
M a j o r  a r t i c l e

776 • cid 2022:74 (1 March) • Haak et al

Clinical Infectious Diseases

Bacterial and Viral Respiratory Tract Microbiota and Host 
Characteristics in Adults With Lower Respiratory Tract 
Infections: A Case-Control Study
Bastiaan W. Haak,1,2 Xanthe Brands,1 Mark Davids,2 Hessel Peters-Sengers,1 Robert F. J. Kullberg,1,2,  Robin van Houdt,3 Floor Hugenholtz,1,2 
Daniël R. Faber,4 Hans L. Zaaijer,3 Brendon P. Scicluna,1,5 Tom van der Poll,1,6 and W. Joost Wiersinga1,2,6

1Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; 2Microbiota Center 
Amsterdam, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; 3Department of Virology, Amsterdam University Medical Centers, 
Location AMC, University of Amsterdam, Amsterdam, The Netherlands; 4Department of Internal Medicine, BovenIJ hospital, Amsterdam, The Netherlands; 5Department of Clinical Epidemiology, 
Biostatistics and Bioinformatics, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; and 6Department of Internal Medicine, Division of 
Infectious Diseases, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands

Background. Viruses and bacteria from the nasopharynx are capable of causing community-acquired pneumonia (CAP), which 
can be difficult to diagnose. We aimed to investigate whether shifts in the composition of these nasopharyngeal microbial commu-
nities can be used as diagnostic biomarkers for CAP in adults.

Methods. We collected nasopharyngeal swabs from adult CAP patients and controls without infection in a prospective 
multicenter case-control study design. We generated bacterial and viral profiles using 16S ribosomal RNA gene sequencing and 
multiplex polymerase chain reaction (PCR), respectively. Bacterial, viral, and clinical data were subsequently used as inputs for ex-
tremely randomized trees classification models aiming to distinguish subjects with CAP from healthy controls.

Results. We enrolled 117 cases and 48 control subjects. Cases displayed significant beta diversity differences in nasopharyngeal 
microbiota (P = .016, R2 = .01) compared to healthy controls. Our extremely randomized trees classification models accurately dis-
criminated CAP caused by bacteria (area under the curve [AUC] .83), viruses (AUC .95) or mixed origin (AUC .81) from healthy 
control subjects. We validated this approach using a dataset of nasopharyngeal samples from 140 influenza patients and 38 controls, 
which yielded highly accurate (AUC .93) separation between cases and controls.

Conclusions. Relative proportions of different bacteria and viruses in the nasopharynx can be leveraged to diagnose CAP and 
identify etiologic agent(s) in adult patients. Such data can inform the development of a microbiota-based diagnostic panel used to 
identify CAP patients and causative agents from nasopharyngeal samples, potentially improving diagnostic specificity, efficiency, 
and antimicrobial stewardship practices.
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Community-acquired pneumonia (CAP) is the leading cause 
of hospitalization and death worldwide [1–3]. The diagnosis 
of CAP can often be challenging for clinicians, as symptoms 
of acute heart failure, chronic obstructive pulmonary disease 
(COPD), or pulmonary embolism may mimic the presentation 
of the disease [1]. In addition, patients with viral and bacterial 
lower respiratory tract infections clinically present similarly, 

and a confirmed microbiological diagnosis is only obtained in 
approximately half of all cases [1, 4].

An increasing amount of research has focused on studying 
the composition and function of commensal micro-organisms 
in the nasopharynx, which has shown to be an ecological proxy 
for the lower airway microbiota [5–7]. Although lower in total 
biomass compared to the gastrointestinal tract, the upper respi-
ratory tract harbors a surprisingly diverse and stable ecosystem 
of bacteria, viruses, and fungi. Common respiratory pathogens, 
such as Streptococcus pneumoniae and Haemophilus influenzae 
are frequently identified in the healthy nasopharynx, yet a bal-
anced community of other commensal bacteria prevents the 
overgrowth of these pathobionts [8, 9]. However, studies have 
shown that a loss of these mechanisms of protection by com-
mensal bacteria, otherwise known as colonization resistance, 
facilitates the enrichment of single bacterial taxa, ultimately 
leading to respiratory infections [10–15].

