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Disentangling entanglements in biopolymer
solutions
Philipp Lang1 & Erwin Frey 1

Reptation theory has been highly successful in explaining the unusual material properties of

entangled polymer solutions. It reduces the complex many-body dynamics to a single-

polymer description, where each polymer is envisaged to be confined to a tube through which

it moves in a snake-like fashion. For flexible polymers, reptation theory has been amply

confirmed by both experiments and simulations. In contrast, for semiflexible polymers,

experimental and numerical tests are either limited to the onset of reptation, or were per-

formed for tracer polymers in a fixed, static matrix. Here, we report Brownian dynamics

simulations of entangled solutions of semiflexible polymers, which show that curvilinear

motion along a tube (reptation) is no longer the dominant mode of dynamics. Instead, we find

that polymers disentangle due to correlated constraint release, which leads to equilibration of

internal bending modes before polymers diffuse the full tube length. The physical mechanism

underlying terminal stress relaxation is rotational diffusion mediated by disentanglement

rather than curvilinear motion along a tube.
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Dense solutions of polymers are viscoelastic: while they
respond like a fluid to low-frequency stresses, they act like
a cross-linked elastic network at high frequencies. These

intriguing material properties are attributed to the extended
structure of polymers, which makes topological interactions
particularly important. Polymers can effortlessly slide past each
other but are not allowed to cross each other’s path. These
‘entanglements’ mutually restrict the accessible configuration
space, turning the dynamics of polymer solutions into a difficult
many-body problem. Efforts to incorporate these features into a
single-polymer mean-field model led to the famous tube model1–
3. In this model, the dynamic topological constraints on the
motion of a given polymer are represented as a static, confining
tube1. By this means, the single-polymer dynamics in an entan-
gled solution is reduced to the curvilinear Brownian motion of its
centre of mass along the long axis of the tube2, termed ‘reptation’.
For flexible polymers, reptation theory is well established and also
fairly predictive4–7, though there are still many interesting open
questions8.

Reptation theory has also been employed to elucidate the vis-
coelastic properties of entangled solutions of semiflexible poly-
mers, which play an important role in determining the material
properties of biopolymer solutions9. While scaling theories for the
tube width10,11 have been convincingly verified, both experi-
mentally12 and numerically13, the predictions of reptation theory
for the long-time dynamics and the ensuing (terminal) stress
relaxation remain controversial for several reasons. First, different
scaling theories lead to conflicting results for the dependence of
the terminal relaxation time τr on polymer length L, persistence
length ‘p and mesh size ξ: Results range from3 τr ~ L7/ξ4

through10 τr � ‘pL2 to14 τr � ð‘p=ξÞ2=3L3. Recent experimental
studies15 of the Brownian motion of carbon nanotubes in porous
agarose networks seem to support Odijk’s scaling result3

τr � ‘pL2. However, these experimental results do not settle the
actual controversy, as the polymer diffuses in a fixed, static matrix
and not in an entangled polymer solution. Experiments on
entangled solutions are sparse and mostly investigate the
dynamics in the plateau regime, where polymers experience tube
confinement but do not yet show curvilinear motion along the
tube16–18. Unfortunately, these studies provide no explicit infor-
mation on the dependence of the terminal relaxation time on
polymer length and persistence length19. Furthermore, whether
or not reptation, i.e., curvilinear motion along some ‘primitive
path’, is the actual mechanism of stress relaxation has never been
tested experimentally or by means of computer simulations.
While there are experiments reporting the direct observation of
filament dynamics within a tube and sliding motion along the
tube20,21, following the polymer dynamics over longer time scales
poses a formidable experimental challenge and has not yet been
realised. Similarly, previous Brownian dynamics simulations span
the regime up to intermediate time scales, where the tube forms,
but do not extend deeply enough into the terminal relaxation
regime13.

