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Abstract
Background: Microarray-based tumor classification is characterized by a very large number of
features (genes) and small number of samples. In such cases, statistical techniques cannot determine
which genes are correlated to each tumor type. A popular solution is the use of a subset of pre-
specified genes. However, molecular variations are generally correlated to a large number of genes.
A gene that is not correlated to some disease may, by combination with other genes, express itself.

Results: In this paper, we propose a new classiification strategy that can reduce the effect of over-
fitting without the need to pre-select a small subset of genes. Our solution works by taking
advantage of the information embedded in the testing samples. We note that a well-defined
classification algorithm works best when the data is properly labeled. Hence, our classification
algorithm will discriminate all samples best when the testing sample is assumed to belong to the
correct class. We compare our solution with several well-known alternatives for tumor
classification on a variety of publicly available data-sets. Our approach consistently leads to better
classification results.

Conclusion: Studies indicate that thousands of samples may be required to extract useful
statistical information from microarray data. Herein, it is shown that this problem can be
circumvented by using the information embedded in the testing samples.

Background
The emergence of modern experimental technologies,
such as DNA microarray, facilitates research in cancer clas-
sification. DNA microarrays offer scientist the ability to
monitor the expression patterns of thousands of genes
simultaneously, allowing them to study how these func-
tion and how they act under different conditions. This can
lead to a more complete understanding of molecular var-
iations, in addition to morphologic variations among

tumors. A large number of studies have used microarrays
to analyze the gene expression for breast cancer, leukemia,
colon tissue, and others, demonstrating the potential
power of microarray in tumor classification [1-7].

An important open problem in the analysis of gene
expression data is the design of statistical tools that can
cope with a large number of gene expression values per
experiment (usually thousands or tens of thousands) and
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a relatively small number of samples (a few dozen). This
imbalance between number of genes and samples, gener-
ally results in over-fitting [8], i.e., the problem where one
can easily find a decision boundary which separates the
training samples perfectly while performing poorly on
independent testing feature vectors [9]. This problem has
been cited as a major deterrent for the successful use of
microarrays technology in prognosis and diagnosis in
cancer research [8,10,11].

In Fig. 1, we show one such example with an application
to breast cancer classification. In this example, we have 22
samples. The first 7 are from tumor tissue and the remain-
ing 15 are from normal tissue. To test a typical classifica-
tion algorithm, it is common to use the leave-one-out
cross-validation test [12]. That means, 21 of the samples

are used to train the classifier while the remaining sample
is used for testing. There are 22 possible ways of leaving
one of the samples out for testing, each producing a pos-
sible outcome. In Fig. 1, the x-axis represents the index of
the sample left out (1 to 22). The y-axis shows the result-
ing projection onto the one-dimensional space found by
Fisher's Linear Discriminant Analysis [13] (LDA), which is
known to be among the best algorithms in such classifica-
tion problems [11,14]. The sample vectors of the tumor
class are projected onto this one-dimensional space and
marked with the star symbol (*). The projection of the
samples belonging to the non-tumor category are shown
as squares (h). We note that LDA perfectly classifies all of
the 21 training samples, since all the cancer sample vectors
are projected onto exactly the same position while the
non-tumor samples are projected onto a single separate

Plotted here is an illustration of the over-fitting problemFigure 1
Plotted here is an illustration of the over-fitting problem. The x-axis indicates the index of the sample left out for test-
ing. In all cases, the training samples are perfectly separated (i.e., all the samples from class 1 and class 2 are projected onto two 
clearly distinct points – shown as * and h, respectively). The test samples fall in the middle and are not always correctly classi-
fied.
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location. Next, to classify new, independent testing fea-
ture vectors, it is common to use the nearest mean
approach, where the testing sample is projected onto our
one-dimensional space and classified according to the
label of the nearest class mean. This classifier is shown by
the dotted line in Fig. 1. The feature vectors previously left
out for testing are shown in the figure as circles. Filled cir-
cles indicate misclassifications. Open circles correct classi-
fications. Several of the testing samples are incorrectly
classified, because the discriminant information encoded
in the training samples is not the same as that found in the
testing one, i.e., the classifier is over-fitted to the training
set.

