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Stachybotrys elegans is able to parasitize the fungal plant pathogen Rhizoctonia solani

AG-3 following a complex and intimate interaction, which, among others, includes the

production of cell wall-degrading enzymes, intracellular colonization, and expression of

pathogenic process encoding genes. However, information on the metabolome level

is non-existent during mycoparasitism. Here, we performed a direct-infusion mass

spectrometry (DIMS) metabolomics analysis using an LTQ Orbitrap analyzer in order

to detect changes in the profiles of induced secondary metabolites of both partners

during this mycoparasitic interaction 4 and 5 days following its establishment. The

diketopiperazine(s) (DKPs) cyclo(S-Pro-S-Leu)/cyclo(S-Pro-S-Ile), ethyl 2-phenylacetate,

and 3-nitro-4-hydroxybenzoic acid were detected as the primary response of Rhizoctonia

4 days following dual-culturing with Stachybotrys, whereas only the latter metabolite

was up-regulated 1 day later. On the other hand, trichothecenes and atranones

were mycoparasite-derived metabolites identified during mycoparasitism 4 and 5 days

following dual-culturing. All the above secondary metabolites are known to exhibit

bioactivity, including fungitoxicity, and represent key elements that determine the

outcome of the interaction being studied. Results could be further exploited in programs

for the evaluation of the bioactivity of these metabolites per se or their chemical analogs,

and/or genetic engineering programs to obtain more efficient mycoparasite strains with

improved efficacy and toxicological profiles.

Keywords: metabolomics, mycoparasitism, mycotoxins, Rhizoctonia solani, direct-infusion mass spectrometry

Introduction

Interactions between microbes encompass antagonistic, mycoparasitic, or competitive outcomes
leading to the activation of complex regulatory mechanisms, which are regarded as a major route
for the de novo biosynthesis of secondary metabolites (Schroeckh et al., 2009; Lorito et al., 2010;
Brakhage and Schroeckh, 2011; Brakhage, 2013). Therefore, the study of the fungal secondary
metabolites, implicated in such interactions, is expected to provide insights into key factors that
determine their outcome.

Mycoparasitism is a complex process when a fungus (mycoparasite) survives by using
another fungus (host) as its source of nutrients. This involves a sequence of changes in the
metabolism of both partners. Focusing on crop protection, mycoparasitism holds the premise of

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://dx.doi.org/10.3389/fmicb.2015.00353
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:suha.jabaji@mcgill.ca
http://dx.doi.org/10.3389/fmicb.2015.00353
http://journal.frontiersin.org/article/10.3389/fmicb.2015.00353/abstract
http://community.frontiersin.org/people/u/205466
http://community.frontiersin.org/people/u/205616
http://community.frontiersin.org/people/u/205451


Chamoun et al. Metabolomics of mycoparasitism

becoming a valuable component of integrated pest management
strategies (IPM) (Viterbo et al., 2007; John et al., 2010). To
date, systematic research on mycoparasitism has been mainly
performed on Trichoderma spp. (Lorito et al., 2010; Druzhinina
et al., 2011; Mukherjee et al., 2013). Various other species
such as, Coniothyrium minitans and Microsphaeropsis ochracea
(Bitsadze et al., 2014), Aspergillus aculeatus (Hu et al., 2013),
and Stachybotrys elegans (Chamoun et al., 2013), have shown
potential as mycoparasites of important plant pathogens. S.
elegans parasitizes the soil-borne fungal pathogen Rhizoctonia
solani. During this intimate interaction, S. elegans cell wall-
degrading enzymes (Taylor et al., 2002; Morissette et al., 2003)
and mycoparasitism-associated genes involved in pathogenic
processes (Morissette et al., 2008) are expressed. In response
to mycoparasitism, transcript levels of a R. solani pyridoxal
reductase-encoding gene, whose role in reactive oxygen species
(ROS) quenching is established, are elevated (Chamoun and
Jabaji, 2011).