Here, we present a large-scale Brownian dynamics simulation
study and a complementary scaling approach for the dynamics of
entangled solutions of semiflexible polymers. We consider a
monodisperse solution of worm-like chains with length L and
persistence length ‘p that interact by volume exclusion only. The
polymer density is given by the number ν of polymers per unit

volume, with the mesh size defined as ξ :¼
ffiffiffiffi
3
νL

q
; for an illustra-

tion, refer to Fig. 1. We are mainly interested in the dynamics of
semiflexible polymers (‘p ≳ L) at densities where the polymer
length is much larger than the mesh size L � ξ, but lies below the
threshold of the isotropic-to-nematic transition. For example, in a
typical solution of actin filaments of length L ≈ 10 μm at a

number density ν ≈ 1 μm−3, the average mesh size is ξ ≈ 0.5 μm,
and is therefore much smaller than both L and ‘p ≈ 17 μm22. The
polymer dynamics is governed by a Langevin equation

ζ∂trki ¼ � ∂U
∂rki

þ η; ð1Þ

where rki ðtÞ is the position vector of bead i ∈ {1,…, N} on polymer
k. The potential U accounts for the bending energy of each fila-
ment as well as the mutual steric interaction between the fila-
ments, ζ denotes the friction coefficient and η is Gaussian white
noise with an amplitude determined by the Stokes–Einstein
relation; for further details, see 'Methods' section. Our Brownian
dynamics simulations employ a standard bead-spring algorithm,
as explained in 'Methods' section.

Results
Fluctuations in the end-to-end distance. To learn how the
polymers first entangle and then disentangle, i.e., how topological
constraints emerge and are released, we studied the dynamics of
individual (tracer) polymers in an entangled polymer solution; see
Supplementary Movie 1. We began our analysis by measuring the
time evolution of the mean-squared displacement (MSD) of the
end-to-end distance ('Methods' section), δR2(t), thus focusing on
the relaxation of the internal modes and disregarding any global
translation or rotation of the polymer. We find three distinct
regimes (Fig. 2): initially, the MSD of the end-to-end distance
increases as a power law, δR2(t) ∼ t3/4; this agrees with pre-
vious experimental observations for freely relaxing semiflexible
polymers22 as well as the corresponding theoretical predic-
tions14,23–26. It is followed by an intermediate regime where δR2

(t) increases more slowly, indicating that the internal bending
modes are constrained by the surrounding polymers. We refer to
the corresponding time scale marking the crossover from free to
constrained relaxation as the ‘entanglement time’ τe. Finally, we
observe at some ‘equilibration time’ τeq that the MSD end-to-end
distance begins to saturate. As the measured saturation value is
identical to the thermal equilibrium value22,27 δR2

eq ¼ 1
45 L

4=‘2p,
the bending modes are now fully relaxed and are thus no longer
constrained by the surrounding polymers. In other words, the
internal bending modes are disentangled.

Initial entanglement is described by Odijk–Semenov scaling.
According to the scaling theory for semiflexible polymers by

pp

�

Fig. 1 Illustration of an entangled polymer solution. Typical configuration of
a tracer filament (red) with persistence length ‘p=L ¼ 0:44 in an entangled
solution with relative mesh size ξ/L= 0.1. For better visibility of the
surrounding chains (grey), only those in direct proximity to the tracer
filament are shown. The dynamics of an entangled solution on different
time scales is illustrated in Supplementary Movie 1
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Odijk10 and Semenov11, topological constraints imposed by
neighbouring polymers can effectively be described by a tube of
diameter d � ξ6=5‘�1=5

p , which leads to a restriction of the
bending fluctuations of the confined polymer for lengths larger
than the ‘entanglement length’ Le � d2‘p

� �1=3
(for an illustration,

see Supplementary Movie 2). This implies that the dynamics of
the end-to-end distance will begin to deviate from free relaxation
at the corresponding ‘entanglement time’ τe � L4e=‘p. All these
scaling results for the physics of initial entanglement are in full
accordance with our Brownian dynamics simulations (Supple-
mentary Note 2). To avoid ambiguities, we chose to define the

tube diameter d as that value of the transverse fluctuations g1,⊥ (t)
(see 'Methods' section), where it starts to deviate from the t3/4

behaviour of free polymers (Supplementary Fig. 7). This deter-
mines both the tube diameter d (Supplementary Fig. 8) and the
entanglement time τe, and with τe � L4e=‘p also the entanglement
length Le (Supplementary Fig. 9), with all numerical results fully
supporting Odijk–Semenov scaling.

