
RESEARCH ARTICLE

Structural and Functional Analysis of Calcium
Ion Mediated Binding of 5-Lipoxygenase to
Nanodiscs
Ramakrishnan B. Kumar1,2, Lin Zhu1,2, Helena Idborg3, Olof Rådmark4, Per-
Johan Jakobsson3, Agnes Rinaldo-Matthis4, Hans Hebert1,2, Caroline Jegerschöld1,2*

1 Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden, 2 School of
Technology and Health, KTH Royal Institute of Technology, 14183 Huddinge, Sweden, 3 Rheumatology
Unit, Department of Medicine, Karolinska Institutet, 17176 Stockholm, Sweden, 4 Division of Physiological
Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm,
Sweden

* caroline.jegerschold@ki.se

Abstract
An important step in the production of inflammatory mediators of the leukotriene family is

the Ca2+ mediated recruitment of 5 Lipoxygenase (5LO) to nuclear membranes. To study

this reaction in vitro, the natural membrane mimicking environment of nanodiscs was used.

Nanodiscs with 10.5 nm inner diameter were made with the lipid POPC and membrane

scaffolding protein MSP1E3D1. Monomeric and dimeric 5LO were investigated. Monomeric

5LO mixed with Ca2+ and nanodiscs are shown to form stable complexes that 1) produce

the expected leukotriene products from arachidonic acid and 2) can be, for the first time,

visualised by native gel electrophoresis and negative stain transmission electron micros-

copy and 3) show a highest ratio of two 5LO per nanodisc. We interpret this as one 5LO on

each side of the disc. The dimer of 5LO is visualised by negative stain transmission electron

microscopy and is shown to not bind to nanodiscs. This study shows the advantages of

nanodiscs to obtain basic structural information as well as functional information of a com-

plex between a monotopic membrane protein and the membrane.

Introduction
Inflammation is one of the innate defense mechanisms exerted by the human body for protec-
tion and to initiate the healing process. Chronic inflammatory reactions are involved in several
disease conditions as diverse as atherosclerosis, asthma, rheumatoid arthritis, cancer and obe-
sity. Leukotrienes (LT:s, see abbreviations list), one of several groups of pro-inflammatory lipid
mediators derived from arachidonic acid, are involved in inflammatory diseases. 5-lipoxygen-
ase initializes the leukotriene biosynthesis cascade by oxygenating arachidonic acid, released by
cytosolic phospholipase A2 (cPLA2) from nuclear membranes. Arachidonic acid is converted
into 5HPETE and further dehydrated to the allylic epoxide Leukotriene A4 (LTA4) by 5LO.
LTA4 is then converted to LTB4 by the cytosolic protein LTA4 hydrolase or alternatively acts as
substrate for an integral membrane protein, LTC4 synthase, that forms LTC4, a precursor to
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LTD4 and LTE4. The final products of the leukotriene cascade are LTB4, LTC4, LTD4, and
LTE4 [1,2].

The recently published structure of human 5LO (PDB ID: 3O8Y, 78 kDa) shows the
expected N-terminal β-sandwich (residues 1–114) and a larger non-heme iron containing C-
terminal catalytic domain (residues 121–673), connected by an inter-domain peptide [3]. The
structure resembles a cylinder 9 nm long and 4.5 nm in diameter. Several factors influence 5LO
activity via the β-sandwich, the most important of which is binding of Ca2+ that leads to associ-
ation with the nuclear membrane and increased enzyme activity [4,5,6,7]. The binding of 5LO
to nuclear membrane does not depend on interactions with other proteins, although the 5LO
scaffold proteins FLAP and CLP have been shown to promote association of 5LO with the
nucleus, leading to increased cellular 5LO activity [8,9,10]. The CLP which binds to 5LO, can
replace and complement membranes as a scaffold for Ca2+ -induced 5LO activity in vitro [11].
For all lipoxygenases to become active, it is required that the prosthetic non-heme iron is oxi-
dized to the ferric form, by lipid-hydroperoxides [12]. On the other hand, oxidizing conditions
may also lead to inactivation and dimerisation of 5LO via cystein bridges [13].

Ca2+ mediated binding to the nuclear membrane of 5LO and its activation has been success-
fully studied in vitro using traditional methods like liposomes [14], detergent micelles [15] and
membrane preparations [16]. However, these methods have drawbacks such as the large size of
liposomes and inaccessibility to the liposome interior. For structural studies of 5LO binding to
the membrane by transmission electron microscopy (TEM), liposomes could possibly be used
[17,18,19], however we have chosen another membrane platform, so called nanodiscs (ND).
Nanodiscs self-assemble from two molecules of membrane scaffolding protein (MSP) and
phospholipids [20]. The lipid molecules are non-covalently assembled like a bilayer and two
molecules of MSP wrap around the hydrophobic lipid alkyl chains in a belt-like manner form-
ing a disc (diameter 10–20 nm) shaped structure [21]. The nanodisc can be made as an
“empty” nanodisc which can be used only to mimic the membrane but it can also self-assemble
with membrane proteins [22].

Previously, large unilamellar liposomes were used to show that cationic lipids have a stimu-
latory effect and negatively charged lipids have an inhibitory effect on 5LO activity [23] com-
pared to the zwitter-ionic phosphatidyl choline (PC) head group. It was argued, however, that
the nature and composition of phospholipid head groups is not the main reason for the trans-
location preferentially to the nuclear membranes [23]. Rather, a high membrane fluidity due to
enrichment in lipids with a high number of cis unsaturated bonds in the sn-2 acyl chain proved
more important. It was shown that the use of POPC, that contains one unsaturated bond, com-
pared to the use of a saturated lipid (DPPC) resulted in the largest increase in activity of 5LO
with some further increases in activity with increased number of unsaturated bonds in the sn-2
acyl chain [24]. Hence, for these initial studies of 5LO binding to nanodiscs we chose POPC as
the bilayer in the nanodiscs.

In this paper we exploited the nanodisc property as a membrane mimic to study binding
and activation of human recombinant 5LO. Both monomer and dimer 5LO were investigated.
Ca2+ mediated binding of monomeric 5LO on nanodiscs is visualized by both native gel elec-
trophoresis and negative stain electron microscopy. Activity assays show that monomeric 5LO
is active and stable on the nanodiscs. Dimeric 5LO could be visualized by negative stain elec-
tron microscopy and are shown to not bind on nanodiscs. The use of nanodiscs made these
experiments possible and form the basis for future structural studies of the 5LO-Ca2+ -ND
complex by high resolution cryoEM to shed light on the mechanisms of 5LO activation.