In contrast to the wide range of applications of metabolomics
in plant, animal, and human-related research (Griffin, 2006; Hall,
2006; Spratlin et al., 2009; Aliferis and Jabaji, 2011), microbial
metabolomics is still in its infancy. Studies investigating
metabolic aspects of microbes have mainly focused on fungal
classification (Smedsgaard et al., 2004; Aliferis et al., 2013),
metabolic profiling of antagonistic interactions (Tsitsigiannis
et al., 2005; Rodriguez Estrada et al., 2011; Combès et al., 2012;
Jonkers et al., 2012; Bertrand et al., 2013) or interactions between
primary and secondary fungal colonizers of wood (Peiris et al.,
2008). Nonetheless, metabolomics has not been yet applied for
the study of mycoparasitic interactions.

The main task of the present research is to dissect the
undergoing changes in the profile of the secondary bioactive
metabolites of both fungal partners during mycoparasitism.
This could provide valuable insights into the main factors that
determine its outcome. Here, a metabolic profiling strategy was
applied performing direct infusion mass spectrometry (DIMS)
analysis using a linear trap quadrupole (LTQ) Orbitrap Classic
analyzer. Moreover, because metabolite identification represents
a bottleneck for fungal metabolomics, (El-Elimat et al., 2013),
here it was performed by using a targeted in-house built species-
specific metabolic database for Rhizoctonia and Stachybotrys
secondary metabolites. Following dual-culturing, the metabolic
profiles of secondary metabolites of R. solani and S. elegans, were
recorded. Such information could be further exploited in crop
protection for the production or synthesis of new antifungal
agents or for designing selection and genetic engineering
programs to obtain more efficient strains of the mycoparasite
with improved toxicological profiles.

Materials and Methods

Chemicals and Reagents
All chemicals used for metabolite extraction and sample
preparation for DIMS analysis were of the highest commercially
available purity. Methanol, ethyl acetate, formic acid, ammonium
acetate (Optima R© grade), and water (HPLC grade) were

purchased from Fisher Scientific Company (Ottawa, ON,
Canada).

Biological Material
Starter cultures of the mycoparasite Stachybotrys elegans
(Pidoplichko) W. Gams (ATCC 18825) and the pathogen
Rhizoctonia solani AG-3 (ATCC 10183) were revived from pre-
colonized oat kernels on 1% potato dextrose agar (PDA; Difco
Laboratories, Michigan, USA) and incubated at 24◦C for 7 and 5
days, respectively. Induction and collection of S. elegans conidia
were performed as previously described (Chamoun and Jabaji,
2011).

Establishment of Mycoparasitic Interaction
Dual-culturing of S. elegans and R. solani was conducted in
9 cm Petri plates containing 20mL of minimal synthetic medium
(MSMA) composed (g L−1) of: MgSO4.7H2O, 0.2; K2HPO4,
0.9; KCl, 0.2; FeSO4.7H2O, 0.002; MnSO4, 0.002; ZnSO4, 0.002;
NaNO3, 1.0; biotin, 10mg; gellan gum, 1% (composed of glucose,
glucuronic acid and rhamnose in the molar ratio of 2:1:1)
(Phytagel, Sigma, St. Louis, USA).

Agar plugs (8mm) of a 5-day old R. solani culture were
grown on MSMA for 48 h and then sprayed with 100µL of
a suspension of S. elegans conidia (106 mL−1 water) using a
Badger 350 air brush and MC-80mini air compressor calibrated
at 1 kg cm−2. The control treatments consisted of spraying
100µL of S. elegans conidia on non-inoculatedMSMA plates and
R. solani-inoculated MSMA plates sprayed with sterile distilled
water. Additionally, a negative control representing the MSMA
medium was used to determine compounds of non-biological
origin. All culture plates were incubated at 24◦C for 4 or 5 days
following dual and pure strain cultivation. These time points were
chosen based on a priori knowledge to capture the infection and
colonization of R. solani hyphal cells by S. elegans (Chamoun and
Jabaji, 2011). Five replications were performed per treatment.