Bending fluctuations equilibrate faster than the diffusion time.
The caging effect of the tube on the bending fluctuations is only
transient, as the polymers surrounding the tracer polymer
themselves move through bending fluctuations, centre of mass
and rotational diffusion. Hence, at some equilibration time τeq,
the tube will effectively begin to ‘dissolve’ (Supplementary
Movie 2 and Supplementary Fig. 10). Surprisingly, we find that
this happens well before the polymer diffuses the full length of the
tube, τeq< τd, where the ‘diffusion time’ τd = ζL3/(6kBT) is defined
as the time a rod takes to diffuse its own length L. A compre-
hensive analysis of our Brownian dynamics simulations (Sup-
plementary Note 3) shows that the equilibration time τeq is
independent of the persistence length (Supplementary Fig. 11)
and given by τeq = 2.7 × 10−4L5/ξ2 (Supplementary Fig. 12).

Constraint release is due to correlated filament motion. What
then drives the release of the N× ~ L/ξ topological constraints and
thereby determines the equilibration time τeq? As one expects that
each of these constraints is released independently, the equili-
bration time should scale as τeq � N2

´ τ ´ , where τ× denotes the
relaxation time of a single topological constraint. At first sight,
our simulations seem to suggest that the constraint release time
equals the diffusion time, τ× = τd (Supplementary Fig. 13), but this
is clearly inconsistent with τeq< τd. To disentangle these puzzling
results, we exploited a unique strength of Brownian dynamics
simulations, namely that they allow one to adjust the length and
friction coefficient of each individual polymer in the solution
(Supplementary Note 3). First, we investigated the dynamics of a
tracer polymer of length L in an entangled solution of polymers
with a shorter length Ln, and found τeq � N2

´ LnL
2 (Fig. 2b and

Supplementary Fig. 14). This scaling behaviour cannot be
explained by a classical constraint release mechanism5,28 based on
sliding motion of the shorter filaments only, as the latter would
predict τcreq � N2

´ L
3
n. Instead, our numerical results suggest that
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Fig. 2 Dynamics of the mean-square end-to-end distance. a δR2(t) of a single filament in an entangled polymer solution, with time rescaled in units of the
diffusion time τd= ζL3/(6kBT), where ζ is the friction coefficient and T the temperature. Simulations were performed for filaments with the indicated
persistence lengths in a solution with mesh size ξ/L= 0.086. In each case, there are three distinct dynamic regimes—free relaxation following a t3/4 power
law, an intermediate regime where the tube reorganises and topological constraints are relaxed and a final regime where bending modes are fully relaxed at

their respective equilibrium value δR2eqðtÞ ¼ L4=ð45‘2pÞ. b Equilibration time of internal modes, τeq/τd, for a tracer filament of length L (with ξ/L= 0.086) in a

solution of polymers with length Ln as a function of Ln/L. To a very good approximation, we find a linear dependence of τeq on Ln, which excludes a standard
constraint-release mechanism based on curvilinear motion of the surrounding chains
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Fig. 3 Spatial correlations of transverse fluctuation. The covariance
cov(Δt,Δx) of transverse fluctuations rk?;i of beads at position i on
neighbouring chains k and l during a time interval Δt, as a function of
the distance Δx ¼ rki ðtþ ΔtÞ � rliðtþ ΔtÞ�� ��, and normalised with respect to
cov(Δt,0): cor(Δt,Δx) := cov(Δt,Δx)/cov(Δt,0). Simulations were
performed for an entangled solution with ξ/L= 0.086 and ‘p=L ¼ 1, and
at different times t. As expected, for very small times t≲ τe (red curve),
there is no correlation. In contrast, for times in the intermediate regime,
τe≲t≲ τeq (here t= 0.02τd), there are clear spatial correlations spanning a
distance of about three times the mesh size ξ. These correlations vanish for
times larger than the equilibration time, e.g., for times equal to the diffusion
time, t = τd
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the interplay between the dynamics of the tracer polymer and its
surrounding polymers drive constraint release. To test this
hypothesis, we varied the relative value of the friction coefficient
of the tracer polymer, ζ, and the surrounding polymers, ζn
(Supplementary Fig. 15). We find τeq � N2