The abbreviations used are: AA, arachidonic acid; CLP, Coactosin like protein; FLAP, Five
lipoxygenase activating protein; MSP, Membrane scaffolding protein; DPPC, di-palmitoyl-sn-
glycero-3-phosphocholine; 5HPETE, 5-(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic
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acid; 5HETE; 5-(S)-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid; 13-(S)-HPODE, 13-(S)-
hydroperoxy-9-cis-11-trans-octadecadienoic acid; 5LO, 5-lipoxygenase; LT, leukotriene;
LTA4, 5(S)-trans-5,6-oxido-7,9-trans-11,14-cis-eicosatetraenoic acid; ND, Nanodisc; PC,
phosphatidylcholine; POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; PTA, Phos-
photungstic acid; SEC, Size Exclusion Chromatography; TEM, transmission electron micros-
copy; UF, Uranyl formate.

Materials and Methods

Chemicals
If not otherwise stated, chemicals are from Sigma-Aldrich Co.

Expression and purification of 5LO and MSP1E3D1
Human 5LO was expressed in E. coli BL21-(DE3) (NEB) transformed with pT3-5LO [25] and
purified with ATP Agarose column (Sigma-Aldrich Co.) followed by gel filtration [24]. As an
outline, the post induction cells were resuspended in lysis buffer (100 mMTris-HCl pH 7.5, 100
mMNaCl, 2 mM EDTA, 1mM FeSO4, 2 mMTCEP) with protease cocktail inhibitor and lyso-
zyme 0.5mg/ml) followed by sonication (5 x 15s). After clarifying the lysed cells, the supernatant
was subjected to ammonium sulfate precipitation and the precipitate (30–60% saturation) was
resuspended in lysis buffer. The sample was applied to an ATP agarose column and the recombi-
nant 5LO was eluted using 20mMATP in lysis buffer with 10 μMFeSO4 and 20 μg/ml catalase
[26]. The buffer was changed to 20 mMTris pH 7.5, 100 mMNaCl, 2 mM EDTA, 1mM FeSO4,
2 mMTCEP, 20 μg/ml catalase. The concentration of 5LO in elutaes was determined by Bradford
assay [27]. Also MSP1E3D1 (with a histidine tag as well as a TEV protease cleavage site, from
Addgene, MA, USA) [21] was expressed in E. coli (BL21-DE3). The concentration of purified
MSP1E3D1 was determined by the absorbance at 280 nm (ε = 29910cm-1M-1).

Preparation of ND
An appropriate amount of chloroform dissolved POPC (Avanti polar lipids) was dried under
nitrogen followed by overnight removal of residual chloroform in a vacuum desiccator. POPC
was resuspended in MSP standard buffer (25 mM Tris-HCl pH 7.5, 100 mMNaCl, 0.5 mM
EDTA) supplemented with sodium cholate (Anatrace, USA). (POPC: sodium cholate molar
ratio of 1:2). His-tagged MSP1E3D1 was added to the re-suspended lipids in a molar ratio of
1:130 (MSP1E3D1: POPC) and incubated on ice for one hour. Biobeads (Biorad) 0.5 mg/ml
was added to initiate the self assembly process and incubated in a rotary incubator for 16 hours
at 4°C [28]. After clarifying the supernatant by centrifugation at 13000 x g for 10 min at 4°C,
the sample was purified by gelfiltration using an Agilent Bio SEC-5 column, equilibrated with
MSP standard buffer. The concentration of nanodiscs was determined by the absorbance at
280 nm using the molar extinction coefficient of MSP1E3D1 (ε = 29910cm-1M-1).

Electrophoresis and protein immunoblots
5LO and MSP1E3D1 preparations were analyzed by SDS page (4–20% Tris-glycine gel, Invitro-
gen). SDS PAGE was performed in 12% Tris glycine gel (in-house prepared). All native PAGEs
are performed in 4–16% Bis- Tris gel (NativePAGE™Novex, Invitrogen), with small changes in
buffers explained later. Briefly, samples were mixed with 4X Native PAGE Sample Buffer (Invi-
trogen) and loaded onto Bis-Tris gel. Blue native page was performed by using light cathode
buffer (NativePAGE™ Running Buffer with 0.001% Coomassie G-250) in the cathode tank and
NativePAGE™ Running Buffer as anode buffer. Samples ran on gel until the Coomassie front
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reached the end of the gel at a constant 150 V. Normal native PAGE was performed by using
NativePAGE™ Running Buffer as both cathode and anode buffer. Ca2+ native PAGE was per-
formed in two steps; an overnight equilibration run was performed with NativePAGE™ Run-
ning Buffer containing 1mM CaCl2 and 5 mM β-mercaptoethanol at 30 V at 4°C. The
separation run was performed the next day at 150 V, 4°C with same buffer. All the gels were
stained using Coomassie Brilliant Blue R-250. For immunoblotting proteins were transferred
(by electrophoresis) from SDS PAGE gels to nitrocellulose membrane. Rabbit polyclonal anti-
body for 5LO from Cayman chemicals was used for identification. Positive signals were visual-
ized with ONE-HOURWestern™ Detection System (Genscript) using
3,3,5,5-Tetramethylbenzidine (Sigma) as substrate.

Negative Stain Electron Microscopy and class-averaging
In-house carbon coated copper grids (400 mesh, TedPella) were glow-discharged (Baltec) to
render them hydrophilic before adsorption of 3.5 μl of analytes for 30 seconds. Surplus solution
was blotted off on filterpaper. Immediately, the grid was stained with a drop of either 2% phos-
photungstic acid (PTA) at pH 7.4 or 1% Uranyl Formate (UF) for 30 seconds, then surplus
solution was blotted off and the grid allowed to dry. The grids were analyzed in a calibrated
Jeol 2100F TEM (200keV accelerating voltage) and images were acquired by a 4K x 4K CCD
camera (Tiez Video and Imaging Processing System GmbH, Germany) at a magnification of
69500. The pixel size of the CCD camera is 15 μmwhich gives a corresponding value of 2.16 Å
on the specimen level for the EM images. For the collection of negative stain data, new grids as
just described, were made on at least three different days and for each day, fresh sample incuba-
tions were made before the negative stain was applied.

Processing of the images was done by the software EMAN2 [29]. Micrographs obtained
were manually sorted to have a good signal to noise level and particles were picked manually.
This is followed by 2D-class averaging [30]. The principle of 2D class-averaging is to generate a
small set of representative class-averages from a large set of boxed out particles by using an itera-
tive reference-free classification algorithm. This process reduces the noise levels in the results and
makes the views of particles better observed. The initial iteration starts with some invariant-based
guesses and the clustering of raw particles is based on the differences among particles detected by
the less-precise MSA (multivariate statistical analysis) method. This therefore makes the initial
results (class-averages) lacking in correctness. Then the initial class-averages are aligned to each
other and sorted by similarities. By comparing with the aligned class-averages generated from the
last iteration, raw particles are re-allocated and clustered into new class-averages in the new itera-
tion. During all the iterations, particles with similar views are slowly clustered into the same clas-
ses, and this means the class-averages become more and more representative. Ideally, as a result,
the final output contains a certain number of particle class-averages and each of them is obtained
from averaging a series of similar particles. However, practically the particles within the same
class may not be so homogeneous, and in this case, the features of those particles with different
views would be averaged out during the class-averaging [29,30].