Optical Microscopy
To associate the metabolic changes with the progress of the
mycoparasitic process, agar pieces (5 × 5mm) from interaction
zones of dual-culture plates and from pure cultures of both
fungal partners were collected in a time course. Sections from
interacting zones were stained with lactophenol blue or water and
viewed under an optical microscope. Presence of hyphal coils,
penetration pegs and intracellular colonization of the pathogen
was digitally documented with the Moticam 2300 digital camera
(GENEQ Inc. QC, Canada).

Sampling, Quenching, and Metabolite Extraction
Four plugs (8mm in diameter × 7mm in height) were collected
from the interaction zones of dual-cultures, pure cultures of
each fungal partner after 4 or 5 days of cultivation and from
the negative control (MSMA) plates. Plugs were placed in glass
autosampler screw thread vials (2mL, Fisher Scientific, ON,
Canada). Quenching was instantly performed by adding twice
2mL of liquid N2, and samples were stored at -80◦C until further
processing. Extraction was performed as previously described
(Aliferis et al., 2014). Briefly, 1mL of a mixture of methanol-
ethyl acetate (50:50, v/v) was added to the vials, followed
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by sonication for 25min. Samples were further extracted for
2 h under continuous agitation (250 rpm) at 25◦C and filtered
through 0.2-µm filters (Millex-FG; Millipore, MA, USA). The
volume of samples was adjusted to 1mL and subsequently
divided into two equal portions (0.5mL) for DIMS analyses in
positive (ESI+) and negative (ESI−) electrospray modes. Finally,
extracts were dried using a Labconco CentriVap refrigerated
vacuum concentrator equipped with a cold trap (Labconco, MO,
USA).

Direct Infusion Mass Spectrometry (DIMS) and
DIMS/MS Analysis
For DIMS and DIMS/MS analyses, an LTQ Orbitrap MS Classic
(Thermo Scientific, CA, USA) was used acquiring in the ESI+ or
ESI− modes (Aliferis et al., 2014). All experimental events were
controlled by the software Xcalibur v.2.2 (Thermo Scientific).
The analyzer was equipped with a heated electrospray ionization
probe (HESI-II, Thermo Scientific), a quadrupole linear ion
trap, and an Accela pump (Thermo Scientific). For analysis in
ESI+ and ESI−, 100µL of a mixture of methanol/formic acid
(0.2% v/v) (50–50, v/v) or methanol/ammonium acetate (4mM)
was added to the dried samples, respectively. Extracts were
then transferred to glass microinserters (150µL), which were
consecutively placed into 2mL glass autosampler vials. Samples
(10µL) were injected at a flow rate of 10µL min−1 using a
100µL syringe (Hamilton, NV, USA). Full scan mass spectra
were acquired in the range between 50 and 1200 Da at a rate
of 0.6 scans/s and a mass resolution of 60,000 at 400m/z. The
source and capillary voltages were set to 3.2 kV and 5.0V for
ESI+ and 4.0 kV and −35V for ESI−, respectively. The capillary
temperature for both modes was set to 275◦C. Sheath gas flow
was set to 10 (ESI+), and 20 (ESI−) whereas no auxiliary and
sweep gases were used. For selected samples, MS/MS spectra were
recorded using previously described settings (Aliferis et al., 2014).

Data Processing and Analysis
Mass spectra were processed using the freely available software
MZmine 2 (Pluskal et al., 2010) following the procedures
recommended by the developers after optimization of the
obtained data. Cumulative spectra were collected between
0.8–1.3min for ESI+ and 0.6–1.1min for ESI−. Metabolic
features were detected using the centroid algorithm and the noise
level was optimized for each sample. The Fourier transform
mass spectrometer (FTMS) shoulder filter was then applied at
a mass resolution of 8000 using the Lorentzian extended model
function. Chromatogram built, alignment and gap-filling were
performed using an m/z tolerance (1 ppm) <3. Alignment was
performed using the “Join aligner” option, whereas gap filling was
performed in two steps; first using the “Peak finder option” and
then the “Same RT and mz range gap filter” (Pluskal et al., 2010).
This procedure accounted for the presence of missing peaks in
the matrix as a result of the performance of the peak detection
algorithm or possible mistakes in the alignment. Subsequently,
the matrices were subjected to filtering by removing rows with
more than 50% missing values among the biological replications
of the same treatment. Following alignment, metabolic features
of non-biological origin corresponding to the negative control

samples (MSMA) and also detected in the biological samples
were removed and were excluded from further analysis.