Over-fitting
Over-fitting can be solved by collecting more samples, but
recent results predict hundreds, if not thousands, of sam-
ples would be necessary to resolve this issue [15,16].
Unfortunately, in many studies, such a large number of
samples is prohibitive, be it due to cost (time, economi-
cal) or limited access to patients in rarely occurring can-
cers.

The most common strategy to overcome these difficulties
and avoid over-fitting is to reduce the dimensionality of
the original space by choosing a subset of genes that can
(theoretically) discriminate tumor tissue from normal;
i.e., pre-selection of genes. These pre-selected genes may
have explicitly biological meaning or implications in the
molecular mechanism of the tumorigenesis [17,18]. Their
objective is to increase the classification accuracy, decrease
the computation cost of the classifier and clarify the bio-
logical interpretation of cancers. A variety of gene selec-
tion algorithms have been proposed for this purpose
[1,14,17,18].

Unfortunately, a method for pre-selecting genes that
works well on one data-set, will not generally work as
expected on another [19]. Further, the results are many
times unstable due to the limited amount of data used in
pre-determining such a pool of genes [11]. Hence, the
results can be biased toward the characteristics of our
available data or, even, toward the way this data was col-
lected [20]. This is one of the reasons why biomarkers
(genetic markers) and other selection mechanisms do not
always generalize to novel experiments [8]. To determine
the (complex, underlying) biological process involved in
the likelihood of developing a certain cancer, it is neces-
sary to study the relation of each individual gene as well
as their combinations, because when combined with oth-
ers a gene can express itself.

Several methods, such as maximum likelihood [21] (ML),
weighted voting [1] (WV), k-nearest neighbor [21] (kNN),
Fisher's Linear Discriminant Analysis [13] (LDA) and Sup-

port Vector Machines [22,23] (SVM) are, in principle,
capable of dealing with a large number of genes (fea-
tures), and many are known to generalize to new samples
when the training set is very large [24]. However, when
the number of features is very large and the number of
samples small, these methods cannot avoid the over-fit-
ting problem [9]. It remains a key open problem to define
classification strategies that can be applied to a large
number of genes while aiming to relieve the influence of
over-fitting.

Current methods
Discriminant algorithms for tumor classification using
microarray data were cited above. These correspond to the
following.

k Nearest Neighbor (kNN) [21]
In many instances, it is reasonable to assume that obser-
vations which are close to each other in the feature space
(under some appropriate metric) belong to the same class.
The nearest neighbor (NN) rule is the simplest non-para-
metric decision procedure to adopt this form.

Specifically, the label of a sample x is c if C( ) = c, where

C(x) denotes the class label of the feature vector x, and
d(·,·) is a distance measurement. Generally, the Eucli-
dean distance is used and (hence) was the one considered
in this paper. Notice that this NN-rule only uses the near-
est neighbor for classification, while ignoring the remain-
ing pre-labeled data points. If the number of pre-classified
points is large, it makes sense to use the majority vote of
the nearest k neighbors. This method is referred to as the
kNN rule, and is attractive because it is known to general-
ize well [24].

Weighted Voting (WV) [1]
Applicable for binary classification, where each gene casts
a weighted vote for one of the classes, and the final deci-
sion is made based on the summation of all individual
votes. Specifically, for each gene g, a correlation value P(g)
is used for measuring the relation between its expression
level and the class distinction. This is defined as P(g) =
[μ1(g) - μ2(g)]/[σ1(g) + σ2(g)], where {μ1(g), σ1(g)} and
{μ2(g), σ2(g)} denote the mean and standard deviation of
the log of the expression level of gene g for each of the two
classes. Large values of |P| indicate high correlations
between gene expressions and class distinction. The vote
of each gene is v(g) = P(g)(x(g) - b(g)), where b(g) = (μ1(g)
+ μ2(g))/2, with a positive value indicating vote for class 1
and negative value indicating vote for class 2. The final
decision is thus given by
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Fisher's Linear Discriminant Analysis (LDA) [13]
LDA is used to find a linear combination of genes where
the between-class variance is maximized and the within-
class variance (or, equivalently, the covariance matrix) is
minimized. Since in microarray data the between-class
scatter matrix SB and the covariance matrix ΣX are both sin-
gular, we need to calculate the projection directions v
from [25]

