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ABSTRACT Recombinational hybrids between phage l and its relatives were instru-
mental in the beginnings of molecular biology. Here, we report the complete ge-
nome sequences of lambdoid phages 21 and 434 and three of their l hybrids. In
addition, we describe 434B, where the entire lysis gene region was replaced by cryp-
tic prophage sequences.

E scherichia coli phages 21 and 434, isolated by Wollman and Jacob in 1961 (1), were
used to form genetic hybrids with the canonical phage l . As they are close natural

relatives, an analysis of these lambdoid phages and their hybrids was foundational to
originating modern molecular genetics. Here, we report the complete genome sequen-
ces of phages 21 and 434; their l recombinants l imm434, l imm21, and l h434
imm21; and 434B, a clear plaque mutant of 434.

Phages were sourced as follows: phage 21, A. Campbell and R. Young; 434 wild
type, S. Adhya; 434B clear mutant, C. Georgopoulos; l imm21 and l imm434, M. Feiss
(original source A. Campbell); and l h434 imm21, C. Georgopoulos (original source of
the h434 host range allele, E. Signer). Phages were propagated on E. coli SKB-178 (2) by
liquid infection in LB broth at 37°C. Virions were pelleted and purified by CsCl density
step gradient centrifugation (3). Genomic DNA (gDNA) was isolated from purified viri-
ons with the phage DNA isolation kit (Norgen Biotek Corp., Thorold, Ontario) and
sequenced individually by the Illumina MiSeq 150-bp paired-end run methodology
with a 350-bp insert library prepared from a TruSeq DNA Nano kit at the University of
Utah Sequencing Facility. Quality-controlled trimmed reads assembled into single
.20-fold coverage contigs with Geneious 9.0.5 at default parameters and circular
assemblies were reopened at known or homologous sticky ends (4–6). The phage 21
genome gave an identical assembly when sequenced by the dideoxy-nucleotide meth-
odology at the Pittsburgh Bacteriophage Institute (7).

The genomes were annotated using the Center for Phage Technology Galaxy-
Apollo phage annotation platform (8) with default parameters as follows: structural
annotation, GLIMMER v3.0 and MetaGeneAnnotator v1.0 (9, 10); tRNA detection,
ARAGORN v2.36 and tRNAscan-SE v2.0 (11, 12); gene function prediction, InterProScan
v5.48, BLAST v2.9.0, TMHMM v2.0, LipoP v1.0, SignalP v5.0, and GenBank and Swiss-
Prot databases, as well as HHPred using their HHSuite v3.0 Web server (13–20).
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The phage 21 genome is 42,931 bp long with 73 protein-encoding genes and 2 tRNA
genes. The 434 genome has 47,075 bp and 77 protein-encoding genes. The 434B clear pla-
que isolate was found to have a missense mutation in the cI repressor gene and a replace-
ment of ;5.5 kb, including the Q late activator, late promoter, and lysis gene region by a
syntenic segment of the E. coli K-12 DLP12 cryptic prophage (21, 22). These sequences cor-
rect numerous single-base errors in previously reported segment sequences (Table 1).
Essential genes in 21 and 434 are syntenic with phage l , but the morons, including multi-
gene loci encoding bacterial virulence factors, are different.

The sequences of the hybrid phages l imm21, l imm434, and l h434 imm21 con-
firm the genetically mapped locations of the nonhomologous 21 and 434 immunity
segments, which confer host immunity to the same phage. The l imm21 and l

imm434 hybrid sequences reveal additional 21 and 434 sequences, respectively, out-
side of the immunity regions; however, the interpretation of important early experi-
ments using these phages is unaffected by these sequences (23, 24). The hybrid phage
sequences identified 9 differences from the originally published l sequence present in
many extant laboratory l strains (25).

Data availability. The genome sequences and associated data for the reported
genomes are available in GenBank under accession no. OL657226 to OL657228 and
OM418625 to OM418627, and sequence reads are available under BioProject PRJNA222858
(Table 1).
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