The obtained aligned matrix was then exported to Microsoft
Excel for further processing. Finally, the matrix composed of
identified secondary metabolites detected in ESI+ and ESI− was
exported to the SIMCA-P+ v.12.0.1 software (Umetrics, MKS
Instruments Inc., MA, USA) for multivariate analysis (Aliferis
and Jabaji, 2012). The discovery of biomarker-ions was based on
partial least squares-discriminant analysis (PLS-DA) regression
coefficients (P < 0.05). Based on the variability in the model
parameters encountered in the different cross-validation cycles,
standard errors were calculated with 95% confidence interval
using Jack-knifing (Efron and Gong, 1983).

Metabolite Identification and Assignment of Their
Origin during Mycoparasitism
The identification of metabolites was performed following
a biologically-driven approach performing searches against
the targeted in-house species-specific metabolic databases for
Rhizoctonia and Stachybotrys. The libraries were constructed
acquiring information from the literature and publicly
available databases such as, KNApSAcK (http://kanaya.naist.
jp/KNApSAcK/) and PubChem (http://pubchem.ncbi.nlm.nih.
gov/). Identification of metabolites was based on mass accuracy
(<2 ppm) and where available, on isotope and/or MS/MS
fragmentation patterns (Supplementary Data Sets 1–4) using
data from the databases of METLIN (http://metlin.scripps.edu/
index.php) and mzCloud (https://www.mzcloud.org/) and the
literature. In addition, the heuristic rules of Kind and Fiehn
(2007), which are implemented in the MZmine 2 (Pluskal et al.,
2010), were applied. These rules provide a valuable tool for
reducing the number of candidate molecular formulae for a
given ion. Detection of mass errors was confirmed by Xcalibur
v.2.2 (Thermo Scientific).

Additionally, since the majority of the secondary metabolites
have unique structures, the assignment of metabolites to the
corresponding producing fungus during mycoparasitism was a
feasible task at the applied mass resolution.

Results and Discussion

Morphological and Microscopic Observations of
Mycoparasitism
In dual-cultures on Petri plates, S. elegans conidia germinated
within 24 h, made contact with hyphal cells of R. solani
and overgrew over the pathogen colonies after 4 days of
dual-cultivation (Figure 1). Therefore, 4 and 5 days were
selected as the time points to study the induced production,
involvement and changement of secondary metabolites during
mycoparasitism. Conspicuous accumulation of S. elegans aerial
hyphae over R. solani colonies was observed and accompanied by
heavy coiling and formation of infection pegs and intracellular
colonization of R. solani cells (Figure 1). In the presence
of the mycoparasite, the cytoplasm of R. solani infected
cells appeared disorganized and devoid of granules. R. solani
pure cultures appeared less pigmented compared to the
parasitized cultures (Figure 1), which manifested a change in
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FIGURE 1 | R. solani and S. elegans in pure and dual-cultures are displayed after 4 days (D4) of growth with corresponding microscope images of

hyphae (40X). Arrows indicate the formation of coils (C) of S. elegans (S-H) on R. solani (R-H) hyphae. Black circles indicate the locations of sampling (Sp; spores).

the color from white to dark brown of underneath medium,
corresponding to the biosynthesis and diffusion of fungal
metabolites into the growth medium as a result of the interaction
(data not shown).