UV spectroscopy
Initial rates of 5LO were measured in a UV—spectrophotometer (Tecan Infinite M200 Pro,
Tecan Group, Ltd, Switzerland). In a 100 μl quartz cuvette (1 cm), 50 μL assay buffer (50 mM
Tris-HCl pH 7.5 and 2 mM EDTA) was mixed with 40 μl substrate mix. The latter contains
Tris-HCl pH 7.5, AA (Avanti polar lipids Inc, AL, USA), 13-(S)-HPODE (Cayman Chemical
Company, MI, USA), MgCl2 with or without CaCl2 and was sonicated for one minute at room
temperature. Three pairs of substrate mix were made with and without Ca2+: 1) no membranes,
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2) ND or 3) L-α PC from egg (Avanti Polar lipids Inc, AL, USA). The final concentrations in
the reaction were 77.4 mM Tris-HCl pH 7.5, 1.2 mM EDTA, 20 μMAA, 2 μM 13-(S)-HPODE,
6.2 mMMgCl2, with or without 1.3 mM CaCl2, 10 μg/ml ND or 10 μg/ml L-α PC liposomes.
The reaction was started by adding 10 μl of 5LO (0.5μg) in assay buffer to the cuvette. Equilib-
rium concentrations of free and complexed divalent ions were calculated with the software
[31] see results section. The product conjugated dienes (ε = 23000 M-1cm-1) was monitored at
235 nm for five minutes at room temperature [11]. ATP was omitted due to its strong absor-
bance at the product wavelength.

LC-MS/MS
The amount of LTA4 formed by 5LO was analyzed by determining the nonenzymatic hydroly-
sis products (6-trans-LTB4 and 12-epi-6-trans-LTB4) by LC-MS/MS. The assay procedure was
essentially followed from Rakonjac et al, 2006 [11] with some modifications. In an eppendorf
tube, assay mix were prepared by mixing 50 μL assay buffer (50 mM Tris-HCl pH 7.5 and 2
mM EDTA) with 40 μl substrate mix. The latter contains Tris-HCl pH 7.5, AA, 13-(S)-
HPODE, MgCl2, ATP, with or without CaCl2 and was sonicated for one minute at room tem-
perature. Three pairs of substrate mix were made with and without Ca2+: 1) No membranes, 2)
ND or 3) L-α PC from egg. The reaction was started by adding 10 μl 5LO (0.2 μg) in assay
buffer to the assay mix (total volume 100 μl) and incubated for 10 minutes at room tempera-
ture. The final concentration of components in the mixture were 77.4 mM Tris-HCl pH 7.5,
1.2 mM EDTA, 50 μMAA, 5 μM 13-(S)-HPODE, 6.2 mMMgCl2, 4.9 mM ATP with or with-
out 1.3 mM CaCl2, 25 μg/ml ND or 25 μg/ml L-α PC liposomes. Due to the complexing agents,
EDTA and ATP, equilibrium concentrations of free and complexed divalent ions were calcu-
lated with the software BAD [31], see results section. The enzyme activity was stopped with
400 μl of cold stop solution (Acetonitrile:Water:Acetic acid in a ratio of 60:40:0.2: v/v) [11].

LC–MS/MS analysis was performed on a Waters 2795 HPLC (Waters Corporation, MA,
USA) coupled to a triple quadrupole mass spectrometer (Acquity TQ Detector, Waters Corp.).
An aliquot of 15 μl was injected onto a Synergi Hydro-RP column (100 mm × 2 mm i.d.,
2.5 μm particle size and 100 Å pore size, Phenomenex, CA, USA). A gradient was used starting
at 35% mobile phase A (MilliQ water, Merck Millipore KGaA, Germany) and 65% mobile
phase B (MeOH, 0.05% formic acid) for 34 min, then increased to 95% B over 1 min and stayed
at 95%B for 15min before re-equilibration at 65%B for 14 min. The flow rate was 100 μl/min.
The analytes were detected in multiple reaction monitoring (MRM) in negative mode utilizing
the following transitions: m/z 335>196 and m/z 335>317 for LTB4 and its isomers (6-trans-
LTB4 and 12-epi-6-trans-LTB4). All analyzed using collision energy of 20V and cone voltage
30V. Analysis of the MRM data was carried out by MassLynx software, version 4.1 (Waters
Corp.), using external standard calibration of LTB4.

Statistical analysis
All micrographs from TEM and polyacrylamide gel pictures are representative for a minimum
of three independent experiments. A value of P<0.05 was considered significant according to
the criteria of Student’s t test. The activity assay results are expressed as mean±SEM of n.

Results

Calcium ions induced binding of 5LO on nanodiscs
Nanodiscs were prepared using the phospholipid POPC and MSP1E3D1. This version of mem-
brane scaffolding protein can form a disc with inner diameter ~ 10.5 nm containing about 260
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molecules of POPC [32]. The calculated molecular weight is about 260 kDa and bilayer surface
area 8900 Å2. The ND was purified by SEC (data not shown) and homogeneity was analyzed
by BN-PAGE (Fig 1A, Lane 1) showing only one band as expected at around 260 kDa.

Aliquots of ND (0.6 μM) and 5LO (0.6 μM) were mixed and incubated with or without 1
mM Ca2+ present in the buffer and binding was determined by BN-PAGE. In the presence of
Ca2+ an additional band appeared above the ND band, corresponding to a complex containing
one ND and one 5LO (78 kDa) (expected molecular weight approx. 340 kDa, see Fig 1A, Lane
3). To confirm the presence of 5LO in the top band (at 340 kDa (�)), it was excised from the gel
and subjected to SDS PAGE (Fig 1B). Two bands appeared, corresponding to 5LO (top) and
MSP1E3D1 (bottom) (Fig 1B, Lane 2 (�)) whereas the cutout from the ND band (Fig 1A, lane
3, (¤)) shows only the MSP1E3D1 protein (Fig 1B, Lane 1, (¤)). It should be noted that the
bands in lane 3 reflects the instability of the sample loaded. The 5LO-ND complex gradually
falls apart during the calcium-free gel-run. The 340 kDa band is faint, and both ND and 5LO
monomer bands are clearly present in lane 3. Nevertheless, the band at 340 kDa contains 5LO
(Fig 1B, Lane 2). Although the Ca2+ binding is reversible, the Ca2+ binding to 5LO has a KD of