where ΛB =  and ΛX =  are the eigenval-

ues of SBW = WΛB and ΣXU = UΛX, W =  and U =

 are the corresponding eigenvectors, and pB and pX

denote the rank of the two matrices. After the projection
matrix V is obtained, a nearest class mean classifier is used
for classification in the sub-space formed by the first q col-
umns of V. Since the sample-to-dimension ratio is small,
it is customary to use only the first row of V, that is, the
most discriminant direction of LDA, v, even if C > 2. Then,
classification reduces to

Support Vector Machines (SVM) [23]
If the data-set is linearly separable, a linear SVM is a max-
imum margin classifier. This means, SVM will find that
hyperplane that divides the data of one class into one
region (say, the positive side of the hyperplane), and the
other class in another region (the negative side). While
doing this, SVM will guarantee that the distance between
the samples of class 1 and class 2 that are closets to this
hyperplane is maximized. Considering the following lin-
ear classifier

it can be shown that maximizing the margin is equivalent
to solving the following optimization problem

The weight vector  is a linear combination

of the training patterns.

Maximum Likelihood (ML)

This is a parametric method. It assumes the distribution
form pk(x) for each class is a prior known – Gaussian dis-

tributions being the most common assumption. The
parameters of the distribution are estimated using the
training samples. ML assigns the sample x to the class
which gives the largest likelihood to x, i.e., C(x) = arg maxk

pk(x). When the samples are Gaussian distributed, x ~

(μk, Σk), this results in

Results
We first derive the details of the proposed approach and
present each of the algorithm items. Extensive experimen-
tal validation is then presented in the testing section.

Algorithm
The key idea used in this paper, is to take advantage of the
discriminant information embedded in the testing sam-
ple. Rather than looking for its closest match amongst all
the training samples, we can use the information of the
testing sample to improve the classification process, e.g.,
to find a better discriminant space in LDA.

The reason why classifiers built on training data generally
work poorly on testing data is because the distribution of
the training samples does not generally represent that of
the testing [9]. In such cases, independent testing samples
are treated as passive objects; i.e., it is assumed that the
(discriminant) information encoded in the testing sample
cannot be used because its class is unknown. Here, we show
that it is actually possible to take advantage of the informa-
tion embedded in the testing sample, changing the role of the
testing sample from passive to active. We will accomplish
this by assigning the test sample to each of the possible
classes and then determining which of these "assign-
ments" is the correct one. As mentioned above, this is pos-
sible because a discriminant approach will generally work
best when the test sample is assumed to belong to the cor-
rect class. Earlier, we used intuitive argumentation to show
this. We will now prove this result formally within the
LDA framework, which will be used through out this

C
v g

v g

g

p

g

p
( )

, ( ) ,

, ( ) .
x =

>

≤

⎧

⎨
⎪⎪

⎩
⎪
⎪

=

=

∑
∑

1 0

2 0

1

1

if 

if 

λ
λ

Bi
X j

j
T

i j i
T

j

p

i

p XB

( ) ,u w u w V V
==

∑∑
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=
11

Λ

lB i

p

i

B{ } =1
lX

j

p

j

X{ }
=1

w i i

pB{ } =1

u j j

pX{ } =1

C
k

k
T( ) arg min[( ) ] .x x v= − μ 2

f b( ) ,
,

, ,
x x

x

x
= 〈 〉 + =

≥ ∈
≤ − ∈

⎧
⎨
⎩

a
1 1

1 2

for class 

for class 

minimize

subject to

J y y

y

i i j i j i j
i j

n

i

n

i

( ) ,
,

α α α α

α

= − 〈 〉
== ∑∑ 1

2 11
x x

ii i
i

n
i n= ≥ =

⎧

⎨
⎪⎪

⎩
⎪
⎪ =∑ 0 0 1

1
, , , , .α L

a x=
=∑ α i i ii

n
y

1



C log
k

k
T

k k k( ) arg min{( ) ( ) | |}.x x x= − − +−μ μΣ Σ1
Page 4 of 12
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:280 http://www.biomedcentral.com/1471-2105/9/280
paper as an illustrative solution (although our solution
can be extended to work with other classifiers).