The observed relationship between the loss of colonization 
resistance and respiratory infections has fueled the hypothesis 
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that shifts in nasopharyngeal bacterial communities could po-
tentially be employed to facilitate the diagnosis of CAP. A re-
cent matched case-control study in neonates strengthened this 
hypothesis by demonstrating that a classifier model based on 
nasopharyngeal bacterial and viral communities can accurately 
identify lower respiratory tract infections [5]. These findings 
could have implications for future treatment protocols, poten-
tially leading to a reduction in the inappropriate use of anti-
biotics and, although currently underexplored, are therefore of 
equal interest to adult CAP patients [16]. However, most studies 
have limited their scope to identifying the absence or presence 
of a single nasopharyngeal bacterial species, which does not ac-
count for the role that shifts in bacterial communities as a whole 
could play in the acquisition of CAP [8]. Therefore, this study 
aimed to investigate if shifts in bacterial and viral communities 
of the nasopharynx can aid in diagnosis of CAP in adults who 
present to the hospital.

METHODS

Study Design and Patient Recruitment

Details of recruitment have been published previously [17]. In 
brief, consecutive patients older than 18 years admitted to the 
Amsterdam UMC, location Academic Medical Center (AMC) 
or BovenIJ hospital in the Netherlands during the influenza 
seasons (October 2016 to June 2017 and October 2017 to June 
2018)  were screened by trained research physicians. Patients 
were included if they were admitted with a clinical suspicion 
of a community-acquired pneumonia. Patients exposed to anti-
biotics within 48 hours prior to hospital admission, with the 
clinical suspicion of an aspiration pneumonia or a hospital-
associated pneumonia were excluded. Subjects of comparable 
age and sex, who presented for periodical control of cardiovas-
cular management, diabetes care or cancer follow up at the out-
patient clinic of the Amsterdam UMC, location AMC, served as 
controls without acute infection.

Data Collection

Nasopharyngeal swabs in Universal Transport Medium (UTM™, 
Copan) were taken within 24 hours of hospital admission and 
1 month thereafter and stored immediately at −80°C. Clinical 
data and host characteristics were retrieved from electronic 
medical records and standardized case report forms. We also 
collected microbiological data regarding causative pathogens 
(based on a combination of viral nasal/throat swab polymerase 
chain reaction [PCR], urine antigen tests, blood cultures, and 
sputum cultures). Microbiological results were deemed to be 
clinically relevant if the physician caring for the patient deemed 
an infection was present and elicited a treatment plan based on 
these findings. Written informed consent was obtained from all 
eligible participants, or their legal representatives. The study 

protocol was approved by the local institutional review boards 
(ref number NL57847.018.16).

Bacterial and Viral Analysis

A detailed methodology of the bacterial sequencing procedure 
is described in the Supplementary Materials and in prior pub-
lications of our group [18]. In short, 16S rRNA gene amplicons 
were generated using a single step PCR protocol targeting the 
V3–V4 region. The libraries were sequenced using a MiSeq 
platform using V3 chemistry with 2 × 251 cycles. amplified se-
quence variants (ASVs) were inferred for each sample individ-
ually with a minimum abundance of 4 reads [19]. Previously 
detected contaminating sequences, identified using nega-
tive controls and the decontam package, were removed [20]. 
Nasopharyngeal viral communities were analyzed by multi-
plex real-time PCR (RespiFinder SMARTfast 22, Maastricht, 
Netherlands).