Fig 1. 5LO can bind to nanodiscs in the presence of Ca2+. (A) Blue native PAGE (4–16% Bis Tris gel)
analysis of ND-5LO complexes formed after incubations of ND and 5LO with and without 1 mMCa2+ present.
Lane 1, purified ND. Lane 2, purified 5LO. Lane 3, sample from incubation of 5LO, ND and Ca2+. Each lane is
loaded with 1.5 μg of protein. The bands at�340 kDa (*) and�260 kDa (¤) were excised and subjected to
SDS-PAGE. Lane 4, sample from incubation of 5LO and ND without Ca2+. (B) SDS PAGE (12% Tris-glycine
gel) denaturing analysis of the two bands excised from BN-PAGE lane 3. Both excised bands contain
MSP1E3D1 (32 kDa) but only the�340 kDa (*) band contain 5LO (78 kDa).

doi:10.1371/journal.pone.0152116.g001
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only 6 μM [33] and as no precautions to remove Ca2+ completely during the gel-run were
made, the calcium levels may be sufficient for some complexes to remain. In summary, 5LO
can form complexes with nanodiscs in the presence of Ca2+ ions, as expected.

Size exclusion chromatography of 5LO protein: Separation of dimers
from monomers
In the BN-PAGE analysis (Fig 1) all samples containing 5LO showed an additional band above
monomeric 5LO (Fig 1A lane 2,3,4) with an approximate molecular weight 158 kDa corre-
sponding to dimeric 5LO. To determine the presence of oligomers in our 5LO preparation, size
exclusion chromatography (SEC) was performed. Two peaks at retention volumes of 66 and 76
ml (Fig 2A, peaks labelled 1 and 2) were observed. The material in the two peaks was concen-
trated and analysed by western blot (Fig 2C) and by staining of the SDS gel (Fig 2B). Both
peaks 1 and 2 contain 5LO. The 5LO dimer was not stable under reducing SDS-PAGE condi-
tions The monomeric and dimeric 5LO preparations were used for further experiments as
described below.

Monomeric 5LO binds on nanodiscs: the highest ratio is two 5LO per
nanodisc
To determine the stoichiometry of binding of 5LO to ND, a titration experiment was per-
formed where monomeric 5LO (prepared by SEC) and ND were incubated at different molar
ratios (1:4 to 4:1) in presence of Ca2+. The samples were analyzed by Ca2+ native PAGE to

Fig 2. Recombinant 5LO exist as monomer as well as dimer. (A), Size exclusion chromatography of 5LO.
Arrows indicate elution of standard proteins: Aldolase (158 kDa), Conalbumin (75 kDa). Peak 1 (retention
volume 66 ml) corresponds to 5LO dimer. Peak 2 (retention volume 78 ml) corresponds to 5LOmonomer. (B
and C) SDS-PAGE of material in SEC peaks (lanes 1, from peak1; lanes 2, from peak 2) (B) Coomassie
stained gel. (C) Western blot with 5LO antibody.

doi:10.1371/journal.pone.0152116.g002
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stabilize the Ca2+ mediated interactions, and under reducing conditions to prevent dimerisa-
tion of 5LO (Fig 3). For lane 6 equimolar concentrations (0.22 μM) of 5LO and ND were
mixed. The major band observed corresponds to the 1:1 complex formed during incubation. A
small amount of unbound nanodiscs can also be observed in lane 6. In lane 3, ND was in 4
times excess, in lane 4 ND was in 3 times excess, and in lane 5, ND was in 2 times excess, in
relation to 5LO. Excess ND did not seem to change the number of 5LO binding per ND; the
1:1 band, as well as free ND, is present in lanes 3–5. In lane 7 5LO was in 2 times excess, in lane
8 5LO was in 3 times excess, and in lane 9, 5LO was in 4 times excess, inrelation to ND. The
presence of the apparent 2:1 band in lanes 7–9 indicates that two 5LO can bind to one ND, but
not more than this. In lanes 7–9 also the 1:1 complex and free 5LO can be observed, but no free
ND. The most likely explanation is that each of the nanodisc lipid surfaces can accommodate
maximally one 5LO molecule.

TEM analysis of monomer 5LO-ND
In the process of negative staining, the contents in a small volume of the biological sample is
adsorbed onto a transparent carbon support and excess liquid removed. A few microliters of a
heavy metal salt is applied and the specimen allowed to dry. Fine grains of salt microcrystals
are thereby produced and cover the particles in crevices and around the particle (Figure B in S1
File) [34]. The image formed looks like a photographic negative, i.e. white objects on a dark
background. Of note from this description of negative staining is that chemical interaction
with the sample should not occur (e.g. for uranyl salts). However, in some rare cases this does
occur as for the negative stain phosphotungstic acid (PTA) with lipid bilayers forming “rou-
leaux”or “stacks” (Figure C in S1 File [35]), an effect that we decided to use to our advantage
for nanodisc lipid bilayers. Hence, there are two aims with PTA staining of our samples: 1)
direct observation of complexes formed. Here we can collect particles (“boxing”) from the
TEM images, classify and average these to produce direct views of the complexes formed from
different angles [30]. 2) also indirectly show that 5LO has bound to ND. The stacking due to
the PTA should not be possible if a protein is bound on and protects the surface of the ND
bilayer. With respect to aim 2, the analysis of stacking in PTA-stained samples: For ND, the
sample was homogeneous (Fig 4A) and stacked as expected [35]. Incubating nanodiscs with
Ca2+ does not prevent stacking (Fig 4B). In the sample of monomeric 5LO and ND incubated
without calcium, the PTA induced stacking event is still present (Fig 4C). Thus, in the absence
of calcium ions, 5LO remains unbound. This means the ND can bind each other in stacks

Fig 3. Maximum of two 5LO can bind to one ND.Calcium native PAGE analysis of ND and 5LO
incubations in presence of Ca2+, with stoichiometries ranging from 4:1 to 0.25:1 (ND:5LO). From lanes 3 to 5,
the concentration of ND is decreasing with constant 5LO. Lane 6, 5LO and ND are in equimolar ratio
(0.22 μM). From lanes 7 to 9, the concentration of 5LO is increasing with constant ND. See results for further
details.

doi:10.1371/journal.pone.0152116.g003
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(Figure C in S1 File). However, in Fig 4D, using the sample containing the complex of 5LO-ND
formed in the presence of calcium (Figure E in S1 File), stacking was almost completely absent.
This shows that the calcium ions induce 5LO binding on nanodiscs and as a consequence, ste-
ric hindrance prevents the ND to stack.

With respect to aim 1, what kind of particles, viewed from different angles, can be expected
to be observed? 5LO is nearly cylindrical with a long dimension of 9 nm and the diameter 4.5
nm [3]. The ND dimensions are in fact similar to 5LO as the outer diameter is around 12.5 nm.