Discriminant power
Our solution originates from the discriminant power
(DP) of linear discriminant analysis, given by [25]

where  and  are the eigenvalues of the

between-class scatter matrix SB and sample covariance

matrix ΣX, respectively,  and  are the cor-

responding eigenvectors, and pB and pX denote the ranks of

these two matrices. The between-class scatter matrix is a
metric measuring the separability of samples correspond-
ing to different classes, while the covariance matrix
defines the sparseness of the data. The goal is to maximize
the first metric while minimizing the second. Here, the
sample covariance matrix is defined as

where xi ∈ p is the ith sample vectors, p the number of fea-

tures (genes), and μ the sample mean over all xi. The class

covariance matrix is similarly given by

, with xi,j the jth sam-

ple in class i, μi the sample class mean, C the number of

classes, and ni the number of samples in the ith class,

. The between-class scatter matrix is then

DP measures how well the classes are separated in the sub-
space spanned by LDA's solution, v. Therefore, the larger
the value of DP is, the better.

To better understand the role of the DP score, let us look
back at feature extraction. A classical approach used by
researchers to perform dimensionality reduction is the
well-known Principal Components Analysis (PCA) algo-
rithm. PCA is concerned with the selection of that linear
combination of features (from the original feature repre-
sentation) which carries most of the data (co)variance.

This is readily accomplished by finding the eigenvectors of
the covariance matrix ΣX, i.e., ΣXV = ΛV, where the col-
umns in V are the eigenvectors and Λ is the diagonal
matrix of corresponding eigenvalues. ΣX is, in effect, the
metric we have decided to maximize.

Linear Discriminant Analysis (LDA) is in fact an extension
of PCA. In LDA, one has two metrics, A and B. The first
metric calculates within-class variances, the second is con-
cerned with between-class variations. Thus, in LDA, the
goal is to minimize the metric given by A while maximiz-
ing that given by B, e.g., A = ΣX and B = SB. This is then
equivalent to the following eigenvalue problem A-1BV =
ΛV.

Unfortunately, this method does not work well when the
two metrics disagree [25], that is, when the solution
favored by the first metric A, does not agree with that of
the second metric B. In this case, we say that the two met-
rics are in conflict. Under such circumstances, knowing
which of the two metrics is right turns into a guessing
game. Taking an average would even be worse, because
generally one of the two metrics is correct [26].

Hence, our next goal is to determine which of the classes,
where our test sample can be assigned, will provide the
smallest conflict, that is, the largest discriminant score DP.
That we will show how to efficiently do next.

Class fitting
In our framework, we first assign the test feature vector x
to class i and then use LDA to obtain the discriminant sub-
spaces vi, i = 1,...,C. The discriminant power indices DPi
can be computed using (1).

This will indicate how well the data is separated when the
test feature vector x is assumed to belong to class i. When
x is assumed to belong to an incorrect class, LDA will find
it difficult to discern that from the other samples, and DPi
will be small. When the test sample is however assigned to
the correct class, LDA will find it easier to discriminate
between classes and the discriminant value (1) will
increase. This means that our approach should reduce to
assigning the test sample x to that class providing the max-
imum discriminant power when x is assigned to it. Unfor-
tunately, this is not possible, because when the number of
genes (features) p is much larger than the number of sam-
ples n, the value of DPi is always 1 regardless of the value
of the parameter i. This is formally stated in the following.