Metabolite Identification and Biomarker
Discovery
The lack of chromatographic separation in DIMS analysis makes
the identification of metabolites challenging, even with highmass
accuracy (e.g., <2 ppm). In addition, the possible presence of
metabolites with identical molecular formulae or isomers makes
their absolute identification even more complex. In this context,
the identification of metabolites during the mycoparasitic
interaction being studied, was based on searches against the
two species-specific metabolite libraries for Stachybotrys and
Rhizoctonia (Supplementary Tables 1, 2) for commonly occurred
adducts (Supplementary Table 3). Identities were assigned to 36
metabolic features of the obtained metabolite matrix combining
results of ESI+ and ESI− analyses, 30 of which were unique
(single metabolite) (Supplementary Data Set 5). Such approach
not only facilitates the robust identification of fungal secondary

metabolites, which represents a bottleneck for high-throughput
fungal metabolomics, but additionally, it enables the assignment
of the origin of the recorded metabolic features in their dual-
cultures. The latter is facilitated largely by the unique structures
that the identified metabolites of both fungal species have (e.g.,
none of the metabolites of the two target libraries share the same
molecular formula).

For the detection of trends within the obtained matrix and
corresponding biomarkers of mycoparasitism, the metabolic
profiles of R. solani-S. elegans dual-cultures were compared
to those of pure cultures for both time points (Figure 2
and Supplementary Figures 1–4) applying multivariate analysis
(MVA). Initially, application of the unsupervised principal
component analysis (PCA), revealed a tight clustering between
the biological replications of the same treatment in the
corresponding PC1/PC2 score plots and the absence of outliers
(P < 0.05) (Supplementary Figure 5). This is indicative of
the robustness of the applied bio-analytical protocol, data
processing, instrument’s performance and of the substantial
differences between the metabolic profiles of Rhizoctonia-
Stachybotrys dual-cultures and their corresponding pure cultures
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FIGURE 2 | Cumulative mass spectra of R. solani-S. elegans

dual-cultures 4 (D4) and 5 (D5) days following treatments. Data

were aquired in positive (ESI+) and negative (ESI−) electrospray

modes performing direct infusion analysis in the range 50–1200 Da.

The software Xcalibur 2.2 was used for the creation of mass

spectra.

FIGURE 3 | Number of identified Rhizoctonia solani (R)-derived and Stachybotrys elegans (S)-derived metabolites during their mycoparasitic

interaction 4 and 5 days following dual-culturing.

at both time points. Additionally, the number of identified
Rhizoctonia-derived metabolites was substantially higher than
that of Stachybotrys-derived ones for both time points (Figure 3).

Plausibly this is due to the fact that Rhizoctonia was established
in the media prior to treatments, which gave it more time to
synthesize and release metabolites.
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FIGURE 4 | Partial least squares-discriminant analyses (PLS-DA)

PC1/PC2 score plots of identified secondary metabolite profiles of

Rhizoctonia solani (R), Stachybotrys elegans (S), and their

dual-cultures (I), 4 (D4) and 5 (D5) days following inoculation (A) and

corresponding PLS-dendrogram perfoming hierarchical cluster

analysis (HCA) (B). PLS-DA PC1/PC2 score plots for D4 (C) and D5 (D) are

also displayed. In the score plots, the ellipse represents the Hotelling T2 with

95% confidence interval. Five (5) biological replications were performed per

treatment [Q2(cum); cumulative fraction of the total variation of the X’s that

can be predicted by the extracted components, R2X and R2Y ; the fraction of

the sum of squares of all X’s and Y’s explained by the current component,

respectively].

In a second step of MVA, PLS-DA and hierarchical clustering
were applied for the discovery of trends within treatments
(Figure 4). Similarly to PCA, both analyses showed a very
strong discrimination between the recorded metabolic profiles
of pure and dual-cultures and tight clustering between biological
replications. As an indication of the dynamics of its biosynthetic
activity, the metabolite profiles of Rhizoctonia grown in pure and
in dual-cultures were substantially different at both time points.