Fig 4. Both indirect and direct visualization of the effect of calcium on interaction of monomeric 5LO with ND, by negative stain electron
microscopy. (A), ND showing stack formation induced by PTA stain, homogeneous size and the rigid structure of ND. (B), the ND preparation as in A but in
the presence of Ca2+ shows the same amount of stacking as in A. (C), PTA-stained samples of equimolar concentrations of ND incubated with 5LO in
calcium-free buffer, clearly showing stack formation, which signifies lack of interaction between 5LO and ND. (D), PTA stained samples of equimolar
concentrations (0.8 μM) of ND incubated with 5LO in the presence of 1 mM Ca2+, showing very few stacks. A lack of PTA-induced stacking formation,
signifies the interaction between 5LO and ND. The magnifications on the right in are representatives of the majority of the particles found in the corresponding
image. (E), Class averages of 5LO-ND-complexes stained with PTA. Five images were used (including the one in D) to box 377 particles. Box-size is 20.8
nm. Scale bars are 10 nm and 100 nm respectively. (F), PTA stained samples of ND (0.8 μM) incubated with 5LO (1.6 μM) in the presence of 1 mMCa2+,
showing even fewer stacks. Most particles are larger and have different shapes compared to the 1:1 ratio shown in (D). (G), Class averages of 5LO-ND-
complexes stained with PTA. Thirty six images were used to box 573 particles. Box-size is 26.6 nm. Scale bars are 10 nm and 100 nm respectively.

doi:10.1371/journal.pone.0152116.g004
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The thickness of a POPC bilayer was measured in a solution in unilamellar or multilamellar
liposomes to be about 4nm at room temperature [36]. A close to parallel orientation of the long
dimension of the 5LO cylinder and the lipid bilayer was proposed [24]. Therefore, vieweing a
complex of one 5LO embedded on a nanodisc from the side (Figure E4 in S1 File) would be
expected to look as a “bipartite” object. Such particles can be observed in Fig 4D where three
magnifications are shown to the right. Particles in images like the one in Fig 4D were boxed
and compared to each other with the aim to assign each particle to similar ones, grouped in a
class. The ideally identical particles within each class are averaged to highlight details and
reduce noise. They should also represent different viewing angles of the particle [30]. Fig 4E
shows class-averages of the complex formed between 5LO and ND incubated at a 1:1 ratio in
the presence of Ca2+. The lower row of class-averages could show side views of a bipartite
object as proposed above and as in figures E3 and E4 in S1 File. The other class-averages could
be more tilted views or show top views.

For 5LO and NDmixed at a ratio of 1:1 the complexes are around 10 nm (Fig 4D and 4E).
However, incubation with an excess of 5LO to ND in the presence of Ca2+, show particles larger
than 10 nm (Fig 4F). In fact, according to the results in Fig 3, lanes 7–9 representing an excess
of 5LO to ND, we should expect a mix of particles containing one 5LO per nanodisc (ca 10
nm) and two 5LO per nanodisc (> 10nm). Furthermore, how would complexes of two 5LO
and one ND assemble? With one 5LO on each side of the nanodisc some kind of “tripartite”
particle could be expected (Figures F2 and F3 in S1 File). However, the tryptophans and loops
shown to mediate the binding of 5LO to the membrane are located in the N-terminal β-sand-
wich. Therefore it cannot be ruled out that two 5LO can bind on the same side of a nanodisc
(Figure F4 in S1 File).

In an attempt to clarify this, images were taken, e.g. the one in Fig 4F and class-averaging
was performed, shown in Fig 4G. The number of classes is higher than in Fig 4E, due to the
presence of both 1:1 and 2:1 complexes, all viewed from different angles (cf. Figures E and F in
S1 File). With the numbering as class 0 in the lower left and 24 in the top right corner, several
class averages seems to show “tripartite” objects, e.g. 6 and 16 formed by a nanodisc with one
5LO on each side of the bilayer viewed from the side (Figure F2 in S1 File). We speculate that
class-average number 3 (Fig 4G) shows two 5LO on the same side of the nanodisc. A “bipartite”
view of a 1:1 complex could be class-average 7 in Fig 4G.

As mentioned earlier, negative staining should not interact chemically, but cover particles
that are homogenous and evenly spread on the support. Furthermore, the particles should
adsorb to the support randomly and not in just one preferred orientation. As shown by Zhang
et al [35], the negative staining by a uranium salt prevents phospholipid bilayers to stack. Their
result show only one preferred view, “top views” (Figure A1 in S1 File). Compared to PTA, the
formate salt has a smaller grain size. Therefore a somewhat better resolution may be obtained
although UF is more difficult to work with. An attempt to obtain more detail and to verify the
presence of the 5LO-ND complexes also in the uranyl salt UF was made (Figure G in S1 File).
The sizes of the particles were to a large extent more than 10 nm and similarities to the “tripar-
tite” complexes stained by PTA was found indicating the presence of the 5LO-ND complex
also after staining by UF (Figure G2 in S1 File).

The activity of monomeric 5LO is comparable on nanodiscs vs
liposomes
Next we compared the effect of two different membrane mimicking enivronments, ND or lipo-
somes, on 5LO activity (in the presence or absence of calcium). From an estimation that the
two MSP1E3D1 encircles 260 molecules of POPC [32] the total concentration of phospholipid
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was calculated for the ND preparation. For liposomes we used L-α-PC at the same total lipid
concentration as for the nanodiscs.

Initial rates and 5HETE formation: A major 5LO product is 5HPETE which is concomi-
tantly non-enzymatically reduced to the hydroxyacid 5HETE. This reaction was followed by
UV spectroscopy at 235 nm, and the initial rate of product formation calculated (Vinit,
Table 1). Also the final amount of product formed after the 5 min reaction is shown (Final
Product, Table 1). These measurements were performed in the presence of around 5 mM free
Mg2+ and an AA concentration of 0.02 mM. In the presence of 10 μg/ml phospholipids we find
an initial activity and amount of final product that is relatively low. This corresponds well with
earlier results showing that at low concentrations of AA and PC, Mg2+ has a negligible 5LO
activating effect. When also Ca2+ (0.35 mM) was added there was a strong increase in 5LO
activity (see Table 1): from 0.14 to 1.87 μmol/mg/min in presence of nanodiscs; and 2) from
0.06 to 1.35 μmol/mg/min in presence of PC. Also the amounts of 5HPETE formed after 5 min
showed strong Ca2+ dependent increases (see Final Product, Table 1). In the absence of lipids
the initial activity was low as expected, 0.12 and 0.20 μmol/mg/min.