Theorem 1. Let the number of features (e.g., genes) be

, where n is the number of samples, and C the number

of classes. Then, the discriminant power DP for LDA's solution
is always equal to one, DP = 1.
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Proof. Let Σi denote the sample covariance matrix of class

i, i = 1,...,C, p the dimensionality of the sample feature vec-
tors, ni the number of samples in class i, and n the total

number of samples, . Since p >n ≥ ni, we have

p >ni. Hence, dim(null(Σi)) = p - ni + 1. LDA's solution is the

intersection of the null spaces of Σi. This intersection is

non-empty if . That is, when 

This result is illustrated in Fig. 2 for the case of C = 2. In
this figure, we synthetically generated n samples in 10 for
a total of two classes. For visualization purpose, we only
show the data using the three dimensions with largest var-
iance in Fig. 2(a). Red circles represent samples from class
1, blue squares for class 2. The black star is the testing sam-
ple x, which is randomly drawn from class 2 (squares).
Next, we project the data onto the direction found by
Fisher's LDA when different amounts of training samples
n are used, Fig. 2(b)–(e). In Fig. 2(b)–(c), we used n = 15
= p + 5. That is, we keep the dimensionality of the space p
(which is 10) smaller than the number of sample n, i.e., p
<n. Since there are more samples than features (genes),
the discriminant power approach of (1) is applicable. In
Fig. 2(b), we calculate DP1, assuming the test sample
belongs to class 1. In Fig. 2(c), we test the alternate
hypothesis of x actually belonging to class 2, and calculate
DP2. It is clear from the figure that the second option pro-
vides a much larger discriminant power and, therefore,
the algorithm classifies the test sample in the correct class.
However, when the number of samples n is smaller than
or equal to p + 1, the value of DPi is always one. This is
illustrated in Fig. 2(d)–(e), which show the projections
when n = 11 = p + 1. All samples from class 1 are projected
onto a single point and the samples from class 2 to
another, DP1(x) = DP2(x) = 1.

Final classification
The result above had a purpose beyond that of showing
that the discriminant power defined in (1) is inappropri-
ate when n ≤ p + 1. It is illustrative of the reasons why.
First, note that all DPi are equal to one when n ≤ p + 1,
because, in such cases, the projection of each individual
class covariance matrix onto the one-dimensional solu-
tion found by LDA is always zero. In fact, this is possible
because there is always a one-dimensional subspace
where all the samples of the same class collapsed onto a
single point. This subspaces is the intersection of the null
spaces of every class covariance matrix, and was illustrated
in Figs. 1 and 2(d)–(e).

Nonetheless, since the projected class covariance matrices
are zero, the between-class variance itself provides the appro-
priate measure of separability. We thus denote the distance
between classes as that defined by the projected between-
class scatter, vTSBv.

The framework outlined above, can be readily imple-
mented as follows. First, compute the one-dimensional
solution provided by Fisher's LDA when the test sample is
assumed to belong to class k, vk. That is, vk is obtained
using all the training samples and including the test fea-
ture vector x as an additional "training" sample of class k.
This solution allows us to compute the discriminant
power as

where  is the between-class scatter matrix obtained

with all the training samples plus the testing sample x.

The larger the discriminant power (i.e., distance between
classes), the better the algorithm can classify the test sam-
ple. Hence, the test sample should belong to that class
which maximizes (2), that is,

where C(x) specifies the class label of the test feature vec-
tor x. We denote this discriminant, power-based method
as DP algorithm. The schematics of the algorithm are
illustrated in Fig. 3.

The lower-performance problem in between-class classifi-
cation [7] is herein solved by taking advantage of the
information embedded in the testing feature vector.

Testing
We have used a variety of databases to validate the algo-
rithm and our claims. This will also serve to prove the
superior performance of the proposed approach when
compared to the state of the art.

Description of the data-sets
Breast cancer (BRCA1 and 2)
[4] present a database of human breast cancer with sam-
ples generated from 22 primary human breast tumors (7
BRCA1-mutation-positive, 8 BRCA2-mutation-positive
and 7 samples from patients with none of the two gene
mutations). The interest of the experiment is in determin-
ing whether hereditary breast cancers could be classified
based solely on their gene-expression profile. The 22 sam-
ples are grouped in two ways. The first grouping labels the
22 tumor samples according to BRCA1 mutation status
(positive or negative), and the second grouping labels the
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(a) Shown here are the three dimensions with largest variance of the the randomly generated data in 10Figure 2
(a) Shown here are the three dimensions with largest variance of the the randomly generated data in R10. The 
horizontal axis in (b)-(e) corresponds to the direction v found by Fisher's LDA and when assuming the sample vector (star) 
corresponds to the first class in (b) and (d) and to the second class in (c) and (e). For visualization purposes, the samples have 
been randomly distributed about the vertical axis in (b)-(e). This helps illustrate the separability of the two classes shown as red 
(dashed) and blue (solid) lines. We now note that when n >p + 1, the value of DP is a good measure of separability. When n ≤ 
p + 1, DP collapses (Theorem 1), and di becomes the appropriate measure of discriminant ability.
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samples according to BRCA2 mutation status (positive or
negative). There is a total of 3226 genes in this data-set.

