000000001064
http://www.ncbi.nlm.nih.gov/pubmed/26891037
https://doi.org/10.1016/S2352-3018(14)70014-1
https://doi.org/10.1016/S2352-3018(14)70014-1
http://www.ncbi.nlm.nih.gov/pubmed/26423811
https://doi.org/10.1093/ofid/ofw189
http://www.ncbi.nlm.nih.gov/pubmed/27757411
https://doi.org/10.1038/nm.3489
https://doi.org/10.1038/nm.3489
http://www.ncbi.nlm.nih.gov/pubmed/24658076
https://doi.org/10.1073/pnas.1402873111
http://www.ncbi.nlm.nih.gov/pubmed/24706775
https://doi.org/10.1084/jem.20170193
http://www.ncbi.nlm.nih.gov/pubmed/28341641
https://doi.org/10.1172/JCI80142
https://doi.org/10.1172/JCI80142
http://www.ncbi.nlm.nih.gov/pubmed/25822022
https://doi.org/10.1371/journal.ppat.1005063
http://www.ncbi.nlm.nih.gov/pubmed/26225566
https://doi.org/10.1128/JVI.76.21.11091-11103.2002
https://doi.org/10.1128/JVI.76.21.11091-11103.2002
http://www.ncbi.nlm.nih.gov/pubmed/12368351
https://doi.org/10.1371/journal.pone.0006093
http://www.ncbi.nlm.nih.gov/pubmed/19564922
https://doi.org/10.1371/journal.pcbi.1006004


32. Burnett JC, Lim KI, Calafi A, Rossi JJ, Schaffer DV, Arkin AP. Combinatorial latency reactivation for

HIV-1 subtypes and variants. J Virol. 2010; 84:5958–74. https://doi.org/10.1128/JVI.00161-10 PMID:

20357084

33. Perez M, de Vinuesa AG, Sanchez-Duffhues G, Marquez N, Bellido ML, Munoz-Fernandez MA, et al.

Bryostatin-1 synergizes with histone deacetylase inhibitors to reactivate HIV-1 from latency. Curr HIV

Res. 2010; 8:418–29. PMID: 20636281

34. Martinez-Bonet M, Clemente MI, Serramia MJ, Munoz E, Moreno S, Munoz-Fernandez MA. Synergistic

activation of latent HIV-1 expression by novel histone deacetylase inhibitors and bryostatin-1. Sci Rep.

2015; 5:16445. https://doi.org/10.1038/srep16445 PMID: 26563568

35. Jiang G, Mendes EA, Kaiser P, Wong DP, Tang Y, Cai I, et al. Synergistic reactivation of latent HIV

expression by ingenol-3-angelate, PEP005, targeted NF-kB signaling in combination with JQ1 induced

p-TEFb activation. PLoS Pathog. 2015; 11:e1005066. https://doi.org/10.1371/journal.ppat.1005066

PMID: 26225771

36. Bouchat S, Delacourt N, Kula A, Darcis G, Van Driessche B, Corazza F, et al. Sequential treatment with

5-aza-2’-deoxycytidine and deacetylase inhibitors reactivates HIV-1. EMBO Mol Med. 2016; 8:117–38.

https://doi.org/10.15252/emmm.201505557 PMID: 26681773

37. Chen D, Wang H, Aweya JJ, Chen Y, Chen M, Wu X, et al. HMBA enhances prostratin-induced activa-

tion of latent HIV-1 via suppressing the expression of negative feedback regulator A20/TNFAIP3 in NF-

kappaB signaling. Biomed Res Int. 2016; 2016:5173205. https://doi.org/10.1155/2016/5173205 PMID:

27529070

38. Cary DC, Fujinaga K, Peterlin BM. Euphorbia kansui reactivates latent HIV. PLoS One. 2016; 11:

e0168027. https://doi.org/10.1371/journal.pone.0168027 PMID: 27977742

39. Chen HC, Martinez JP, Zorita E, Meyerhans A, Filion GJ. Position effects influence HIV latency rever-

sal. Nat Struct Mol Biol. 2017; 24:47–54. https://doi.org/10.1038/nsmb.3328 PMID: 27870832

40. Althaus CL, De Boer RJ. Intracellular transactivation of HIV can account for the decelerating decay of

virus load during drug therapy. Mol Syst Biol. 2010; 6:348. https://doi.org/10.1038/msb.2010.4 PMID:

20160709

41. Dar RD, Hosmane NN, Arkin MR, Siliciano RF, Weinberger LS. Screening for noise in gene expression

identifies drug synergies. Science. 2014; 344:1392–6. https://doi.org/10.1126/science.1250220 PMID:

24903562

42. Chavali AK, Wong VC, Miller-Jensen K. Distinct promoter activation mechanisms modulate noise-

driven HIV gene expression. Sci Rep. 2015; 5:17661. https://doi.org/10.1038/srep17661 PMID:

26666681

43. Weinberger LS, Shenk T. An HIV feedback resistor: auto-regulatory circuit deactivator and noise buffer.

PLoS Biol. 2007; 5:e9. https://doi.org/10.1371/journal.pbio.0050009 PMID: 17194214

44. Hill AL, Rosenbloom DI, Fu F, Nowak MA, Siliciano RF. Predicting the outcomes of treatment to eradi-

cate the latent reservoir for HIV-1. Proc Natl Acad Sci U S A. 2014; 111:13475–80. https://doi.org/10.

1073/pnas.1406663111 PMID: 25097264

45. Hill AL, Rosenbloom DI, Goldstein E, Hanhauser E, Kuritzkes DR, Siliciano RF, et al. Real-time predic-

tions of reservoir size and rebound time during antiretroviral therapy interruption trials for HIV. PLoS

Pathog. 2016; 12:e1005535. https://doi.org/10.1371/journal.ppat.1005535 PMID: 27119536

46. Conway JM, Coombs D. A stochastic model of latently infected cell reactivation and viral blip generation

in treated HIV patients. PLoS Comput Biol. 2011; 7:e1002033. https://doi.org/10.1371/journal.pcbi.

1002033 PMID: 21552334

47. Rouzine IM, Weinberger AD, Weinberger LS. An evolutionary role for HIV latency in enhancing viral

transmission. Cell. 2015; 160:1002–12. https://doi.org/10.1016/j.cell.2015.02.017 PMID: 25723173

48. Pinkevych M, Cromer D, Tolstrup M, Grimm AJ, Cooper DA, Lewin SR, et al. HIV Reactivation from

latency after treatment interruption occurs on average every 5–8 days—Implications for HIV remission.

PLoS Pathog. 2015; 11:e1005000. https://doi.org/10.1371/journal.ppat.1005000 PMID: 26133551

49. Li Q, Verma IM. NF-[kappa]B regulation in the immune system. Nat Rev Immunol. 2002; 2:725–34.

https://doi.org/10.1038/nri910 PMID: 12360211

50. Stroud JC, Oltman A, Han A, Bates DL, Chen L. Structural basis of HIV-1 activation by NF-kappaB—a

higher-order complex of p50:RelA bound to the HIV-1 LTR. J Mol Biol. 2009; 393:98–112. https://doi.

org/10.1016/j.jmb.2009.08.023 PMID: 19683540

51. Van Lint C, Bouchat S, Marcello A. HIV-1 transcription and latency: an update. Retrovirology. 2013;

10:67. https://doi.org/10.1186/1742-4690-10-67 PMID: 23803414

52. Doppler C, Schalasta G, Amtmann E, Sauer G. Binding of NF-kB to the HIV-1 LTR is not sufficient to

induce HIV-1 LTR activity. AIDS Res Hum Retroviruses. 1992; 8:245–52. https://doi.org/10.1089/aid.

1992.8.245 PMID: 1540410

Synergy-efficacy trade-off in LRA combinations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006004 February 16, 2018 20 / 21