´ ζL3ð Þα ζnL
3
n

� �β
with

α + β = 1 and the numerical data consistent with α = 2/3 and
β = 1/3. These results are not meant to indicate strict scaling laws
but rather to affirm that correlated motion of the tracer polymer
and its neighbouring polymers is responsible for constraint
release.

To further substantiate these many-body effects, we measured
how the spatial correlations between the polymer’s fluctuations
perpendicular to its end-to-end distance evolve over time (Fig. 3).
For a definition of the correlation function, see Eqs. (11), (12) and
(13) in 'Methods' section. Our numerical data show clear spatial
correlations in precisely that time window in which tube
reorganisation takes place. Moreover, these correlations span
several mesh sizes, strongly suggesting that many-body effects are
responsible for tube reorganisation and the concomitant relaxation
of internal bending modes. We have also performed simulations
for dilute solutions with ξ/L = 0.51 and found no correlations in the
transverse displacements of neighbouring chains.

Taken together, we conclude that constraint release (disen-
tanglement) of internal modes is driven by the correlated motion
of a given polymer and its surrounding polymers, and leads to an
equilibration of internal bending modes on a time scale τeq
smaller than the diffusion time τd. As a consequence, for times
larger than τeq, the tube is dissolved insofar as the bending modes
are equilibrated. However, this does not suffice for mechanical
stresses to relax in a solution of semiflexible polymers, as the
latter requires that correlations in the polymer’s orientation also
must vanish.

Terminal relaxation. To study this terminal relaxation regime,
we measured the auto-correlation function for the polymer
orientation, δe2RðtÞ :¼ eðtÞ � eð0Þ½ �2� �

, where e(t) = R(t)/R(t)
denotes the instantaneous, normalised end-to-end vector of the
polymer. Our simulations show that terminal relaxation happens
much later than the relaxation of the internal modes (Fig. 4a). To
determine the terminal relaxation time τr, we performed a least-

squares fit of δe2RðtÞ close to saturation to 2 − 2 exp(−t/τr) (Sup-
plementary Fig. 16), as expected for rotational diffusion14. For
stiff chains where the maximal mean-square amplitude of the
bending modes δr2? � L3=‘p is less than the squared mesh size ξ2,
we recover Doi’s29 result, τDoi ~ τd(L/ξ)4 (Fig. 4b). Hence, in this
asymptotic limit, terminal relaxation is facilitated by Doi’s
‘reptation–tube rotation’ mechanism29; after diffusing its own
length L within a tube of diameter d ~ ξ2/L in a time of the order
of the diffusion time τd, the rod becomes confined to a new tube,
which is tilted relative to the previous one by an angle δθ ~ d/L.
The validity of Doi’s effective reduction to a single-chain problem
in the stiff limit has also been shown recently in computer
simulations of needle-like rigid rods30,31. In contrast, for δr2?>ξ

2,
where tube confinement of bending modes is significant, another
relaxation mechanism sets in, which allows terminal relaxation to
take place orders of magnitude faster. We find τr � ‘pL4=ξ

2

(Fig. 4b and Supplementary Fig. 17), which is clearly distinct from
Odijk’s10 result τOdijk � ‘pL2. Moreover, all our simulation data
collapse on a universal scaling curve τr ¼ τDoi τ̂ð‘p=‘�pÞ (Fig. 4b),
confirming that there is a crossover from Doi’s rigid rod-scaling
regime29 to a qualitatively different disentanglement regime by
reducing the persistence length below some threshold value,
‘p<‘�p :¼ L3=ξ2. This constitutes an intermediate asymptotic
scaling regime extending over at least two decades (10−3 < x< 1)
in the scaling variable x ¼ ‘p=‘

�
p ¼ ‘pξ

2=L3. It is precisely this
regime which is most relevant for entangled solutions of cytos-
keletal biopolymers19 as well as carbon nanotubes15.