PROS
This data set is developed to investigate whether gene
expression difference is helpful to distinguish prostate
cancers with common clinical and pathological features
[27]. A total of 102 samples (50 normal and 52 prostate
tumor) are included and each sample consists of expres-
sion values for 12600 genes. We have normalized the
expression levels to a maximum value of 16, 000 and a
minimum of 10 to eliminate outliers. The variation filter
is then used to exclude genes showing small variation
across samples. A 5-fold change variation (Max/Min) and
absolute variation of 50 (Max-Min) is applied.

PROS-OUT
This data-set is to analyze whether the gene expression
data alone can accurately predict patient outcome after
prostatectomy [27]. Samples from 21 patients are evalu-
ated with regard to recurrence following surgery. Eight
patients had relapsed and thirteen patients did not for a
period of 4 years after the surgical procedure. The same
processing steps as PROS is used.

Lymphoma
Diffuse large B-cell lymphoma (DLBCL) is the most com-
mon lymphoid malignancy in adults, curable in less than
50% of patients. This data-set is constructed from a related
germinal center B-cell, follicular lymphoma (FL) [5]. In
DLBCL-FL, the microarray contains gene expression pro-
files for 77 patients (58 with DLBCL and 19 with FL) for a
total of 6817 genes. Accepting the suggestion of [5], we

use the value of 16, 000 as a ceiling and 20 as the lower
threshold for the expression levels. The variation filter is
used to exclude genes showing small variation across sam-
ples. Two types of variations are used here: fold-change
and absolute variation, which correspond to max/min and
max - min, respectively; where max and min refer to the
maximum and minimum value of expression level for
each particular gene across all samples. In particular, we
used max/min < 3 and max - min < 100.

Leukemia
[1] define a data-set for the study of two types of acute
leukemia – acute lymphoblastic leukemia (ALL) and acute
myeloid leukemia (AML). The microarrays contain 6817
genes. The data used in this paper consists of 38 bone
marrow samples (27 ALL and 11 AML). The leave-one-out
cross-validation test was used on this set. The same filter-
ing procedure defined above was employed.

I2000
This data-set contains a total of 2000 gene expressions of
40 tumor and 22 normal colon tissue samples [3]. Follow-
ing the suggestion of [4], we employed the following pre-
processing: 1) compute the median of each array (an array
corresponds to a specimen); 2) determine the median of
the medians computed in step 1, which is labelled M; 3)
for a given array, add or subtract an appropriate constant
to each expression value to re-center the median of the
array to be that given by M; 4) log-transform the entire
data-set to make the data more Gaussian distributed.

Flow chart of the DP algorithm for the classification of test samples in a C-class problemFigure 3
Flow chart of the DP algorithm for the classification of test samples in a C-class problem.
Page 8 of 12
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:280 http://www.biomedcentral.com/1471-2105/9/280
Experimental results
To test the approach just presented, we use the leave-one-
out cross-validation test. This means that, at each itera-
tion, we keep one of the n samples for testing and use the
remaining n - 1 for training. We then see whether each of
the algorithms can correctly classify the sample left out.
This is repeated n times – one for each of the samples that
can be left out. Table 1 shows the results obtained using
the proposed approach on a diverse set of microarray can-
cer classification problems. In the table, we also show
comparisons to the classical approaches mentioned
above: kNN, WV, LDA, SVM, and ML.