It is noteworthy, that for metabolomics, the absence of a
metabolite from a treatment in the matrix means either no
detection (e.g., below the limits of detection) or elimination
following filtering (missing values >50%). The latter could
be attributed either to the variation in the biological samples
or signals with intensity near the limits of detection of the
instrument.

Mycoparasitism by Stachybotrys elegans Affects
Significantly the Biosynthesis of Rhizoctonia
solani Secondary Metabolites
Results revealed the substantial impact of Stachybotrys
mycoparasitic activity on Rhizoctonia’s metabolism (Figures 4,
5). The biosynthesis of the vast majority of the identified
Rhizoctonia-derived metabolites were significantly down-
regulated, whereas only a handful was up-regulated or remained

unaffected in response to mycoparasitism. This is indicative of
the general disturbance of the pathogen’s metabolism in response
to the invasion of the mycoparasite, which plausibly represents
the evidence for the outcome of such interaction.

The diketopiperazines (DKPs) cyclo(S-Pro-S-Leu)/cyclo(S-
Pro-S-Ile), ethyl 2-phenylacetate, and 3-nitro-4-hydroxybenzoic
acid (Supplementary Figure 6) were induced in Rhizoctonia
4 days following dual-cultivation with Stachybotrys, whereas only
the latter was found to be up-regulated 1 day later.

DKPs exhibit antifungal and antibacterial properties, and
inhibit the biosynthesis of mycotoxins (Martins and Carvalho,
2007; Huang et al., 2010; Borthwick, 2012). They have been
isolated from fungal species such as, Aspergillus spp. (Li et al.,
2004; Wang et al., 2008), Alternaria spp. (Musetti et al.,
2007), Fusarium oxysporum (Trigos et al., 1995), and R. solani
(Pedras et al., 2005). In the latter study, the DKPs cyclo(S-
Pro-S-Leu)/cyclo(S-Pro-S-Ile) were isolated from R. solani
cultures, which is in accordance with our data. Cyclo(S-Pro-
S-Leu)/cyclo(S-Pro-S-Ile) do not exhibit phytotoxicity (Pedras
et al., 2005), however, based on the resemblance of their structure
with other DKPs with established antimicrobial and mycotoxin
inhibitory action, it is plausible to suggest a role of cyclo(S-Pro-S-
Leu)/cyclo(S-Pro-S-Ile) in the defense mechanism of Rhizoctonia
against the stress imposed by the invasivemycelia of Stachybotrys,
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FIGURE 5 | Partial least squares (PLS) coefficient plots for the

comparison between Rhizoctonia solani pure cultures and its

dual-cultures with Stachybotrys elegans at D4 (A) and D5 (B)

days with values of scaled and centered PLS regression

coefficients (CoeffCS). Negative values of coefficients denote

metabolites with higher concentration during mycoparasitism whereas

positive values correspond to those with higher concentration in

Rhizoctonia monocultures. Values < −0.0005 and > +0.0005 were

considered significant (ESI+; positive electrospray mode, ESI−; negative

electrospray mode).

a known producer of mycotoxins (Deng et al., 2003). In contrast,
the biosynthesis of cyclo(S-Pro-S-Val) (Figure 5) was suppressed
in the presence of the mycoparasite at both time points.

Phenylacetic acid (PAA) and its derivatives are the first
studied bioactive metabolites of Rhizoctonia (Aoki et al.,
1963). These metabolites share a functional phenyl group
and a carboxylic acid (Supplementary Figure 6), and are
known not only for their phytotoxicity but also for their
antimicrobial activities (Hwang et al., 2001; Mao et al., 2006;
Ding et al., 2008; de Lima Mendonça et al., 2009). Interestingly,
here, the biosynthesis of PAA, phenylethyl-2-phenylacetate,
and mandelic acid was suppressed in the presence of the
mycoparasite; whereas ethyl 2-phenylacetate and 1-menthyl
phenylacetate were the most induced metabolites in response
to Stachybotrys attack (Supplementary Figure 6). A major
response of Rhizoctonia to mycoparasitism was the increased
biosynthesis of 3-nitro-4-hydroxybenzoic acid at both time

points. Information in the literature supporting the antimicrobial
activity of benzoic acid and its derivatives against economically
important plant pathogens is established (Sopheareth et al.,
2013). Itsmode of action is attributed to lowering the intracellular
pH of fungal cells leading to inhibition of glycolysis (Krebs et al.,
1983). Whether 3-nitro-4-hydroxybenzoic acid has the same
role during the mycoparasitic process of R. solani by S. elegans
requires further study.