Leukotriene formation: Monomeric 5LO also catalyses the formation of LTA4 from
5HPETE (column LT, Table 1). LTA4 is unstable and degrades non-enzymatically to isomers
of LTB4 (6-trans-LTB4 and 12-epi-6-trans-LTB4) which were measured by LC-MS/MS after
10-min incubations (column LT, Table 1). The results showed similar trend to the spectroscopy
assay data for 5HPETE formation. The highest amounts of LTA4 was formed in the presence of
both Ca2+ and phospholipids in the form of ND (3.29 μmol/mg), or PC (2.41 μmol/mg)
(Table 1, column LT).

There is no statistically significant difference on 5LO activity mediated by either liposomes
or ND in the prescence of Ca2+ on 5HETE/5HPETE formation (p-0.16) and in concordance
formation of LTA4 is not significantly different (p-0.07). This shows that ND as a membrane
environment is similar to liposomes. ND functions as well as vesicles and has a advantage of
having a very small, defined and stable environment. On looking to activity of 5LO in the pres-
cence of liposomes or ND but without Ca2+, liposomes showed a lower activity than nanodiscs,
statistically significant, for both 5HETE/5HPETE formation (p-0.02) and LTA4 formation
(p-0.05).

Dimerisation of 5LO prevents binding to ND and inactivates 5LO
From the results above, it is clear that interaction of monomeric 5LO with Ca2+ upregulates
binding to ND and enzyme activity (Figs 1, 3 and 4 and Table 1). We then turned to dimeric

Table 1. 5LO initial velocity and product formation. Initial velocities (column Vinit) and total 5-HPETE/5-HETE formation (column Final Product) were
determined by UV spectroscopy at 235 nm, during 5 min incubations with different activating factors. Ratio 5LO:ND is 1.3:1. Data are mean±SEM (n = 3).
LTA4 formation (column LT) in 10 min incubations with different activating factors was measured by LC-MS/MS. * Not detected. Data are mean±SEM(n = 2).

Assay Components Vinit μmol/mg per min Final Product μmol/mg LT μmol/mg

5LO+AA

With Ca2+ 0.20±0.02 0.70±0.08 0.69±0.04

With out Ca2+ 0.12±0.01 0.55±0.09 0.69±0.03

5LO+AA+ND

With Ca2+ 1.87±0.12 3.60±0.10 3.29±0.25

With out Ca2+ 0.14±0.03 0.24±0.02 0.44±0.10

5LO+AA+PC

With Ca2+ 1.35±0.06 3.32±0.13 2.41±0.05

With out Ca2+ 0.06±0.03 0.13±0.02 n.d*

doi:10.1371/journal.pone.0152116.t001
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5LO. The dimeric 5LO separated by SEC (Fig 2A, Peak 1) was incubated with ND at equimolar
concentrations (0.6 μM), with and without 1 mM Ca2+ present, and analyzed by native PAGE
(Fig 5). The approximate molecular weight of dimeric 5LO (156 kDa) in complex with ND
would be 420 kDa, no band corresponding to this size was observed in the gel. Furthermore,
separation of the dimer into monomeric 5LO is not induced either. The only other band in
addition to ND is dimeric 5LO, present both with and without Ca2+ (Fig 5, Lane 3 and 4). It
can be concluded that the presence of a membrane bilayer and calcium during the 1 hour incu-
bation (before loading on the gel) does not promote any kind of complex formation, at least
not one that remains stable during the gel-run.

Furthermore, the enzymatic activity of dimeric 5LO was assayed under the same experi-
mental conditions as for monomeric 5LO. However, this yielded neither detectable amounts
of 5HPETE/5HETE nor of LTA4 (Table A in S1 File). If the oxygenation of AA cannot be
catalyzed the second step, the cyclization to the allylic epoxide would not be possible either.
However, as dicussed later, AA may not be present in the catalytic site at all, depending on
the assembly of the dimer with the catalytic sites facing each other, thereby blocking access
to the active sites [13].

Fig 5. The dimeric 5LO does not bind to nanodiscs or separate into monomeric 5LO.Native PAGE
analysis of purified ND (Lane 1) and purified dimer 5LO (Lane 2). Dimeric 5LO incubated with ND with Ca2+

(Lane 3) shows only bands corresponding to the dimer (158 kDa) and the ND (260 kDa). Dimer 5LO
incubated with ND but without Ca2+ (Lane 4) shows the same bands as for lane 3 indicating that the dimer is
not split into monomers by the presence of a membrane.

doi:10.1371/journal.pone.0152116.g005
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Single Particle TEM analysis of dimeric 5LO
Purified dimeric 5LO was analyzed with TEM both with and without incubation with ND and
with different stains. In experiments similar to those for the monomeric 5LO, we incubated the
dimer 5LO with nanodiscs with or without calcium ions followed by negative staining by PTA
(Fig 6A and 6B). As expected from the results shown by native page (Fig 5), the 5LO dimers
did not bind to the ND neither with calcium (Fig 6A) nor without (Fig 6B). Instead, the
amount of stacking observed implies that most nanodiscs are present in stacked form. Further-
more, single particles were observed of a size and shape that could represent the dimeric 5LO
(circles in Fig 6A).

On the other hand, the circled particles in Fig 6 resemble two stacked nanodiscs. To estab-
lish whether this butterfly-like object would represent a 5LO dimer, purified 5LO dimers (peak
1, Fig 2A) were stained with UF for reason of its small grain size that could reveal more detail
than PTA. The 5LO dimers (0.05 mg/ml) were around 10 nm and some had a butterfly appear-
ance (Fig 7A, right, lowest box). From 39 images, a total of 695 individual particles were picked
(with some examples shown in the gallery to the right in Fig 7A) and processed by the EMAN2
suite [29] into class-averages shown in Fig 7B). The class-averages indicate that the butterfly
shape is a characteristic of the 5LO dimer and that no higher order oligomers forms under the
conditions of the experiments.

Discussion
The aim with the present communication was to shed light on several questions: how does
5LO bind to the membrane in our particlular system, the nanodisc? In contrast to liposomes, it
actually contains a protein, the scaffolding MSP. FLAP is not necessary for 5LO to bind to
membranes: what would a complex formed by a nanodisc and a 5LO look like in its absence?
In other words, the structure of 5LO colocalized on the membrane next to FLAP could be dif-
ferent from its structure in a tight complex with FLAP. Moreover, if for example two 5LO
would be available per one ND what kind of complexes could form? Would two 5LO bind on
the same side of the nanodisc or on opposite sides? Could more than one, two or more 5LO
bind per disc? Finally, as one of several mechanisms that could inactivate 5LO (at least in vitro)

Fig 6. 5LO dimers cannot bind on nanodiscs as shown by the extensive stacking after staining by PTA. (A) dimeric 5LO and ND incubated with Ca2+.
Note, this preparation of nanodiscs was heterogenous and varied in the outer diameter of the discs, hence branches form (see boxes to the right). Circles
show objects interpreted as unbound dimeric 5LO particles. (B) dimeric 5LO and ND incubated without Ca2+. Here, the preparation of nanodiscs did not vary
in the outer diameter of the discs, hence no branches form. Instead, long stacks may lie on top of each other (top box) or lie parallel (middle and lower boxes).
Dimeric 5LO are present (circles).

doi:10.1371/journal.pone.0152116.g006
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is dimerisation, could the dimer bind on the ND? This would create a complex with the same
molecular weight as for two monomer 5LO bound to one ND and complicate structural studies
of the 5LO-ND complex (as well as a FLAP-5LO-ND complex later).