Statistical Analysis

Statistical analysis was performed in R (Version 3.6.1, Vienna, 
Austria). To assess alpha diversity and richness, we calcu-
lated the Inverse Simpson Index and Observed Taxa Richness 
index with the phyloseq package [21]. Data were not nor-
mally distributed and were therefore analyzed using either 
a Wilcoxon rank sum or Kruskal-Wallis test. Beta diversity 
was assessed using the weighted and unweighted UniFrac 
distance metrics, and differences among groups were tested 
using PERMANOVA as implemented in the vegan package. 
DESeq2 analysis was used to identify differentially abundant 
bacterial genera [22]. Finally, extremely randomized trees 
classification models were used to assess the value of a combi-
nation of clinical variables and nasopharyngeal bacterial and 
viral communities to distinguish CAP of bacterial, viral, and 
mixed etiology from health [23]. Extremely randomized trees 
classification models are considered one of the best models 
to identify bacterial taxa associated with disease [24, 25]. 
The relative abundance of the top 40 nasopharyngeal bacte-
rial genera, viral presence, and host characteristics (for details 
see Supplementary Table 1) were used as input for the models. 
We performed 100 iterations of 5-fold cross validation on 
75% of each of the data sets, with subsequent testing on the 
remaining 25% of the samples, and assessed the performance 
of these classifiers by calculating the mean area under the re-
ceiver operating characteristic curve (AUC-ROC) of all 100 
shuffles. The models were implemented in Python (v. 3.7.4) 
using numpy (v. 1.16.4), pandas (v. .25.1), and scikit-learn (v. 
.21.2) packages. We validated this approach using a dataset of 
publicly available 16S rRNA V4 sequences (accession number 
SRP132207), of nasopharyngeal samples from 140 patients 
with influenza A  virus admitted at New York Presbyterian 
Hospital and 38 healthy controls [12].

https://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab568#supplementary-data
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RESULTS

In total, 117 cases and 48 control subjects were enrolled in this 
study (CONSORT flow diagram is provided in Supplementary 
Figure 1). Median age of cases (69.0 years; interquartile range 
[IQR] 60.0–78.0) and controls (70.5 years; IQR 63.8–75.0) were 
similar. Demographic characteristics, dietary habits, prior an-
tibiotic exposure, and comorbidities (diabetes, cardiovascular 
disease, malignancy, gastrointestinal disease, and/or chronic 
renal disease) were comparable between CAP patients and con-
trols. However, cases had a lower body mass index (P = .014) 
and a higher prevalence of COPD (P = .004) and immunocom-
promised status (P = .022) compared to controls (Table 1). The 
median pneumonia severity index (PSI) class [26] at admission 
was 4 (IQR 3–4). Intensive care unit admission was required for 
9 CAP patients (7.8%), and 28-day mortality was 4.4%. Blood 
cultures, sputum cultures, and urine antigen tests were obtained 
in 109 (93.2%), 68 (58.1%), and 73 (62.4%) patients, respec-
tively. Viral data were available for all CAP cases and 47 con-
trols (97.9%). A causative pathogen was identified in 68 patients 
(59.0%), with 12 patients (10.3%) having copathogen infection. 

Nineteen patients (16.2%) were infected by S. pneumoniae, 11 
patients (9.4%) by H.  influenzae, and 5 by Staphylococcus au-
reus (4.3%). Thirty-seven patients (31.6%) were diagnosed with 
a respiratory virus, of which 13 (17.9%) were attributed to in-
fluenza A or influenza B virus; other prevalent viruses were rhi-
novirus (10 patients), parainfluenza virus 1–4 (7 patients), and 
coronavirus NL63 (5 patients) (Figure 1). Two asymptomatic 
healthy control subjects displayed colonization with a respira-
tory virus—one with human metapneumovirus (hMPV) and 
one with rhinovirus.

In addition, 16S rRNA gene sequencing of nasopharyngeal 
samples yielded 11 658 346 high-quality reads (average 45 187 
per sample, range 2181–135 753), classified into 397 amplified 
sequence variants (ASVs). We first investigated the microbiota 
diversity profiles of the nasopharyngeal samples of control 
subjects and cases at admission and follow-up. Inverse Simpson 
diversity and observed Taxa richness indexes were comparable 
between all groups (Figure 2A, 2B). Unweighted UniFrac beta 
diversity of the nasopharyngeal microbiota of cases at admis-
sion differed significantly from controls (P = .016, R2  =  .01; 