The success of Stachybotrys to overcome the defense
mechanisms of Rhizoctonia and parasitize it is indirectly linked
to the suppression of the biosynthesis of the majority of
its metabolites with well-established bioactivity. Among these,
melatonin is an antioxidant and free radical scavenger in many
organisms, including fungi (Hardeland et al., 2006; Tamura
et al., 2012). Interestingly, N6-acetyl-L-lysine and (S)-2,3,4,5-
tetrahydropiperidine-2-carboxylate that belong to the lysine
degradation pathway were detected in lower amounts during
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mycoparasitism compared to pure cultures. Both metabolites
control the synthesis of glutamate which contributes to the
synthesis of the stress-related molecules γ-aminobutyric acid,
polyamines, and nitric oxide (Galili, 2002).

Fungal species are also sources of pigments (Gessler et al.,
2013). Among them are octaketide pigments with structure based
on the anthraquinone skeleton (Velíšek and Cejpek, 2011). Here,
a decrease in anthraquinone was observed in the dual-cultures
compared to the pure cultures 4 days following treatment,
whereas the metabolite was not detected in the dual-cultures 1
day later. Bioassay studies performed on several anthraquinones
derivatives that were isolated from various fungi have highlighted
their antibacterial, antiparasitic, antiviral and fungicidal activities
(Kanokmedhakul et al., 2002; Srinivas et al., 2007; Zhou et al.,
2014). The metabolite slaframine, known to be produced by R.
leguminicola, the causal pathogen of the black patch disease of
red clover (Li et al., 2012), has been detected also in decreased

amount in pure cultures compared to dual-cultures at both time
points. Slaframine is an indolizidine alkaloid responsible for
locoism and leads to economical losses in animals (Croom et al.,
1995).

The benzophenone derivative rhizoctonic acid was present
only in pure cultures and suppressed during mycoparasitism. In
addition to its isolation from R. solani (Ma et al., 2004), it has
been isolated from endophytic fungi such as, Guignardia and
Penicillium sp. and has been reported to exhibit antimicrobial
activity against human pathogens (Ma et al., 2004; Wang et al.,
2008, 2010).

Secondary Metabolites of Stachybotrys elegans
Involved in Mycoparasitism
Stachybotrys genus includes diverse species having the ability to
produce a wide range of bioactive secondary metabolites (Deng
et al., 2003). Several mycotoxins of Stachybotrys were detected

FIGURE 6 | Partial least squares (PLS) coefficient plots for Stachybotrys elegans-derived metabolites that were identified during mycoparasitism with

values of scaled and centered PLS regression coefficients (CoeffCS) (ESI+; positive electrospray mode, ESI−; negative electrospray mode).
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during Rhizoctonia’s mycoparasitism 4 and 5 days following
dual-culturing (Figure 6 and Supplementary Data Set 5), which
probably suggesting their involvement in the mycoparasitism
process. The production of mycotoxins by the genus Stachybotrys
as well as other unrelated fungi such as, Fusarium, Trichoderma,
Trichothecium, Verticimonosporium, and Cephalosporium is well
documented (Bräse et al., 2009; McCormick et al., 2011; Kramer
and Abraham, 2012).