We can explain the observed terminal relaxation building on
our results for the equilibration of internal modes by the
following physical picture. After an initial phase of confinement
to an Odijk–Semenov tube, the correlated motion of each
polymer and its surrounding polymers leads to a reorganisation
of the topological constraints, and thereby to an equilibration of
internal bending modes, within a time τeq ~ L5/ξ2. As a
consequence, there is a mean-square angular rotation of the
polymer due to bending fluctuations9,27, δθ2

� � � L=‘p, and the
ensuing rotational diffusion constant scales as
Dr � δθ2

� �
=τeq � ξ2= L4‘p

� �
. This is identical to the scaling of

the terminal relaxation time as we find it in our simulations,
τr � ‘pL4=ξ

2 (Fig. 4b). Hence, terminal relaxation in solutions of
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Fig. 4 Terminal relaxation. a Time evolution of the mean-square end-to-end distance δR2(t) (triangles), and the mean-square changes in the orientation
δe2RðtÞ (circles) of a tracer polymer for entangled solutions with ξ/L= 0.15, ‘p=L ¼ 5 (red), and ξ/L= 0.086, ‘p=L ¼ 0:44 (yellow). Note that terminal
relaxation sets in long after relaxation of internal bending modes. b Scaling plot of the terminal relaxation time τr/τDoi with τDoi= τd(L/ξ4) as a function of
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�
p with ‘�p ¼ L3=ξ2, as determined from a fit of the asymptotic relaxation of δe2RðtÞ to the functional form 2 − 2 exp(−t/τr). The numerical data collapse to

a master curve with two distinct regimes. For small values of x ¼ ‘p=‘
�
p, the terminal relaxation time τr increases linearly with x, whereas for x≳ 1, it

becomes independent of x, indicating that one has reached the rigid rod limit where Doi’s scaling results are valid29
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entangled semiflexible polymers is not primarily due to diffusive
motion along the tube’s backbone (reptation), but rather due to
disentanglement of internal bending modes mediated by the
release of topological constraints and the ensuing rotational
diffusion of the polymer’s orientation induced by bending modes
δθ2
� � � L=‘p
� �

. The constraint release for the internal modes is
facilitated by the correlated dynamics of each polymer and its
surrounding polymers.

Comparison of entangled solutions with frozen environments.
In order to better understand the origin of these differences and
the role of many-body effects in the dynamics of entangled
solutions, we also studied the dynamics of a reference system
where a tracer polymer moves in a frozen environment, similar as
in recent experiments studying the Brownian motion of carbon
nanotubes in a fixed agarose network15. In good quantitative
agreement between our simulations in the frozen environment
and the experimental results15, the rotational relaxation time
exhibits a crossover from Doi scaling3 to Odijk scaling10 with
increasing polymer length L (Fig. 5): for rather stiff polymers with

L= ξ2‘p
� �1=3 ≲ 2, the relaxation time agrees with Doi’s prediction,

τr ~ L7/ξ4, while for semiflexible chains with L= ξ2‘p
� �1=3 ≳ 2, one

finds Odijk’s prediction, τr � ‘pL2. Moreover, our Brownian
dynamics simulations in a frozen environment are also consistent
with previous numerical results of rigid rods in a random array of
fixed obstacles, where τr is reported to follow Doi’s predic-
tion30,32–34.