Table 1. Baseline Characteristics of Cases and Controls

Characteristic Cases (n = 117) Controls (n = 48) P value

Age, y 69.0 (60.0–78.0) 70.5 (63.8–75.0) .911

Sex, male 64 (54.7) 28 (58.3) .799

Ethnicity, Caucasian 85 (73.3) 40 (85.1) .520

Body mass index 25.29 (6.23) 27.83 (4.92) .014

Influenza vaccination 69 (60.0) 22 (45.8) .067

Pneumococcal vaccination 1 (.9) 1 (2.1) .181

Past smoker 64 (55.2) 23 (47.9) .253

Flexitarian diet 108 (93.9) 47 (97.9) .779

Recent exposure to antibioticsa 11 (9.4) 2 (4.2) .182

Chronic comorbidity

COPD 36 (30.8) 4 (8.3) .004

Cardiovascular disease 89 (76.1) 31 (64.6) .189

Diabetes 32 (27.4) 6 (12.5) .064

Malignancy 40 (34.2) 9 (18.8) .074

Immunosuppressive diseaseb 30 (25.6) 4 (8.3) .022

Gastrointestinal disease 18 (15.4) 2 (4.2) .081

Chronic renal disease 14 (12.0) 3 (6.2) .415

Imaging and microbiology

Radiologically confirmed CAP 117 (100.0)   

Blood culture obtained 109 (93.2)   

Sputum culture obtained 68 (58.1)   

Viral nasal/throat swab PCR performed 117 (100.0) 47 (97.9) >.999

PUAT/LUAT performed 73 (62.4)   

Severity of disease and outcome

PSI class 4.0 (3.0–4.0)   

ICU admission 9 (7.8)   

Length of hospital stay, days 4.0 (3.0, 7.8)   

28-day mortality 5 (4.4)   

Data are no. (%) or median (IQR). 

Abbreviations: CAP, community-acquired pneumonia; COPD, chronic obstructive pulmonary disease; ICU, intensive care unit; IQR, interquartile range; LUAT, Legionella urinary antigen test; 
PCR, polymerase chain reaction; PSI, pneumonia severity index; PUAT, pneumococcal urinary antigen test; SD, standard deviation. 
aRecent antibiotics usage was defined as antibiotic administration from 90 days up to 48 hours prior to inclusion.
bImmunosuppressive disease was defined as clinically suspected or proven immunodeficiency, the use of immunosuppressive therapy or immunomodulating medication in the past 
3 months, including chemotherapy, or the use of more than 10 mg prednisone or equivalent each day for the past 3 months.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab568#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab568#supplementary-data


Respiratory Tract Microbiota in Community-acquired Pneumonia • cid 2022:74 (1 March) • 779

Figure 2C), whereas the weighted UniFrac remained compa-
rable between all groups (Figure 2D). These findings are sup-
ported by the large heterogeneity of nasopharyngeal microbiota 
composition among all study participants, with varying degrees 
of nasopharyngeal domination of the genera Corynebacterium, 
Staphylococcus, and Dolosigranulum (Supplementary Figure 
2). Although it has been shown that COPD is associated with 
airway microbiota alterations [27], we found no interindividual 
dissimilarities in nasopharyngeal microbiota composition and 
diversity between cases at admission with and without COPD 
(Supplementary Figure 3).

Next, we verified if elevated nasopharyngeal relative abun-
dances (proportion of total 16s rRNA reads) of common causa-
tive CAP agents corresponded with detection in blood cultures, 
sputum cultures, and urinary antigen tests. We observed 
that at admission, cases with a confirmed H.  influenzae and 
S.  pneumoniae pneumonia harbored higher nasopharyngeal 
relative abundances of Haemophilus and Streptococcus species, 
respectively, in comparison to cases with other causative patho-
gens and controls (P = .002 and P = .0099, Figure 3). These 
findings were independent of the microbial detection method 
by which the causative pathogen was identified (Supplementary 
Figure 4). Nasopharyngeal samples collected following anti-
microbial treatment (1  month following admission for CAP) 
displayed normalized abundances of the corresponding 

pathogens. This infers that the nasopharynx acts as a proxy of 
clinically meaningful lower respiratory tract infections.