https://doi.org/10.1128/JVI.00161-10
http://www.ncbi.nlm.nih.gov/pubmed/20357084
http://www.ncbi.nlm.nih.gov/pubmed/20636281
https://doi.org/10.1038/srep16445
http://www.ncbi.nlm.nih.gov/pubmed/26563568
https://doi.org/10.1371/journal.ppat.1005066
http://www.ncbi.nlm.nih.gov/pubmed/26225771
https://doi.org/10.15252/emmm.201505557
http://www.ncbi.nlm.nih.gov/pubmed/26681773
https://doi.org/10.1155/2016/5173205
http://www.ncbi.nlm.nih.gov/pubmed/27529070
https://doi.org/10.1371/journal.pone.0168027
http://www.ncbi.nlm.nih.gov/pubmed/27977742
https://doi.org/10.1038/nsmb.3328
http://www.ncbi.nlm.nih.gov/pubmed/27870832
https://doi.org/10.1038/msb.2010.4
http://www.ncbi.nlm.nih.gov/pubmed/20160709
https://doi.org/10.1126/science.1250220
http://www.ncbi.nlm.nih.gov/pubmed/24903562
https://doi.org/10.1038/srep17661
http://www.ncbi.nlm.nih.gov/pubmed/26666681
https://doi.org/10.1371/journal.pbio.0050009
http://www.ncbi.nlm.nih.gov/pubmed/17194214
https://doi.org/10.1073/pnas.1406663111
https://doi.org/10.1073/pnas.1406663111
http://www.ncbi.nlm.nih.gov/pubmed/25097264
https://doi.org/10.1371/journal.ppat.1005535
http://www.ncbi.nlm.nih.gov/pubmed/27119536
https://doi.org/10.1371/journal.pcbi.1002033
https://doi.org/10.1371/journal.pcbi.1002033
http://www.ncbi.nlm.nih.gov/pubmed/21552334
https://doi.org/10.1016/j.cell.2015.02.017
http://www.ncbi.nlm.nih.gov/pubmed/25723173
https://doi.org/10.1371/journal.ppat.1005000
http://www.ncbi.nlm.nih.gov/pubmed/26133551
https://doi.org/10.1038/nri910
http://www.ncbi.nlm.nih.gov/pubmed/12360211
https://doi.org/10.1016/j.jmb.2009.08.023
https://doi.org/10.1016/j.jmb.2009.08.023
http://www.ncbi.nlm.nih.gov/pubmed/19683540
https://doi.org/10.1186/1742-4690-10-67
http://www.ncbi.nlm.nih.gov/pubmed/23803414
https://doi.org/10.1089/aid.1992.8.245
https://doi.org/10.1089/aid.1992.8.245
http://www.ncbi.nlm.nih.gov/pubmed/1540410
https://doi.org/10.1371/journal.pcbi.1006004


53. Karn J, Stoltzfus CM. Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold

Spring Harb Perspect Med. 2012; 2:a006916. https://doi.org/10.1101/cshperspect.a006916 PMID:

22355797

54. Gillespie DT. Stochastic simulation of chemical kinetics. Annu Rev Phys Chem. 2007; 58:35–55.

https://doi.org/10.1146/annurev.physchem.58.032806.104637 PMID: 17037977

55. Brown TR. I am the Berlin patient: a personal reflection. AIDS Res Hum Retroviruses. 2015; 31:2–3.

https://doi.org/10.1089/AID.2014.0224 PMID: 25328084

56. Saez-Cirion A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I, Lecuroux C, et al. Post-treat-

ment HIV-1 controllers with a long-term virological remission after the interruption of early initiated anti-

retroviral therapy ANRS VISCONTI Study. PLoS Pathog. 2013; 9:e1003211. https://doi.org/10.1371/

journal.ppat.1003211 PMID: 23516360

57. Conway JM, Perelson AS. Post-treatment control of HIV infection. Proc Natl Acad Sci U S A. 2015;

112:5467–72. https://doi.org/10.1073/pnas.1419162112 PMID: 25870266

58. Bartholomeeusen K, Fujinaga K, Xiang Y, Peterlin BM. Histone deacetylase inhibitors (HDACis) that

release the positive transcription elongation factor b (P-TEFb) from its inhibitory complex also activate

HIV transcription. J Biol Chem. 2013; 288:14400–7. https://doi.org/10.1074/jbc.M113.464834 PMID:

23539624

59. Sobhian B, Laguette N, Yatim A, Nakamura M, Levy Y, Kiernan R, et al. HIV-1 Tat assembles a multi-

functional transcription elongation complex and stably associates with the 7SK snRNP. Mol Cell. 2010;

38:439–51. https://doi.org/10.1016/j.molcel.2010.04.012 PMID: 20471949

60. Fiume G, Vecchio E, De Laurentiis A, Trimboli F, Palmieri C, Pisano A, et al. Human immunodeficiency

virus-1 Tat activates NF-κB via physical interaction with IκB-α and p65. Nucleic Acids Res. 2012;

40:3548–62. https://doi.org/10.1093/nar/gkr1224 PMID: 22187158

61. Wong VC, Fong LE, Adams NM, Xue Q, Dey SS, Miller-Jensen K. Quantitative evaluation and optimiza-

tion of co-drugging to improve anti-HIV latency therapy. Cell Mol Bioeng. 2014; 7:320–33. https://doi.

org/10.1007/s12195-014-0336-9 PMID: 26191086

62. Spina CA, Anderson J, Archin NM, Bosque A, Chan J, Famiglietti M, et al. An in-depth comparison of

latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients.