Comparing the dynamics in a fixed environment with the
dynamics in an entangled solution, we find that all key
observables show qualitatively different behaviour (Fig. 6): the
relaxation of the internal modes and the orientational correlations
is retarded in a frozen environment, and the equilibration time
~τeq, as well as the terminal relaxation time ~τr, now agree well with
the time it takes to diffuse the tube length, ~τeq ¼ τd, and Odijk’s

scaling result, τOdijk � ‘pL2, respectively. While for an entangled
solution the correlation function for the transverse displacement
(g1,⊥) of the centre of mass exhibits a slanted plateau, it shows a
clear flat plateau in a frozen environment, indicating that the
dynamics of the tracer polymer is confined to a persistent tube in
the time window between the entanglement time τe and the tube
diffusion time τd. These predictions for the various key
observables may be tested using microrheology experiments.
Taken together, the comparison between the dynamics of
entangled solutions and fixed arrays reaffirm that tube
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carbon nanotubes diffuse in a porous agarose network (squares, data
extracted from ref. 15), our simulations (solid circles) show that with
increasing filament length L, there is a crossover from Doi’s scaling result
for rigid rods, τDoi ~ L7/ξ4, (solid line) to Odijk’s scaling result for

semiflexible polymers, τOdijk � τDoi ‘p=L � ‘pL2. To fit our definition, which

uses the saturation time τr instead of the diffusivity, the experimental data
have been rescaled by the necessary factor of 0.5. Our simulations agree
quantitatively well with the experimental data15
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is much slower and follows the scaling

predictions of Odijk and Doi. b Moreover, the MSD of the polymer’s
fluctuations transverse to the end-to-end vector (g1,⊥) exhibits a clearly
visible plateau in a fixed array, but continues to relax in an entangled
solution. c At asymptotically large times, the transverse MSD and likewise
the longitudinal MSD g1;jj

� �
is slowed down in a fixed array. d Finally, the

relaxation of internal bending modes (δR2) shows a qualitatively different
behaviour: While there is an intermediate regime where δR2(t) appears to
saturate, which reflects caging in a tube, this is not the case for an
entangled solution. There, internal modes continuously relax, indicating
ongoing tube reorganisation with concomitant relaxation of topological
constraints
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reorganisation, and the ensuing relaxation of topological
constraints, must be based on the combined effect of the
dynamics of a given polymer and its surrounding polymers.

Discussion
The results presented here challenge our current understanding of
the dynamics of entangled polymer solutions. While both
asymptotic regimes, flexible polymers and rigid rods, are well
described within the framework of classical reptation theory, our
current data show that semiflexible polymer dynamics clearly
exhibits strong many-body correlation effects. These correlation
effects lead to a fast equilibration (‘disentanglement’) of the
internal bending modes significantly before a polymer had time
to diffuse the full length of its confining tube. As a consequence,
terminal relaxation is facilitated by the correlated release of
topological constraints and the ensuing rotational diffusion of the
polymer orientation, and not by curvilinear motion as in classical
reptation theory. The processes responsible for the restructuring
and renewal of the tube appear to show similarities with dynamic
correlations found in the glassy behaviour of dense colloidal
systems35. However, it remains a challenge to identify the essence
of the many-body physics responsible for tube renewal leading to
the relaxation of bending modes.

To test the proposed disentanglement mechanism underlying
terminal relaxation experimentally, one actually does not need to
measure the terminal relaxation time explicitly. It suffices to
measure the equilibration time of the internal modes and validate
the predicted scaling of the equilibration time. This should be
feasible well within the time window accessible to experiments on
entangled solutions of cytoskeletal filaments, carbon nanotubes,
or short DNA filaments.

Methods
Brownian dynamics simulation. We implemented a basic bead-spring algo-
rithm36,37 to simulate the Brownian dynamics of polymer chains in an entangled
solution, using standard interactions as discussed previously4,34,38,39, and explained
in detail below. Our simulations comprise M polymer chains with 164 ≤M ≤ 1106
in a cubic simulation volume with edge length X = 1.35L, and periodic boundary
conditions. Each polymer is represented by a linear sequence of N beads connected
by springs. For low densities, we used N = 45, while for densities above ξ/L ≤ 0.1, we
used a finer discretisation with N = 60; this ensures that the polymers are thin
enough such that the density of the entangled solution is sufficiently below the
threshold to the nematic phase40–42.