Given these observations, we aimed to explore if nasopha-
ryngeal bacterial community structures, rather than single 
bacterial taxa, were capable of distinguishing CAP patients at 
hospital admission from controls. We employed extremely ran-
domized trees classification models using the relative abun-
dance of the top 40 nasopharyngeal bacterial genera, viral 
presence and clinical variables (depicted in Supplementary 
Table 1) as input. The accuracy of the combined use of these 
three parameters on the classification of CAP versus health was 
high, with a mean cross validation AUC of .81 (standard devia-
tion [SD] ± .05; Figure 4A). Important bacterial discriminatory 
features of pneumonia were, among others, a high abundance 
of Haemophilus, Streptococcus, Actinomyces, and Curvibacter in 
the nasopharynx, and low abundance of several nasopharyn-
geal commensals, such as Corynebacterium, Cutibacterium, and 
Lawsonella (Figure 4B). Most of these genera were among the 
most differentially abundant features between cases and controls 
(Supplementary Figure 5). Clinical discriminators of CAP were 
prior antibiotic treatment in the past 3 months, COPD, low body 
mass index (BMI), immunosuppressive disease, and diabetes 
(Figure 4B). This combined classification system outperformed 
the models based on bacterial microbiota (AUC .71 ± .08), viral 
microbiota (AUC .63 ± .04), and clinical characteristics alone 

Figure 1. Overview of causative pathogens of CAP patients. Cumulative overview of causative pathogens (A) and the proportion of bacterial, viral, and mixed cases within 
the cohort (B). *Other pathogens constitute Rothia dentocariosa, Stenotrophomonas maltophilia, Moraxella osloensis, and Streptococcus salivarius. Abbreviations: CAP, 
community-acquired pneumonia; hMPV: human metapneumovirus; RSV: respiratory syncytial virus.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab568#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab568#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab568#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab568#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab568#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab568#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab568#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab568#supplementary-data
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(AUC .71 SD ± .06) (Supplementary Figure 6). Separate models 
for isolated bacterial CAP (33 cases) and viral CAP (27 cases) 
showed even higher accuracy, with an AUC of .83 (SD ± .07) 
and .95 (SD ± .04), respectively (Figure 4A). Of interest, most 
discriminating factors for bacterial CAP (Figure 4C), specifi-
cally the absence of commensal nasopharyngeal communi-
ties, such as Corynebacterium, Staphylococcus, Cutibacterium, 
and Lawsonella, were similar to the mixed analysis, with viral 

pathogens dominating the discriminatory power of the viral 
CAP model (Figure 4D).

Given the discriminatory power of these communities in 
distinguishing CAP from health, we validated our approach in 
a recently published data set of hospitalized patients with in-
fluenza A infection and controls from New York, USA [12]. In 
correspondence with the results obtained in our data set, we 
observed that the use of nasopharyngeal bacterial community 

Figure 2. Alpha and beta diversity of cases (n = 117) and control subjects (n = 48). Inverse Simpson index (A) and the observed taxa (B) index were used to calculate the 
alpha diversity community and richness within each individual microbiota sample. Data are presented as box plot overlaid by a dot plot with a line at the median. P values 
were calculated using the Wilcoxon rank sum test. Beta diversity is depicted by unweighted (C) and weighted (D) UniFrac index in a PCoA representation. P values were cal-
culated using permutational multivariate analysis of variance (PERMANOVA). Abbreviation: PCoA, principal coordinates analysis.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab568#supplementary-data
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structures alone allowed for excellent distinguishing capacity 
between influenza patients and control subjects with a mean 
holdout cross validation AUC of .93 (SD ± .04; Supplementary 
Figure 7). Combined, these findings show that lower respira-
tory tract infections are associated with consistent shifts in na-
sopharyngeal community compositions. Such data can inform 
the development of a microbiota-based diagnostic panel used 
to identify CAP patients and causative agents from nasopha-
ryngeal samples.