Biophysical and biochemical analysis of monomeric 5LO interactions
with ND
In a recent cell based assay an increase in activity was shown concomitant with the 5LO trans-
location to the membrane [37]. A proximity ligation assay showed 5LO to colocalise with
FLAP during the translocation and product formation within a distance less than 40 nm. On a
nanodisc the distance would necessarily be less than 40 nm as the available size range is less
than 20 nm diameter [21]. Compared to a liposome, the nanodisc provides a piece of soluble
membrane with 1) a bilayer accessible from both sides, 2) a small, predefined surface area and
3) a small and homogenous size necessary for methods like native gel electrophoresis and
TEM.

A nanodisc with 10.5 nm bilayer diameter was chosen for structural studies of complex for-
mation: it would provide the smallest area that would allow just one FLAP (about 4 nm

Fig 7. Purified 5LO dimers shown by negative stain TEM. (A), Negative stain (uranyl formate 1%) image
in which four boxed dimers are shown magnified in the gallery to the right. 100 nm and 10 nm scale bars,
respectively. (B), Class averages showing dimers of 5LO that conform to the proposed dimer in [13]. The
box side length is 27.6 nm.

doi:10.1371/journal.pone.0152116.g007
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diameter) and one 5LO (about 4.5 x 9 nm) to bind simultaneously. It may seem tight but on
the other hand, minimum extra size would be added compared to the complex of interest.
However, 5LO binding on the nuclear membranes depends on the presence of Ca2+ not FLAP
[38]. Hence, the structure as well as function of the 1:1 complex of 5LO and the ND is interest-
ing in its own right.

Biological molecules containing mostly light elements like carbon, nitrogen and oxygen
does not scatter electrons strongly wich results in low contrast when viewed by TEM [34].
Small (<250 kDa) to very small (<100 kDa) particles can be hard to find, if at all, under low
contrast conditions, e.g. in vitreous ice made for cryoEM imaging. Hence, staining with
strongly scattering heavy metal salts may be the only option to characterize very small biomole-
cules by TEM. Furthermore, characterization by negative stain TEM of a protein complex
selected as a narrow fraction from a size exclusion column and that appears as a single band on
a gel may show a heterogenous result. Differences in conformations of the complex constitu-
ents or in the complex assembly may be reasons. Characterisation of such details are essential
for further investigations of vitrified samples at cryogenic temperatures necessary to reach high
resolution structural models. The 5LO monomer and dimer are relatively small molecules
whereas the complex of 5LO on ND is large enough for cryoEM.

We used a negative stain (PTA) that has a specific artefactual effect to “stack” phospholipid
bilayers [35]. Bearing in mind that all incubations to produce complexes are made on the samples
before the negative stain is applied, the stacking by PTA can only be induced in samples where the
nanodisc surfaces are free and no large particle is bound (Figure C vs Figures E and F in S1 File).

In several PTA stained samples, it is clear that the nanodiscs were free to bind each other in
stacks i.e. Fig 4A–4C and Fig 6A and 6B). Monomer 5LO cannot bind in the absence of calcium
ions (Fig 4C) and dimer 5LO cannot bind even with calcium (Fig 6A). The lack of the stacking
phenomenon through PTA staining provides an indirect visualization of the protein binding
on the nanodisc surface.

In the presence of Ca2+, either 1:1 or 2:1 complexes were formed and remained stable when
negatively stained, showing well separated single particles by electron microscopy (Fig 4D–
4G). For the 1:1 complexes (Fig 4D and 4E), no more than bipartite complexes were observed
whereas for the 2:1 complexes (Fig 4F and 4G) tripartite objects can be found. These could rep-
resent side views of either one ND with one 5LO embedded (Fig 4D) or one 5LO embedded on
each surface of its nanodisc (Fig 4E, see also Figure E and Figure F in S1 File).

This would conform to a model proposed by Pande et al [24]. Based on polarized ATR-F-
TIR spectroscopy of 5LO on POPC membranes in the presence of Ca2+ [23,24] it was suggested
that the N-terminal β-sandwich axis of 5LO would form a 45° angle to the membrane and that
residues both in the β-sandwich and in the catalytic domain contribute to binding [24]. Fur-
thermore, the knowledge of residues important in membrane binding allowed building a
model of 5LO embedded in the membrane [24]. The overall shape of lipoxygenases can be
viewed as a cylinder, and in the Pande model 5LO is embedded into the membrane along the
cylindrical long axis [24]. These authors showed that although the calculated maximum cross-
sectional area of 5LO is about 3500 Å2, the effective area per 5LO binding site at the membrane
is about 9600±1250 Å2. The nanodiscs used for our study have a somewhat smaller bilayer area
of about 8600 Å2 calculated from the innerdiameter of about 10.5 nm. On the other hand, in
case the area would be insufficient, uncomplexed 5LO should be present even when there is an
excess ND per 5LO (see the titration Fig 3, lanes 3–6). This is not the case and the ND surface
area seems to be sufficient to bind one 5LO.

On the other hand, a large number of the nanodiscs bind only one 5LO even in the presence
of an excess 5LO. Possibly, the choice of POPC as the only lipid may not be optimal or even
that monomeric 5LO may have a non-binding conformation. Perhaps more likely: the residues
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in the N-terminal C2-domain probe deeply into the membrane [23,24,39] and could affect the
bilayer as was seen for the IVA type cPLA2a C2-domain [40] and for monotopic membrane
proteins investigated by molecular dynamics [41,42]. In the worst case, the membrane distor-
sion could prevent the second 5LO to bind on the opposite ND side.

In fact, one could speculate that even if Ca2+ mediates the first level of binding on the phos-
pholipid bilayer, the burial of the loops containing tryptophans 13, 75 and 102 (located on the
in the β-sandwich) would be a second level of binding and this would distort the membrane.
Or, as a third level of binding, the membrane distorsion is induced only for those ND where
also the C-terminal 5LO domain embeds in the ND lipid bilayer. In other words, the burial of
the loops could be reinforced further by the C-terminal embedding. This reasoning could
partly explain the 340 kDa band still remaining after a Ca2+ free gel run (Fig 1A, Lane 3). Bind-
ing of 5LO to nanodiscs with larger bilayer area [21] and different lipid compositions is a sub-
ject for extended studies.