In all our simulations, we chose units such that kBT = 1, and the friction per unit
length is ζ = 1. Also, we used the contour length of the polymers as our basic unit of
length. For later reference, an actin filament with a contour length of L = 10 μm and
a diameter of 5 nm in a solution with a viscosity of η = 0.1 Pa s at a temperature of
20 °C has a disengagement time of τd ≈ 1.5 × 104 s.

The position of bead i on polymer chain k at time t is denoted by rki ðtÞ with
1 ≤ i ≤N and 1 ≤ k ≤M. Each bead i is connected to its neighbours by FENE
springs43 with the interaction potential

Uk
FENE ¼ �B

X
1<i<N�1

ln 1� aki � a0
amax

� 	2
" #

; ð2Þ

where aki ¼ rkiþ1 � rki
�� �� denotes the distance between two beads (bond length), with

a0 = L/N the equilibrium bond length, and the maximum distance between beads
set to amax = a0/4; for distances aki

�� ��>a0 þ amax, the FENE potential is Uk
FENE ¼ 1.

We chose the spring constant B ≈ 1000kBT. With this choice, the deviation in bond
length from the equilibrium value was always below 0.05a0 in our simulations. The
bending stiffness of the polymers is described by a standard worm-like chain
model44,45 with the bending energy given by

Uk
WLC ¼ ‘pkBT

a0

XN�2

i¼1

1� tki � tkiþ1

� �
; ð3Þ

where tki ¼ rkiþ1 � rki
� �

= rkiþ1 � rki
�� �� is a normalised bond vector (tangent vector).

For the mutual (steric) interaction between the beads, we used the
Weeks–Chandler–Anderson (WCA) potential46, which for bead i on chain k reads

for rij ≤ σ

U i;k
WCA ¼ A

X
l;j

σ

rklij

 !12

�2
σ

rklij

 !6

þ1

" #
; ð4Þ

where the sum extends over all other beads in the simulation box, i.e., over all
polymers l and beads j except bead i of chain k, and rklij ¼ jrki � rljj denotes the
distance between a pair of beads (i,j) on chains k and l. For distances rij> σ, the
potential vanishes: U i;k

WCA ¼ 0. We chose σ = 0.9a0 for the range of the interaction.
This choice prevents chain crossings and at the same time spurious oscillations of
neighbouring beads in a chain due to their WCA interaction. In order to avoid
crossing of chains or the overlapping of different beads, we used a strong potential
by setting the parameter A = 20kBT (see Supplementary Note 1). Finally, we
implemented a cell-linked list algorithm to evaluate the occurring collisions which
presorts the beads according to their positions before testing for polymer collisions.
This led to a significant decrease in the runtime of our simulations.

The Langevin equation for the entangled polymer solution reads

ζ
∂rki ðtÞ
∂t

¼ � ∂U i;k
total rki


 �� �
∂rki

þ ηk
i ðtÞ ; ð5Þ

where ζ denotes the friction coefficient of a single bead, ηk
i ðtÞ is Gaussian

white noise with mean zero and co-variances given by

ηk
i ðtÞηl

j t′ð Þ
D E

¼ 6 ζ δijδkl kBT δ t � t′ð Þ. The total potential acting on bead i of

polymer k reads: U i;k
total :¼ Ui;k

WCA þ Uk
FENE þ Uk

WLC.

We used uniformly distributed random numbers generated by a maximally
equidistributed combined Tausworthe generator47 for the noise. These kinds of
random number generators have been shown to amount to the same behaviour in
the dynamics of polymers on time scales significantly above one time step as
Gaussian white noise within the statistical errors while being significantly
faster13,37,38. To calculate the time evolution, the Langevin equation, Eq. (5), is
integrated via a semi-implicit Euler algorithm48 with a time step of (in our units)
1 × 10−4 for systems with N = 45 and 2 × 10−5 for N = 60, respectively.