DISCUSSION

We demonstrate that CAP in adults can be robustly differen-
tiated from health using a small set of nasopharyngeal bac-
teria, viruses, and clinical variables. This study sheds light 
on the complexity of the composition of nasopharyngeal mi-
crobes during infections, as direct comparison of the micro-
biota between cases and controls revealed only subtle changes. 
Specifically, we observed no differences in alpha diversity and 
richness of nasopharyngeal communities of patients with CAP 
and controls in this study. In addition, CAP patients displayed 

small but significant beta diversity differences that were charac-
terized by a higher prevalence of pathogenic bacterial taxa, such 
as S. pneumoniae and H. influenzae. The observed differences 
were not driven by altered exposure to antibiotics or altered 
dietary habits, as these exposures were similar between pa-
tients and controls. Patients with microbiologically confirmed 
S.  pneumoniae or H.  influenzae infection displayed increased 
abundance of the corresponding pathogens in the nasopharynx, 
which is in line with the hypothesis that the nasopharynx can 
indeed be considered an important source of these microorgan-
isms in respiratory infections [5, 14, 15]. However, a large pro-
portion of CAP patients displayed low levels of these pathogens, 
indicating that no one-size-fits-all community composition 
exists during CAP. In support of this theory, a recent human 
challenge model with influenza suggests that specific baseline 
microbiota communities, rather than single bacterial species 
alone, might be most relevant in controlling colonization and 
spread of S. pneumoniae [9].

Given these observations, we aimed to investigate if shifts 
beyond microbiota diversity metrics and single bacterial taxa 

Figure 3. High nasopharyngeal abundance of Streptococcus species (top) and Haemophilus species (bottom) in patients with microbiological diagnosis of these pathogens 
as obtained via culture or urine antigen test. Relative abundances (proportion of total 16s rRNA reads) within each individual microbiota sample are presented as box plot 
overlaid by a dot plot with a line at the median. P values were calculated using the Kruskal-Wallis test.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab568#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab568#supplementary-data
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comparisons could be employed to discriminate CAP from 
health. Despite the observed heterogeneity in both clinical vari-
ables and causative agents underlying the disease, our model 
was capable of robustly discriminating health and disease. The 
community structures were driven by alterations in the core 
microbial taxa Staphylococcus, Dolosigranulum, Cutibacterium, 
and Corynebacterium as well as rare and low abundant taxa, such 
as Paracoccus and Gemella, although the abundance of causative 
pathogens attributed to a lesser extent to the distinguishing ca-
pacity of the model. Upon validation of our approach in a pub-
licly available dataset of nasopharyngeal 16S rRNA sequences 
[12], the distinguishing capacity of Influenza A virus infection 
based on nasopharyngeal bacterial markers was nearly perfect. 
The discrepancy in performance of both classification models 
could potentially be explained by the homogeneity of the val-
idation cohort, which only consisted of patients infected with 
a single pathogen, compared to the heterogeneity of both viral 
and bacterial pathogens of the original cohort. However, the 

distinguishing capacity of the classification model remained ro-
bust even in a setting of CAP with a wide variety of viral, bacte-
rial, and unknown- causative pathogens.

Given the rapid decrease in sequencing costs and time in re-
cent years [28], our findings in adults and those of others in 
children [5] indicate that microbiota-targeted tools could im-
prove the diagnostic specificity and efficiency of identifying 
respiratory infections. Of interest, a proof-of-principle study 
using rapid microbiota sequencing with MinION technology in 
adult intensive care unit patients with pneumonia has shown 
that such diagnostic tools hold promise and could be clinically 
applied [16, 29].

There are several potential explanations for the observed shifts 
in nasopharyngeal microbiota composition during CAP. First, 
the changes observed in the nasopharyngeal microbiome may 
precede and contribute to increased susceptibility to infection. 
For example, recent preclinical evidence shows that mice display 
larger perturbations of the upper respiratory microbiome with 