PLoS Pathog. 2013; 9:e1003834. https://doi.org/10.1371/journal.ppat.1003834 PMID: 24385908

63. Sanft KR, Wu S, Roh M, Fu J, Lim RK, Petzold LR. StochKit2: software for discrete stochastic simula-

tion of biochemical systems with events. Bioinformatics. 2011; 27:2457–8. https://doi.org/10.1093/

bioinformatics/btr401 PMID: 21727139

64. Josefsson L, King MS, Makitalo B, Brannstrom J, Shao W, Maldarelli F, et al. Majority of CD4+ T cells

from peripheral blood of HIV-1-infected individuals contain only one HIV DNA molecule. Proc Natl Acad

Sci USA. 2011; 108:11199–204. https://doi.org/10.1073/pnas.1107729108 PMID: 21690402

65. Felmlee MA, Morris ME, Mager DE. Mechanism-based pharmacodynamic modeling. Methods Mol Biol.

2012; 929:583–600. https://doi.org/10.1007/978-1-62703-050-2_21 PMID: 23007443

66. Sanner MF. Python: A programming language for software integration and development. J Mol Graph

Model. 1999; 17:57–61. PMID: 10660911

67. Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng. 2007; 9:90–5.

68. Werner SL, Barken D, Hoffmann A. Stimulus specificity of gene expression programs determined by

temporal control of IKK activity. Science. 2005; 309:1857–61. https://doi.org/10.1126/science.1113319

PMID: 16166517

69. Eden E, Geva-Zatorsky N, Issaeva I, Cohen A, Dekel E, Danon T, et al. Proteome half-life dynamics in

living human cells. Science. 2011; 331:764–8. https://doi.org/10.1126/science.1199784 PMID:

21233346

Synergy-efficacy trade-off in LRA combinations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006004 February 16, 2018 21 / 21

https://doi.org/10.1101/cshperspect.a006916
http://www.ncbi.nlm.nih.gov/pubmed/22355797
https://doi.org/10.1146/annurev.physchem.58.032806.104637
http://www.ncbi.nlm.nih.gov/pubmed/17037977
https://doi.org/10.1089/AID.2014.0224
http://www.ncbi.nlm.nih.gov/pubmed/25328084
https://doi.org/10.1371/journal.ppat.1003211
https://doi.org/10.1371/journal.ppat.1003211
http://www.ncbi.nlm.nih.gov/pubmed/23516360
https://doi.org/10.1073/pnas.1419162112
http://www.ncbi.nlm.nih.gov/pubmed/25870266
https://doi.org/10.1074/jbc.M113.464834
http://www.ncbi.nlm.nih.gov/pubmed/23539624
https://doi.org/10.1016/j.molcel.2010.04.012
http://www.ncbi.nlm.nih.gov/pubmed/20471949
https://doi.org/10.1093/nar/gkr1224
http://www.ncbi.nlm.nih.gov/pubmed/22187158
https://doi.org/10.1007/s12195-014-0336-9
https://doi.org/10.1007/s12195-014-0336-9
http://www.ncbi.nlm.nih.gov/pubmed/26191086
https://doi.org/10.1371/journal.ppat.1003834
http://www.ncbi.nlm.nih.gov/pubmed/24385908
https://doi.org/10.1093/bioinformatics/btr401
https://doi.org/10.1093/bioinformatics/btr401
http://www.ncbi.nlm.nih.gov/pubmed/21727139
https://doi.org/10.1073/pnas.1107729108
http://www.ncbi.nlm.nih.gov/pubmed/21690402
https://doi.org/10.1007/978-1-62703-050-2_21
http://www.ncbi.nlm.nih.gov/pubmed/23007443
http://www.ncbi.nlm.nih.gov/pubmed/10660911
https://doi.org/10.1126/science.1113319
http://www.ncbi.nlm.nih.gov/pubmed/16166517
https://doi.org/10.1126/science.1199784
http://www.ncbi.nlm.nih.gov/pubmed/21233346
https://doi.org/10.1371/journal.pcbi.1006004