We performed extensive tests to ensure the reliability of our Brownian
dynamics simulations (Supplementary Note 1). We find good agreement of both
the tangent–tangent correlations (Supplementary Fig. 1) and the mean-square end-
to-end distance (Supplementary Fig. 2) for freely relaxing polymers with known
analytical results14,23–26,44. Moreover, we have tested that our simulation algorithm
does not show spurious chain crossings (Supplementary Fig. 3). Finally, we have
tested for finite size effects (Supplementary Fig. 4), and that our results for the
mean-square displacement of the centre monomer (Supplementary Fig. 5) and the
mean-square changes of the end-to-end vector are largely independent of the finite
filament thickness (Supplementary Fig. 6).

Quantities of interest. To characterise the dynamics of individual chains within
the entangled polymer solution, we studied the following quantities of interest
where the averages 〈…〉 indicate averages over all M polymers in the simulation
box, and over three independent realisations. We chose to characterise the
dynamics of the internal bending modes of a tracer polymer in terms of its
tangent–tangent correlation function

Cij :¼ ti � tj
� �

; ð6Þ

and the mean-square displacements (MSD) of the end-to-end distance Rk ¼ Rk
�� ��,

δR2ðtÞ :¼ RkðtÞ � Rkð0Þ� 
2D E
: ð7Þ

In order to characterise the centre-of-mass motion of a tracer filament, we used the
mean-square displacement of the centre monomer parallel and perpendicular to
the orientation of the end-to-end vector ek = Rk/Rk, respectively:

g1;jjðtÞ :¼ rkN=2ðtÞ � rkN=2ð0Þ
� �

� ekð0Þ
h i2� �

; ð8Þ

g1;?ðtÞ :¼ rkN=2ðtÞ � rkN=2ð0Þ
h i2� �

� g1;jjðtÞ: ð9Þ

Finally, a quantity which allows to measure the terminal relaxation of stresses in
the solution is given by the mean-square changes of the direction of the end-to-end
vector

δe2RðtÞ :¼ ekðtÞ � ekð0Þ� 
2D E
: ð10Þ

Definition of the covariance for transverse displacements. To quantify the
many-body effects in entangled polymer solutions, we were looking for correlations
in the dynamics of neighbouring polymers. Since the tube is mainly constraining,
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the fluctuations of a polymer transverse to its end-to-end vector, and the tube itself
is due to the presence of neighbouring chains, we investigated correlations in these
transverse fluctuations. We considered the magnitude of the displacement of bead i
on polymer k during a time interval Δt, perpendicular to the polymer’s end-to-end
vector ek(t +Δt)

rk?;i :¼ Pk
?ðt þ ΔtÞ � rki ðtÞ � rki ðt þ ΔtÞ� 
�� ��; ð11Þ

where

Pk
?ðtÞ ¼ 1� ekðtÞ � ekðtÞ ð12Þ

is a projection operator onto the end-to-end vector. Similar to the work of Doliwa
and Heuer49 on the cage effect in colloidal systems, we asked for correlations in the
transverse displacements rk?;i of neighbouring polymers, and define their covar-
iance as

covðΔt;ΔxÞ :¼ rk?;ir
l
?;i

D E
� rk?;i

D E
rl?;i

D E
: ð13Þ

The average in Eq. (13) is taken for a given chain k with all other chains k ≠ l at
a given time Δt and a distance Δx ¼ rki ðt þ ΔtÞ � rliðt þ ΔtÞ�� ��, and we have also
performed a moving time window average over a window of size 15τd discretised in
subintervals of size Δt. Moreover, for simulations with Δt< 0.2τd and Δt = τd, we
averaged over 4 or 12 independent realisations, respectively. For specificity, we
used the beads at position i =N/5 and the equivalent beads at i = 4N/5.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its supplementary information files.
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