Figure 4. ROC curves for extremely randomized trees classifying models aimed to discriminate cases from controls using nasopharyngeal bacterial abundance, viral 
presence, and host characteristics. Depiction of mean area under response curve (AUC) in the entire CAP cohort (blue line), patients with bacterial CAP (gold line), and viral 
CAP (green line) cohort (A). Depiction of the 15 discriminatory variables with the highest feature importance in all CAP patients (B), patients with bacterial CAP only (C), and 
patients with viral CAP only (D). Relative feature importance is calculated as the decrease in node impurity weighted by the probability of reaching that node. Node proba-
bility is depicted as a percentage, which can be calculated by the number of samples that reach the node, divided by the total number of samples. The higher the value, the 
more important the feature. Abbreviations: AUC, area under the curve; CAP, community-acquired pneumonia; COPD, chronic obstructive pulmonary disease; ROC, receiver 
operating characteristic.
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age, leading to an enrichment and increased risk of infection by 
S. pneumoniae [30]. A recent cross-sectional study investigating 
the upper respiratory tract microbiota revealed that increasing 
age was associated with a loss of common nasopharyngeal com-
mensals Corynebacterium, Dolosigranulum, Staphylococcus, and 
Cutibacterium, and a relative enrichment of oral flora, such as 
Actinomyces, which could predispose to reduced colonization 
resistance and an increased risk of infections [10]. Longitudinal 
studies in neonates have shown that early airway colonization 
with pathogenic bacteria occurred prior to the microbiological 
detection of (viral) pathogens and acute symptoms, and this 
overgrowth is therefore considered an increased risk for respi-
ratory infections [13–15]. In our data, this mode of action is 
supported by the finding that prior antibiotic use is a strong 
marker for bacterial CAP.

Second, the host response induced by the respiratory infec-
tion itself allows for selective enrichment of certain bacteria, 
therefore leading to an altered composition of the nasopharyn-
geal microbiota. For example, it has been shown that separate 
mechanisms involving Th17-cell responses and interferon-
lambda production disrupt the nasopharyngeal microbiome 
and predispose the occurrence of S.  pneumoniae and S.  au-
reus colonization [31, 32]. Support for these mechanisms has 
also been demonstrated in the context of viral infection, as 2 
recent human rhinovirus challenge models and one study 
investigating the nasopharyngeal microbiome during corona-
virus disease 2019 (COVID-19) pneumonia showed the po-
tential of disturbing bacterial nasopharyngeal communities, 
further elucidating the close relationship between bacterial and 
viral kingdoms [33–35]. Longitudinal observational studies 
should further elucidate the role of the observed communi-
ties in the development of respiratory infections. Regardless of 
the directionality of the observed shifts, this study adds to the 
growing body of work that supports a common pathway for the 
development of viral and bacterial CAP, in which a loss of mi-
crobial colonization resistance and individual host factors are 
more important drivers of disease than the characteristics of in-
dividual pathogens [5, 36].

Strengths of this study include the use of validated classifi-
cation models and the prospective case-control design. A lim-
itation of this investigation is the use of amplicon-based 16S 
rRNA gene sequencing, which provides limited taxonomic res-
olution at species level. In addition, PCR bias did not allow us 
to directly validate the yielded models from our dataset (which 
sequenced the V3–V4 region of the 16S rRNA gene) to the val-
idation data set (which only addressed the V4 region) [37]. It 
is warranted to increase the taxonomic resolution and use re-
producible metagenomic sequencing based tools in order to 
validate our approach across multiple longitudinal cohorts and 
clinical settings.

In conclusion, this study shows that the relative proportions 
of bacteria and viruses—based on 16S rRNA gene sequencing 

and multiplex PCR—can be leveraged to diagnose CAP and 
identify etiologic agents in adult patients. Future studies are 
warranted to validate these classification models in the clinical 
setting, specifically aiming to distinguish patients with respira-
tory infections from those presenting with heart failure, pul-
monary embolism or inflammatory pneumonitis. In addition, 
further study is warranted to validate if nasopharyngeal com-
munities could discriminate bacterial CAP from viral etiologies 
with sufficient sensitivity and specificity. If addressed, such data 
can inform the development of a microbiota-based diagnostic 
panel used to identify CAP patients and causative agents from 
nasopharyngeal samples, potentially improving diagnostic 
specificity, efficiency, and antimicrobial stewardship practices.
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