Previous studies have shown that 5LO enzyme activity is upregulated by phospholipids,
usually in the form of liposomes, in the presence of Ca2+ [11,43,44]. We needed to verify that
the nanodiscs would behave as pure liposomes and not be affected by its small size or the MSP
protein or some other aspect. When we compared the effects of nanodiscs and liposomes on
5LO activity in presence of Ca2+ and there was no statistically significant difference between
the two bilayer mimetics, both regarding initial rate and final amount of products (Table 1).

One statistically significant difference for the two bilayer mimetics was that (in the absence
of Ca2+) the activity of 5LO with liposomes present in the solution was lower than for ND. If
there is no calcium present 5LO remains unbound to membranes and depends on the amount
on AA free in solution. Possibly, AA would partition also into the liposome interior solution
and thereby become less available for 5LO in the solution.

Would the used amounts of Mg2+ present in the activity measurements be activating? At
the low concentration of both types of membranes, (ND or PC; 10 μg/ml) and the AA at
20 μM, the low activities we observe (in the absence of Ca2+) corresponds very well with earlier
reports [26,45]. An addition of Ca2+ in the presence of Mg2+ gave a 3.3-fold increase in activity
[45]. In the present study, Ca2+ was added in the presence of Mg2+ and strongly increased the
activity of 5LO, emphasizing the high affinity of 5LO for Ca2+ compared to Mg2+.

Thus, binding of 5LO to nanodiscs is a useful model for the association of this lipoxygenase
to natural membranes. Recently, nanodiscs were used to confirm Ca2+ dependent membrane
binding of 15-lipoxygenase-2 [46]. Another reason for the use of nanodiscs is that possibly the
confined area of the nanodisc, even more when the FLAP is located within the bilayer, could be
the first in vitro system where the activity of a complex between 5LO and FLAP could be stud-
ied. FLAP reconstituted into liposomes could induce changes in activity or product profiles but
no such experiments have been reported. FLAP in detergent does not seem to interact with
5LO (not shown).

Analysis of Dimeric 5LO
In measurements where neither the preparation of 5LO or the gels were kept fully reduced it is
clear that 1) dimer forms but 2) the active form of 5LO is the monomer (Figs 1 and 2). Mono-
mers and dimers could be separated by SEC for later use. In the initial stage of this study,
2-mercaptoethanol was used in the 5LO preparations, however dimerization was abundant.
TCEP has a higher reducing power and specifically reduces only the aminoacids on the surface
of proteins [47]. When TCEP was used instead of 2-mercaptoethanol, the amount of dimer
formed was considerably reduced (data not shown) and the stability of 5LO was also increased.
The presence of glutathione also prevented dimerization of 5LO [13].
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In the BN-PAGE analyses (Figs 1A and 5) the protein band appearing at MW 160 kDa is
compatible with a 5LO dimer. Investigations of lipoxygenases in dimeric form or even in higher
oligomeric states under various conditions are available [13,48,49,50,51] and direct investigation
of 5LO dimerisation (156 kDa) was first reported in 2011 both in vivo and in vitro after induction
of dimerization [13]. The dimer of 5LO is assembled by disulfide bridges formed by cysteines,
C159, C300, C416 and C418 and the proposed dimer model has a head to tail orientation [13].
Although, this orientation cannot be verified by our low resolution negative stain data (Fig 7)
some class-averages look as if two equally long objects are attached with their long dimensions in
parallel in support of the model proposed in [13] (see also Figure D2 in S1 File).

We determined the possible interaction of dimeric 5LO with nanodiscs. The results showed
no Ca2+ mediated binding of dimeric 5LO to ND, either by native gels or TEM (Figs 5 and 6).
It can be argued that binding of the dimer on a ND could have other dependencies than cal-
cium ions and be of lower affinity (cf. Figs 1 and 5). Hence this complex would not be stable
under the conditions of the native gel experiment. The extensive stacking present in samples
where the dimer had been incubated with nanodiscs, both with and without calcium, contra-
dicts formation of stable complexes however (Fig 6). Another possibility for complex formation
would have been if the phospholipid bilayer somehow would affect the dimer to separate into
monomers that in turn would have been able to bind on the ND. In this case, we should have
seen bands corresponding to monomeric 5LO and 430 kDa in Fig 5 and in Fig 6A less stacking
and 5LO-ND complexes compared to Fig 6B. This is not the case.

Apart from not being able to bind to nanodiscs, we also noticed that the dimeric 5LO did
not show any enzymatic activity (Table A in S1 File), in accordance with earlier work [13]. In
the proposed head to tail 5LO dimer model, dimerization causes Trp75 to become sterically
hindered for membrane interaction [24]. Furthermore, in the dimer the catalytic sites may face
each other in a way that renders them inaccessible to substrate and membrane. If 5LO could be
considered to have the shape of a cylinder, the class averages (Fig 4E) support an interaction of
monomeric 5LO via the long dimension (that would be embedded on the membrane), rather
than via one of the ends of the cylinder.

It was reported that 11R-lipoxygenase was present as a dimer in calcium-free buffer and in
the presence of 10 mM CaCl2 large aggregates were formed [51]. Could the incubation with cal-
cium be the reason for 5LO dimer-formation from monomer or dissociation of dimer to
monomer? For the 5LO monomer, calcium did not promote increased dimerisation (Fig 1A).
Also, BN-PAGE analysis indicated no change of the dimeric state, by Ca2+ (Fig 5).

Conclusion
In summary, we can replace liposomes with nanodiscs, they function equally well as membrane
mimetics. The activities and products formed are very similar. We have obtained negative stain
images of complexes from different angles with either one or two 5LO bound to one nanodisc.
The native page and negative stain results also show that the preparation of a pure specimen
for cryoEM is straightforward; incubation (with Ca2+) of a monomeric 5LO with nanodiscs at a
ratio 1:1 will result in a majority of 1:1 complexes. Moreover, for all complexes of 5LO-ND it is
the monomeric 5LO that binds. In case there would be a small fraction of dimers present in an
otherwise monomeric preparation of 5LO, these would remain unbound. Possibly speculative
but in some class-averages representing the two 5LO per disc it seemed that the two 5LO
bound on the same side of the nanodisc. With this in mind, the chosen nanodisc size should be
able to house the complex between FLAP and 5LO as calculated and observed preliminary (not
shown). For Single Particle Reconstruction (SPR), the 1:1 complex of 5LO-ND (340 kDa)
approaches the medium size range. This means the complex should be detectable in vitrified
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ice and data could be collected by cryoEM to reconstruct a structure of the complex, possibly
with and without the presence of FLAP.
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