The second experiment is designed to further understand
the dynamics of the proposed algorithm. As stated in this
paper, most algorithms will fail when the training sam-
ples are not representative of the testing ones. We have
approached this problem by taking advantage of the
information embedded in the test vector. Under this
model, our approach should be superior to the classifica-
tion mean of other algorithms when the test sample is
more correlated to the training samples of the incorrect
class. To demonstrate this, we have designed a second
experiment, where we divided each of the samples left out
for testing into two groups. The first group includes those
test vectors that are more correlated to the sample mean of
the correct class than to the sample mean of the incorrect
class. The second set corresponds to those test samples
that are more correlated to the incorrect class. Table 2
shows the classification accuracy of our method on each
of these two sets for each of the databases tested. Our
results are compared to the average of those obtained with
the other algorithms tested. As predicted, the largest dif-

ferences are in the second group, which includes the test
vectors that are more correlated to the incorrect class.

The experimental results reported thus far used real data-
sets to compare the classification capabilities of the pro-
posed algorithm with those reported in the literature. The
differences shown in Tables 1 and 2 are significant,
because our method is able to provide the top classifica-
tion accuracies in all cases. Yet, one may wonder how
would our method perform if the availability of samples
was larger. To further demonstrate the superiority of the
proposed algorithm with those given in the literature, we
now show an experimental comparison using synthetic
datasets.

In our first example, we randomly generated two Gaussian
distribution, each representing one of the two classes. The
two Gaussians were defined in p, with p = 50,...,400. The
covariance matrices were set as diagonal matrices with
their elements set at random. The means of these distribu-
tions were also set at random. We then randomly gener-
ated 50 samples from each of the two distribution and
used the algorithms defined earlier and the one proposed
in the present work to do classification. The number of
samples was kept at 50 regardless of value of p. This tested
how well each algorithm could deal with a decrease on the
sample-to-dimension ratio. In Fig. 4(a), we plot the aver-
age results obtained from a total of 100 randomly gener-
ated cases. We clearly see that the proposed DP algorithm
outperform the others – especially so as p increases.

The above result is however quite simplistic, because the
samples in each distribution were distributed according to

Table 1: Comparison of the results obtained with different classifiers in a variety of data-sets. 

Data-set genes samples DP kNN WV LDA SVM ML-s ML-d

BRCA1 3226 7 BRCA1-positive 21/22 18/22 (1) 18/22 18/22 18/22 19/22 16/22
15 BRCA1-negative

BRCA2 3226 8 BRCA2-positive 21/22 21/22 (1) 17/22 19/22 18/22 17/22 17/22
14 BRCA2-negative

PROS 12600 52 tumor tissue 93/102 90/102 (5) 61/102 92/102 93/102 64/102 50/102
50 normal tissue

PROS-OUT 12625 8 non-recurrence 15/21 12/21 (1) 12/21 13/21 14/21 13/21 13/21
13 recurrence

DLBCL-FL 6817 52 DLBCL 74/77 71/77 (7) 63/77 74/77 74/77 65/77 58/77
25 FL

ALL-AML 6817 27 AML 38/38 37/38 (3) 38/38 38/38 38/38 30/38 27/38
11 ALL

I-2000 2000 40 tumor colon tissue 61/62 59/62 (3) 58/62 61/62 61/62 59/62 58/62
22 normal colon tissue

Columns indicate the algorithm used, rows the data-set. In each cell the number in the numerator specifies the number of left-out-samples that has 
been correctly classified by the corresponding algorithm. The value in the denominator is the total number of samples n. The kNN algorithm has a 
free parameter that needs to be determined – the number of neighbors k. To allow for a fair comparison, we have optimized this value for each of 
the databases using cross-validation [12]. The optimal resulting value is specified in parenthesis. In the ML classifier, we consider two cases: those 
where the two classes are assumed to have the same variance, and those where the variances are assumed to be different. These are referred to as 
ML-s (same) and ML-d (different).
Page 9 of 12
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:280 http://www.biomedcentral.com/1471-2105/9/280
a single Gaussian distribution. A more realistic scenario in
bioinformatics is that where the samples in each class are
generated by a mixture of Gaussians. To test this other
case, we randomly generated 50 samples corresponding to
two different classes. Each class was now defined by a mix-
ture of four Gaussians, with their means and covariances
randomly selected as above. The average results over a
total of 100 runs are shon in Fig. 4(b). Again, we see that
the proposed DP algorithm outperforms the others. Most
importantly though, it is clear from Fig. 4(a–b) that the
proposed algorithm is not very sensitive to an increase on
the number of dimensions. This is a very important fea-
ture in studies of bioinformatics and further demonstrates

the superiority of the DP algorithm over the state of the
art.