The majority of the identified metabolites belongs to
trichothecenes, a well-studied class of sesquiterpenes (Rocha
et al., 2005; McCormick et al., 2011). They are able to passively
move across cell membranes (McCormick et al., 2011) and
bind to ribosomes and trigger mitogen-activated protein kinases
(MAPKs) (Pestka et al., 2004). Their bioactivity is mainly
attributed to the epoxide that they contain (C12-C13) (Sudakin,
2003) (Supplementary Figure 6).

The identified trichothecenes are simple (e.g., trichothecin
andtrichodermol), with the exception of the macrocyclicroridin
A-trichoverrin A/B (Supplementary Data Set 5). Studies
performed on human and plant cells have revealed that
trichothecenes act by inhibiting the synthesis of nucleic acids
and protein synthesis (Rocha et al., 2005; McCormick et al.,
2011). Additionally, trichothecenes have been reported to
generate hydrogen peroxide, alter cell division and membrane
function (Shifrin and Anderson, 1999; Nishiuchi et al., 2006;
Yazar and Omurtag, 2008). Reports on trichothecenes’ activity
against plant pathogens are less common (Ayer and Miao, 1993).
Trichodermol produced by Stachybotrys cylindrospoa exhibited
strong activity against the blue stain fungus Ophiostoma
crassivaginatum in confrontation assays (Hiratsuka et al.,
1994). In a similar analogy to their documented bioactivity
on human and plant cells, we hypothesize that the presence
of trichothecenes in dual-cultures is triggered by the pathogen
and results in the alteration of its metabolism and ultimately its
growth and development.

In addition to trichothecenes, the Stachybortys-produced
atranones D/E, F and H, were identified during mycoparasitism,
with the latter being present only during mycoparasitism
and not in pure cultures (Supplementary Data Set 5). This
indicates its de novo or substantially increased biosynthesis
during mycoparasitism. This toxin is an analog of atranones
A, B, and I (Hinkley et al., 2003) and a precursor of
atranone J (Jarvis, 2003). Atranones are diterpenoids with unique
structures (Supplementary Figure 6), produced by species such
as, Stachybotrys spp. and Myrothecium verrucaria (Bräse et al.,
2009). However, in contrast to trichothecenes, atranones do not
exhibit significant bioactivity (Jarvis, 2003).

Finally, a small number of identified Stachybotrys metabolites
were detected only in pure cultures (Supplementary Figure 7).
Among these, spirodihydrobenzofuranlactam 4 (Deng et al.,
2003) act as protein synthesis inhibitors and protein antagonists
(Roggo et al., 1996); the spirocyclic drimane stachybotrylactone

exhibit antiplasmodial activity (Wang et al., 2014); and the
sesquiterpenoid trichothecolone exhibits cytotoxic activity
(Wang et al., 2015). This finding plausibly indicates their
decreased biosynthesis and thus, minor importance for
mycoparasitism. This could be attributed either to a “preference”

for the biosynthesis of other bioactivemetabolites or inhibition of
their biosynthesis as a result of the action of Rhizoctonia-derived
metabolites, and needs further investigation.

Conclusion

An original DIMS metabolomics approach was developed
for the monitoring of the production of secondary bioactive
metabolites in interaction zones of hyphal mycelia formed
between a mycoparasite and a fungal pathogen during active
mycoparasitism. In these zones both partners are subjected
to intense stress leading to the induction of secondary
bioactive metabolites for attack and/or defense. The majority
of the antimicrobial R. solani-derived metabolites were down-
regulated in dual-cultures possibly due to the direct effect
of the mycoparasite on host’s metabolism or because they
were produced in trace amounts. Alternatively, S. elegans
mycotoxins known as trichothecenes were up-regulated during
mycoparasitism. To the best of our knowledge, this is the
first report on the involvement of trichothecenes in the active
process of mycoparasitism. Results could be further exploited
in programs for the evaluation of the bioactivity of these
metabolites per se, or their structures as chemical analogs
and/or genetic engineering programs to obtain more efficient
mycoparasite strains with improved efficacy and toxicological
profiles. Experiments are underway to isolate the most induced
metabolites from each fungal partner and test their bioactivity
against each other.
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