Discussion
Analyzing data from small sample size sets is a recurring
problem in biology. This is generally due to the limited
amount of data available or to the difficulty or costs asso-
ciated to obtaining additional data. Studies indicate that
hundreds or thousands of samples would be required to
extract useful statistical information from our data sets
[15,16]. Hence, innovative statistical methods like the one
presented in this paper are of great relevance in many
areas of biology.

Table 2: Classification accuracy of the proposed algorithm and alternatives on two subsets of the data in the leave-one-out test. 

BRCA1 BRCA2 PROS PROS-OUT

DP Others DP Others DP Others DP Others

More correlated 18/18 16.67/18 17/17 16.5/17 59/60 53.3/60 12/15 11.83/15
Less correlated 3/4 1.67/4 4/5 1.67/5 34/41 21.67/41 3/6 0.9/6

DLBCL-FL ALL-AML I2000

DP Others DP Others DP Others

More correlated 62/62 58.33/62 38/38 34.67/38 58/58 57.83/58
Less correlated 12/15 9.17/15 0/0 0/0 3/4 1.5/4

The first subset includes those test feature vectors that are more correlated to the samples of the correct class (called, more correlated in this 
table). The second subset consists of those test feature vectors that are more correlated to the samples of the incorrect class (referred to as less 
correlated). The proposed approach is superior in both subsets, but especially so in the less correlated category. This is achieved by taking 
advantage of the information encoded in the test sample.

Experimental results with synthetic dataFigure 4
Experimental results with synthetic data. Shown here are the successful recognition rates obtained with a variety of clas-
sification approaches defined in the literature for increasing values of the dimensionality p – ranging from a low of 50 to a max-
imum of 400. Recognition rates shown in the scale of 0 to 1. (a) Results generated with a single Gaussian distribution per class. 
(b) Results obtained with samples randomly drawn from a mixture of four randomly generated Gaussian distribution per class.
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This paper has shown derivations of an approach to deal
with the small sample size problem within a linear discri-
minant analysis setting. Our framework can be readily
extended to work within other classification approaches.
It could also be combined with shrinkage [28], a mecha-
nism to share information between genes, to improve on
the analysis of our data. A key point is to realize that (in
our framework) it is not necessary to learn the true, under-
lying distribution of each class. It suffices to find that (part
of the) solution necessary to correctly classify the test sam-
ple. Part of this information is of course embedded in the
test sample, and our approach takes advantage of this.
While our results are most applicable to data-sets where
the data in each class can be approximated by an underly-
ing distribution, data-drive approaches may be preferred
elsewhere. Our framework should then be extended into
other algorithms such as non-parametric methods or SVM
[23]. Extensions to deal with missing components [29,30]
can also be adapted to our framework. Also, some genome
sequences are spherical. In these cases, our approach can
be extended to work with spherical classifiers [31].

The approach proposed here can also be applied to many
other problems in biology and medicine. For example, in
the classification of nuclear magnetic resonance spectra,
which is typically used to carry out metabolomics experi-
ments. In this example, classification approaches like the
ones describe din this paper are generally used [32].
Another application is in the use of cytotoxic chemother-
apeutic drugs that target proliferating signature genes.
This approach is generally used to stop further cell divi-
sion and bring tumors under control. However, these
drugs can also damage DNA of normal tissue. Developing
solutions that only target those necessary genes is funda-
mental to the success of such therapies. This will involve
the identification of biomarkers of proliferation associ-
ated to each of the cancers [33]. These analysis are also
characterized by a disproportionate feature to sample
ratio, resulting in over-fitting. This is especially true when
proliferation is studied over a large number of cancers
[34,35]. In such studies it is almost always necessary to
use all the data available to prevent missing useful
biomarkers.
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